research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of (E)-4-[1-(2-carbamo­thio­yl­hydrazinyl­­idene)eth­yl]phenyl acetate and (E)-4-[1-(2-carbamo­thio­ylhydrazinyl­­idene)eth­yl]phenyl benzoate

CROSSMARK_Color_square_no_text.svg

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Chemistry, Asthagiri Herbal Research Foundation, Perungudi Industrial Estate, Perungudi, Chennai 600 096, India
*Correspondence e-mail: shirai2011@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 14 August 2016; accepted 28 November 2016; online 1 January 2017)

In the title compounds, C11H13N3O2S, (I), and C16H15N3O2S, (II), the thio­semicarbazone group adopts an extended conformation. The acetate ester (I) crystallizes with two independent mol­ecules in the asymmetric unit. In the benzoate ester (II), the planes of the two aryl rings are inclined to one another by 46.70 (7)°. In both compounds, there is a short intra­molecular N—H⋯N contact present, forming an S(5) ring motif. In the crystals of both compounds, mol­ecules are linked via pairs of N—H⋯S hydrogen bonds, forming dimers with R22(8) ring motifs. The dimers are linked by N—H⋯S and N—H⋯O hydrogen bonds, forming slabs parallel to (01-1). In (I), there are N—H⋯π and C—H⋯π inter­actions present within the slabs, while in (II), there are only N—H⋯π inter­actions present.

1. Chemical context

Thio­semicarbazones are potent inter­mediates for the synthesis of pharmaceutical and bioactive materials and they are used extensively in the field of medicinal chemistry. The biological activity of these ligands is related to their ability to coordinate to metal centres in enzymes (Seena et al., 2006[Seena, E. B., Manoj, E. & Kurup, M. R. P (2006). Acta Cryst. C62, o486-o488.]). These derivatives possess an additional functional group that is not coordinated to their `primary' metal ion, thereby suggesting that the biological activity may also depend on the non-coordinating groups (Venkatesh et al., 2016[Venkatesh, K., Rayam, P., Sekhar, K. P. C. & Mukkanti, K. (2016). Int. J. Appl. Biol. Pharm. Tech. 7, 258-266.]). Thio­semicarbazones in their neutral or deprotonated form behave as N,N,S-thio­dentate chelates towards metal ions. They display anti­proliferative activity on different tumors cell lines and have been a common feature of all compounds with carcinogenic potency. A strong correlation has been found between tumor growth rate and the ribonucleoside diphos­phate reductase (RDR) enzyme (Arora et al., 2014[Arora, S., Agarwal, S. & Singhal, S. (2014). Int. J. Pharm. Pharm. Sci. 6, 9, 34-41.]).

Thio­semicarbazone derivatives have found applications in drug development for the treatment of central nervous system disorders and bacterial infection as well as being analgesic and anti-allergic agents. They are inhibitors of DNA replication and also of many proteases. This inhibitory activity explains the level of inter­est given to them in the fight against microbial and parasitic diseases (Mani et al., 2015[Mani, K. A., Viswanathan, V., Narasimhan, S. & Velmurugan, D. (2015). Acta Cryst. E71, o43-o44.]). Thio­semicarbazones have many biological activities such as anti­viral, anti­bacterial, anti­tumor, anti African trypanosome (Fatondji et al., 2013[Fatondji, H. R., Kpoviessi, S., Gbaguidi, F., Bero, J., Hannaert, V., Quetin-Leclercq, J., Poupaert, J., Moudachirou, M. & Accrombessi, G. C. (2013). Med. Chem. Res. 22, 2151-2162.]), anti­microbial, sodium channel blocker, anti­cancer, anti­tubercular, anti­viral (Venkatesh et al., 2016[Venkatesh, K., Rayam, P., Sekhar, K. P. C. & Mukkanti, K. (2016). Int. J. Appl. Biol. Pharm. Tech. 7, 258-266.]), anti­fungal, locomotor activity (Singh et al., 2011[Singh, R., Mishra, P. S. & Mishra, R. (2011). Inter. J. PharmTech. Res. 3, 3, 1625-1629.]), anti­malarial, anti­cancer and they are used as a cure for leprosy, rheumatism and trypanosomiasis (Parul et al., 2012[Parul, N., Subhangkar, N. & Arun, M. (2012). Inter. Res. J. Phar. 3, 5, 350-363.]). As part of our studies in this area, we now describe the syntheses and structures of the title compounds (I[link]) and (II[link]).

[Scheme 1]

2. Structural commentary

The mol­ecular structure of compounds (I)[link] and (II)[link] are shown in Figs. 1[link] and 2[link], respectively. Compound (I)[link] crystallizes with two independent mol­ecules in the asymmetric unit. In both the compounds, there is a short N—H⋯N contact, forming an S(5) ring motif (Figs. 1[link] and 2[link], and Tables 1[link] and 2[link]). In both compounds, the thio­semicarbazone group adopts an extended conformation, as can be seen from the torsion angle S1—C11—N2—N1 [−173.1 (1)° in mol­ecule A and −174.9 (1)° in mol­ecule B of compound (I)] and S1—C16—N2—N1 [172.2 (1)° in compound (II)]. In compound (I)[link], the acetate group adopts an extended conformation, which is evidenced by the torsion angle C1—C2—O2—C3 [−173.2 (2) and 179.9 (2)° in mol­ecules A and B, respectively]. The bond lengths C11A—S1A [1.692 (2) Å] and C11B—S1B [1.680 (2) Å] in (I)[link] and C16—S1 [1.679 (1) Å] in (II)[link] are comparable with the values reported in the literature (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). In compound (II)[link], the benzoate and aceto­phenone thio­semicarbozone groups lie in a plane [C6—C7—O2—C8 = 175.9 (1)°]. The carbonyl group is oriented syn-periplanar to C5 [C5—C6—C7—O1 = −15.8 (2) °] and anti-periplanar to C1 [C1—C6—C7—O1 = 160.7 (1) °]. The dihedral angle between the benzene rings in compound (II)[link] is 46.70 (7)°.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg1 and Cg2 are the centroids of the C3A–C8A and C3B–C8B rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N3A—H3A1⋯N1A 0.86 2.26 2.617 (2) 105
N3B—H3B1⋯N1B 0.86 2.28 2.633 (2) 105
N2A—H2A⋯S1B 0.86 2.63 3.4724 (15) 167
N2B—H2B⋯S1A 0.86 2.71 3.4228 (16) 141
N3A—H3A1⋯O1Bi 0.86 2.44 3.164 (2) 142
N3B—H3B2⋯S1Aii 0.86 2.57 3.4262 (17) 176
N3A—H3A2⋯Cg2iii 0.86 2.62 3.4763 (19) 130
C1B—H1B3⋯Cg1iv 0.96 2.73 3.691 (3) 154
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x+1, y, z; (iii) -x, -y+1, -z; (iv) -x+1, -y+1, -z.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg2 is the centroid of the C8–C13 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯N1 0.86 2.24 2.5953 (18) 105
N2—H2A⋯S1i 0.86 2.68 3.4697 (12) 153
N3—H3A⋯O1ii 0.86 2.27 3.0653 (15) 153
C15—H15B⋯O1iii 0.96 2.55 3.454 (2) 156
N3—H3BCg2ii 0.86 2.47 3.3385 (15) 122
Symmetry codes: (i) -x+1, -y, -z+2; (ii) x+1, y, z; (iii) -x, -y, -z+1.
[Figure 1]
Figure 1
The mol­ecular structure of the compound (I)[link], showing the atom labelling and displacement ellipsoids drawn at the 30% probability level. The short intra­molecular N—H⋯N contact is shown as a dashed line (see Table 1[link]).
[Figure 2]
Figure 2
The mol­ecular structure of the compound (II)[link], showing the atom labelling and displacement ellipsoids drawn at the 40% probability level. The short intra­molecular N—H⋯N contact is shown as a dashed line (see Table 2[link]).

3. Supra­molecular features

In the crystal of (I)[link], the two mol­ecules are linked by a pair of N—H⋯S hydrogen bonds forming AB dimers with an [R_{2}^{2}](8) ring motif. The dimers are linked by N—H⋯S and N—H⋯O hydrogen bonds, forming slabs lying parallel to (01[\overline{1}]), as shown in Table 1[link] and Fig. 3[link]. Within the slabs there are N—H⋯π and C—H⋯π inter­actions present (Table 1[link]).

[Figure 3]
Figure 3
A view along the b axis of the crystal packing of compound (I)[link]. Hydrogen bonds are shown as dashed lines (see Table 1[link]) and H atoms not involved in hydrogen bonds have been excluded for clarity.

In the crystal of (II)[link], mol­ecules are linked by pairs of N—H⋯S hydrogen bonds, forming inversion dimers with an [R_{2}^{2}](8) ring motif (Table 2[link] and Fig. 4[link]). As in the crystal of compound (I)[link], the dimers are linked by N—H⋯S and N—H⋯O hydrogen bonds, forming slabs lying parallel to plane (01[\overline{1}]); see Table 2[link] and Fig. 4[link]. Within the slabs, there are only N—H⋯π inter­actions present (Table 2[link]).

[Figure 4]
Figure 4
A view along the b axis of the crystal packing of compound (II)[link]. Hydrogen bonds are shown as dashed lines (see Table 2[link]) and H atoms not involved in hydrogen bonds have been excluded for clarity.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.37, last update May 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the substructure 2-(1-phenyl­ethyl­idene)hydrazine-1-carbo­thio­amide yielded 100 hits. One of the compounds, (E)-4-(N-carbamo­thioyl­ethane­hydrazono­yl)phenyl 4-methyl­benzoate (NOVFOV; Mani et al., 2015[Mani, K. A., Viswanathan, V., Narasimhan, S. & Velmurugan, D. (2015). Acta Cryst. E71, o43-o44.]) is the 4-methyl­benzoate analogue of compound (II)[link]. Like compound (I)[link], it crystallizes with two independent mol­ecules in the asymmetric unit. The two mol­ecules differ essentially in the orientation of the hydrazinecarbo­thio­amide unit with respect to the central benzene ring. This dihedral angle is 5.95 (8)° in the first mol­ecule and 42.56 (9)° in the second. The benzoate groups are relatively planar and are inclined to the central benzene ring by 72.23 (7) and 53.10 (9)°, respectively, in the first and second mol­ecules. Hence, the conformation of the second mol­ecule resembles that of compound (II)[link].

5. Synthesis and crystallization

Compounds (I)[link] and (II): Thio­semicarbazide (0.91g, 0.01 mol) was added to 50 ml of an ethano­lic solution of the 4-acetyl phenyl acetate (0.01 mol) for (I)[link], and to an ethano­lic solution of the 4-acetyl­phenyl benzoate (0.01 mol) for (II)[link], with continuous stirring for 4–5 h. The resulting mixtures were refluxed at 333 K and the purity of the products as well as composition of the reaction mixtures was monitored by TLC using ethyl acetate: hexane (3:7). The reaction mixtures were cooled to room temperature and the separated products were filtered, dried and finally recrystallized from chloro­form, solution, yielding block-like yellow crystals of (I)[link] and pale-yellow crystals of (II)[link].

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Hydrogen atoms were placed in calculated positions and refined as riding atoms: C—H = 0.93–0.96 Å and N—H = 0.86 Å, with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C,N) for other H atoms.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C11H13N3O2S C16H15N3O2S
Mr 251.30 313.37
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 293 293
a, b, c (Å) 7.8783 (2), 8.9254 (3), 18.7372 (5) 7.8145 (4), 9.7538 (5), 10.9050 (7)
α, β, γ (°) 77.243 (2), 82.423 (2), 78.856 (2) 78.855 (4), 69.031 (2), 84.200 (3)
V3) 1255.30 (6) 761.05 (8)
Z 4 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.25 0.22
Crystal size (mm) 0.20 × 0.15 × 0.10 0.25 × 0.18 × 0.14
 
Data collection
Diffractometer Bruker SMART APEXII area-detector Bruker SMART APEXII area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.785, 0.854 0.745, 0.865
No. of measured, independent and observed [I > 2σ(I)] reflections 18970, 5128, 4104 11596, 3154, 2857
Rint 0.023 0.027
(sin θ/λ)max−1) 0.625 0.628
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.109, 1.03 0.034, 0.099, 1.05
No. of reflections 5128 3154
No. of parameters 311 201
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.25, −0.31 0.26, −0.29
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

For both compounds, data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008). Software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009) for (I); SHELXL2014 (Sheldrick, 2008) and PLATON (Spek, 2009) for (II).

(I) (E)-4-[1-(2-Carbamothioylhydrazinylidene)ethyl]phenyl acetate top
Crystal data top
C11H13N3O2SZ = 4
Mr = 251.30F(000) = 528
Triclinic, P1Dx = 1.330 Mg m3
a = 7.8783 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.9254 (3) ÅCell parameters from 5128 reflections
c = 18.7372 (5) Åθ = 1.1–26.4°
α = 77.243 (2)°µ = 0.25 mm1
β = 82.423 (2)°T = 293 K
γ = 78.856 (2)°Block, yellow
V = 1255.30 (6) Å30.20 × 0.15 × 0.10 mm
Data collection top
Bruker SMART APEXII area-detector
diffractometer
4104 reflections with I > 2σ(I)
ω and φ scansRint = 0.023
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
θmax = 26.4°, θmin = 1.1°
Tmin = 0.785, Tmax = 0.854h = 99
18970 measured reflectionsk = 1111
5128 independent reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0498P)2 + 0.3822P]
where P = (Fo2 + 2Fc2)/3
5128 reflections(Δ/σ)max = 0.001
311 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.31 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10B0.2271 (3)0.1728 (3)0.52308 (11)0.0616 (5)
H10A0.13350.24490.50010.092*
H10B0.22630.18580.57260.092*
H10C0.21290.06810.52350.092*
C1A0.0183 (3)0.8835 (3)1.22191 (11)0.0706 (6)
H1A10.04360.98071.22790.106*
H1A20.06300.80151.26070.106*
H1A30.10510.88991.22360.106*
C1B0.5549 (3)0.0841 (3)0.07427 (10)0.0632 (5)
H1B10.47210.12830.03880.095*
H1B20.56850.02750.08350.095*
H1B30.66460.11580.05560.095*
C2A0.1010 (3)0.8500 (2)1.15003 (10)0.0506 (4)
C2B0.4920 (3)0.1395 (2)0.14379 (9)0.0515 (4)
C3A0.0618 (2)0.7263 (2)1.05471 (9)0.0438 (4)
C3B0.5256 (3)0.0862 (2)0.27010 (9)0.0501 (4)
C4A0.0202 (2)0.7922 (2)0.99205 (10)0.0497 (4)
H4A0.10860.87810.99160.060*
C4B0.6282 (3)0.1679 (2)0.29458 (10)0.0564 (5)
H4B0.72530.19820.26520.068*
C5A0.0297 (2)0.7298 (2)0.92993 (9)0.0476 (4)
H5A0.02660.77380.88770.057*
C5B0.5867 (3)0.2050 (2)0.36322 (9)0.0533 (5)
H5B0.65660.26030.38000.064*
C6A0.1629 (2)0.60209 (19)0.92929 (8)0.0396 (4)
C6B0.4412 (2)0.16043 (19)0.40777 (9)0.0438 (4)
C7A0.2445 (2)0.5402 (2)0.99344 (9)0.0459 (4)
H7A0.33510.45590.99420.055*
C7B0.3427 (3)0.0750 (2)0.38147 (10)0.0548 (5)
H7B0.24640.04230.41060.066*
C8A0.1934 (2)0.6015 (2)1.05617 (9)0.0481 (4)
H8A0.24820.55811.09880.058*
C8B0.3850 (3)0.0372 (2)0.31264 (10)0.0588 (5)
H8B0.31820.02070.29580.071*
C9A0.2116 (2)0.5324 (2)0.86296 (8)0.0412 (4)
C9B0.3961 (2)0.20310 (19)0.48111 (9)0.0427 (4)
C10A0.3766 (3)0.4199 (3)0.85640 (11)0.0705 (6)
H10D0.46460.47360.82730.106*
H10E0.35810.33950.83320.106*
H10F0.41320.37430.90450.106*
C11A0.0194 (2)0.5408 (2)0.70414 (9)0.0428 (4)
C11B0.6013 (2)0.3524 (2)0.59815 (9)0.0448 (4)
N1A0.10302 (18)0.57512 (17)0.81405 (7)0.0423 (3)
N1B0.50947 (19)0.26330 (17)0.50292 (7)0.0460 (3)
N2A0.14402 (18)0.52010 (17)0.74940 (7)0.0444 (3)
H2A0.24730.47360.73840.053*
N2B0.47614 (19)0.30636 (18)0.57038 (7)0.0483 (4)
H2B0.37560.30370.59450.058*
N3A0.1399 (2)0.5972 (2)0.72772 (8)0.0602 (4)
H3A10.16090.61930.77080.072*
H3A20.22290.61200.70010.072*
N3B0.7503 (2)0.3608 (2)0.55723 (9)0.0641 (5)
H3B10.76420.33710.51450.077*
H3B20.83350.38980.57330.077*
O1A0.2381 (2)0.8767 (2)1.12093 (9)0.0800 (5)
O1B0.3862 (2)0.2510 (2)0.15026 (8)0.0863 (5)
O2A0.00302 (17)0.78178 (16)1.11913 (7)0.0555 (3)
O2B0.57246 (19)0.04701 (15)0.20057 (7)0.0607 (4)
S1A0.07063 (6)0.49355 (7)0.62043 (2)0.05713 (16)
S1B0.56754 (6)0.39051 (7)0.68325 (2)0.05582 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10B0.0553 (12)0.0813 (14)0.0553 (11)0.0165 (11)0.0010 (9)0.0283 (10)
C1A0.0818 (15)0.0834 (15)0.0541 (11)0.0020 (12)0.0163 (11)0.0344 (11)
C1B0.0750 (14)0.0799 (14)0.0428 (10)0.0222 (11)0.0034 (9)0.0265 (9)
C2A0.0566 (12)0.0518 (10)0.0477 (10)0.0062 (9)0.0142 (9)0.0161 (8)
C2B0.0558 (11)0.0610 (11)0.0406 (9)0.0078 (10)0.0053 (8)0.0179 (8)
C3A0.0435 (9)0.0564 (10)0.0378 (8)0.0175 (8)0.0009 (7)0.0177 (7)
C3B0.0664 (12)0.0445 (9)0.0384 (9)0.0034 (9)0.0108 (8)0.0140 (7)
C4A0.0490 (10)0.0543 (10)0.0488 (10)0.0039 (8)0.0074 (8)0.0192 (8)
C4B0.0699 (13)0.0590 (11)0.0427 (9)0.0163 (10)0.0035 (9)0.0158 (8)
C5A0.0514 (10)0.0539 (10)0.0396 (9)0.0061 (8)0.0110 (7)0.0126 (7)
C5B0.0665 (12)0.0565 (10)0.0428 (9)0.0181 (9)0.0010 (8)0.0181 (8)
C6A0.0379 (9)0.0493 (9)0.0352 (8)0.0144 (7)0.0021 (6)0.0106 (7)
C6B0.0530 (10)0.0417 (9)0.0364 (8)0.0031 (8)0.0094 (7)0.0086 (7)
C7A0.0440 (10)0.0544 (10)0.0394 (8)0.0043 (8)0.0064 (7)0.0118 (7)
C7B0.0580 (12)0.0644 (11)0.0464 (10)0.0153 (9)0.0054 (8)0.0157 (8)
C8A0.0500 (10)0.0623 (11)0.0340 (8)0.0116 (9)0.0081 (7)0.0095 (7)
C8B0.0694 (13)0.0628 (12)0.0530 (11)0.0124 (10)0.0154 (10)0.0235 (9)
C9A0.0368 (9)0.0536 (10)0.0352 (8)0.0112 (7)0.0013 (7)0.0113 (7)
C9B0.0452 (9)0.0456 (9)0.0365 (8)0.0022 (7)0.0078 (7)0.0093 (7)
C10A0.0578 (13)0.1042 (17)0.0488 (11)0.0159 (12)0.0143 (9)0.0341 (11)
C11A0.0387 (9)0.0554 (10)0.0362 (8)0.0082 (8)0.0039 (7)0.0130 (7)
C11B0.0403 (9)0.0559 (10)0.0388 (8)0.0021 (8)0.0052 (7)0.0153 (7)
N1A0.0410 (8)0.0560 (8)0.0335 (7)0.0104 (6)0.0013 (6)0.0158 (6)
N1B0.0477 (8)0.0579 (9)0.0338 (7)0.0041 (7)0.0047 (6)0.0156 (6)
N2A0.0355 (7)0.0657 (9)0.0349 (7)0.0049 (7)0.0024 (6)0.0202 (6)
N2B0.0397 (8)0.0720 (10)0.0371 (7)0.0072 (7)0.0011 (6)0.0228 (7)
N3A0.0410 (9)0.0971 (13)0.0450 (8)0.0060 (8)0.0084 (7)0.0322 (8)
N3B0.0451 (9)0.1090 (14)0.0489 (9)0.0192 (9)0.0046 (7)0.0384 (9)
O1A0.0727 (11)0.1024 (12)0.0834 (11)0.0401 (10)0.0012 (8)0.0408 (9)
O1B0.1032 (13)0.0907 (11)0.0507 (8)0.0349 (10)0.0177 (8)0.0223 (8)
O2A0.0525 (8)0.0791 (9)0.0448 (7)0.0190 (7)0.0029 (6)0.0311 (6)
O2B0.0776 (9)0.0599 (8)0.0442 (7)0.0098 (7)0.0114 (6)0.0246 (6)
S1A0.0422 (3)0.0971 (4)0.0381 (2)0.0090 (2)0.00201 (18)0.0298 (2)
S1B0.0444 (3)0.0874 (4)0.0418 (2)0.0056 (2)0.00359 (19)0.0310 (2)
Geometric parameters (Å, º) top
C10B—C9B1.494 (3)C6A—C7A1.392 (2)
C10B—H10A0.9600C6A—C9A1.484 (2)
C10B—H10B0.9600C6B—C7B1.387 (2)
C10B—H10C0.9600C6B—C9B1.487 (2)
C1A—C2A1.483 (3)C7A—C8A1.385 (2)
C1A—H1A10.9600C7A—H7A0.9300
C1A—H1A20.9600C7B—C8B1.387 (2)
C1A—H1A30.9600C7B—H7B0.9300
C1B—C2B1.485 (2)C8A—H8A0.9300
C1B—H1B10.9600C8B—H8B0.9300
C1B—H1B20.9600C9A—N1A1.282 (2)
C1B—H1B30.9600C9A—C10A1.490 (3)
C2A—O1A1.186 (2)C9B—N1B1.278 (2)
C2A—O2A1.361 (2)C10A—H10D0.9600
C2B—O1B1.186 (2)C10A—H10E0.9600
C2B—O2B1.343 (2)C10A—H10F0.9600
C3A—C8A1.366 (3)C11A—N3A1.315 (2)
C3A—C4A1.375 (2)C11A—N2A1.341 (2)
C3A—O2A1.4023 (19)C11A—S1A1.6915 (16)
C3B—C8B1.361 (3)C11B—N3B1.320 (2)
C3B—C4B1.367 (3)C11B—N2B1.341 (2)
C3B—O2B1.4074 (19)C11B—S1B1.6799 (16)
C4A—C5A1.379 (2)N1A—N2A1.3825 (17)
C4A—H4A0.9300N1B—N2B1.3792 (18)
C4B—C5B1.381 (2)N2A—H2A0.8600
C4B—H4B0.9300N2B—H2B0.8600
C5A—C6A1.394 (2)N3A—H3A10.8600
C5A—H5A0.9300N3A—H3A20.8600
C5B—C6B1.395 (3)N3B—H3B10.8600
C5B—H5B0.9300N3B—H3B20.8600
C9B—C10B—H10A109.5C5B—C6B—C9B120.40 (15)
C9B—C10B—H10B109.5C8A—C7A—C6A121.27 (17)
H10A—C10B—H10B109.5C8A—C7A—H7A119.4
C9B—C10B—H10C109.5C6A—C7A—H7A119.4
H10A—C10B—H10C109.5C8B—C7B—C6B121.33 (18)
H10B—C10B—H10C109.5C8B—C7B—H7B119.3
C2A—C1A—H1A1109.5C6B—C7B—H7B119.3
C2A—C1A—H1A2109.5C3A—C8A—C7A119.29 (16)
H1A1—C1A—H1A2109.5C3A—C8A—H8A120.4
C2A—C1A—H1A3109.5C7A—C8A—H8A120.4
H1A1—C1A—H1A3109.5C3B—C8B—C7B119.06 (17)
H1A2—C1A—H1A3109.5C3B—C8B—H8B120.5
C2B—C1B—H1B1109.5C7B—C8B—H8B120.5
C2B—C1B—H1B2109.5N1A—C9A—C6A115.51 (15)
H1B1—C1B—H1B2109.5N1A—C9A—C10A124.10 (15)
C2B—C1B—H1B3109.5C6A—C9A—C10A120.39 (14)
H1B1—C1B—H1B3109.5N1B—C9B—C6B115.48 (15)
H1B2—C1B—H1B3109.5N1B—C9B—C10B125.51 (15)
O1A—C2A—O2A122.19 (17)C6B—C9B—C10B119.01 (15)
O1A—C2A—C1A127.08 (18)C9A—C10A—H10D109.5
O2A—C2A—C1A110.72 (17)C9A—C10A—H10E109.5
O1B—C2B—O2B122.74 (16)H10D—C10A—H10E109.5
O1B—C2B—C1B126.04 (18)C9A—C10A—H10F109.5
O2B—C2B—C1B111.22 (17)H10D—C10A—H10F109.5
C8A—C3A—C4A121.15 (15)H10E—C10A—H10F109.5
C8A—C3A—O2A120.42 (15)N3A—C11A—N2A117.60 (14)
C4A—C3A—O2A118.20 (16)N3A—C11A—S1A122.72 (13)
C8B—C3B—C4B121.45 (16)N2A—C11A—S1A119.68 (12)
C8B—C3B—O2B119.99 (17)N3B—C11B—N2B117.47 (15)
C4B—C3B—O2B118.50 (17)N3B—C11B—S1B122.55 (13)
C3A—C4A—C5A119.40 (17)N2B—C11B—S1B119.94 (13)
C3A—C4A—H4A120.3C9A—N1A—N2A118.53 (14)
C5A—C4A—H4A120.3C9B—N1B—N2B118.72 (14)
C3B—C4B—C5B119.52 (18)C11A—N2A—N1A118.60 (13)
C3B—C4B—H4B120.2C11A—N2A—H2A120.7
C5B—C4B—H4B120.2N1A—N2A—H2A120.7
C4A—C5A—C6A121.19 (16)C11B—N2B—N1B119.63 (14)
C4A—C5A—H5A119.4C11B—N2B—H2B120.2
C6A—C5A—H5A119.4N1B—N2B—H2B120.2
C4B—C5B—C6B120.83 (17)C11A—N3A—H3A1120.0
C4B—C5B—H5B119.6C11A—N3A—H3A2120.0
C6B—C5B—H5B119.6H3A1—N3A—H3A2120.0
C7A—C6A—C5A117.68 (15)C11B—N3B—H3B1120.0
C7A—C6A—C9A121.51 (15)C11B—N3B—H3B2120.0
C5A—C6A—C9A120.79 (14)H3B1—N3B—H3B2120.0
C7B—C6B—C5B117.77 (16)C2A—O2A—C3A118.74 (14)
C7B—C6B—C9B121.82 (16)C2B—O2B—C3B117.30 (14)
C8A—C3A—C4A—C5A0.9 (3)C5A—C6A—C9A—C10A166.64 (18)
O2A—C3A—C4A—C5A173.63 (15)C7B—C6B—C9B—N1B170.96 (17)
C8B—C3B—C4B—C5B1.6 (3)C5B—C6B—C9B—N1B8.5 (2)
O2B—C3B—C4B—C5B178.73 (17)C7B—C6B—C9B—C10B8.7 (3)
C3A—C4A—C5A—C6A0.6 (3)C5B—C6B—C9B—C10B171.80 (17)
C3B—C4B—C5B—C6B0.1 (3)C6A—C9A—N1A—N2A177.13 (13)
C4A—C5A—C6A—C7A0.3 (3)C10A—C9A—N1A—N2A3.3 (3)
C4A—C5A—C6A—C9A177.89 (16)C6B—C9B—N1B—N2B179.76 (14)
C4B—C5B—C6B—C7B1.4 (3)C10B—C9B—N1B—N2B0.6 (3)
C4B—C5B—C6B—C9B179.04 (17)N3A—C11A—N2A—N1A7.3 (2)
C5A—C6A—C7A—C8A1.0 (2)S1A—C11A—N2A—N1A173.06 (12)
C9A—C6A—C7A—C8A177.17 (15)C9A—N1A—N2A—C11A168.09 (16)
C5B—C6B—C7B—C8B1.2 (3)N3B—C11B—N2B—N1B3.0 (3)
C9B—C6B—C7B—C8B179.30 (17)S1B—C11B—N2B—N1B174.85 (12)
C4A—C3A—C8A—C7A0.2 (3)C9B—N1B—N2B—C11B172.12 (16)
O2A—C3A—C8A—C7A174.20 (15)O1A—C2A—O2A—C3A7.0 (3)
C6A—C7A—C8A—C3A0.8 (3)C1A—C2A—O2A—C3A173.17 (16)
C4B—C3B—C8B—C7B1.8 (3)C8A—C3A—O2A—C2A67.9 (2)
O2B—C3B—C8B—C7B178.94 (17)C4A—C3A—O2A—C2A117.52 (19)
C6B—C7B—C8B—C3B0.4 (3)O1B—C2B—O2B—C3B0.6 (3)
C7A—C6A—C9A—N1A164.41 (16)C1B—C2B—O2B—C3B179.85 (16)
C5A—C6A—C9A—N1A13.8 (2)C8B—C3B—O2B—C2B84.9 (2)
C7A—C6A—C9A—C10A15.2 (3)C4B—C3B—O2B—C2B97.9 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C3A–C8A and C3B–C8B rings, respectively.
D—H···AD—HH···AD···AD—H···A
N3A—H3A1···N1A0.862.262.617 (2)105
N3B—H3B1···N1B0.862.282.633 (2)105
N2A—H2A···S1B0.862.633.4724 (15)167
N2B—H2B···S1A0.862.713.4228 (16)141
N3A—H3A1···O1Bi0.862.443.164 (2)142
N3B—H3B2···S1Aii0.862.573.4262 (17)176
N3A—H3A2···Cg2iii0.862.623.4763 (19)130
C1B—H1B3···Cg1iv0.962.733.691 (3)154
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z; (iii) x, y+1, z; (iv) x+1, y+1, z.
(II) (E)-4-[1-(2-Carbamothioylhydrazinylidene)ethyl]phenyl benzoate top
Crystal data top
C16H15N3O2SZ = 2
Mr = 313.37F(000) = 328
Triclinic, P1Dx = 1.367 Mg m3
a = 7.8145 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.7538 (5) ÅCell parameters from 3154 reflections
c = 10.9050 (7) Åθ = 2.0–26.5°
α = 78.855 (4)°µ = 0.22 mm1
β = 69.031 (2)°T = 293 K
γ = 84.200 (3)°Block, pale-yellow
V = 761.05 (8) Å30.25 × 0.18 × 0.14 mm
Data collection top
Bruker SMART APEXII area-detector
diffractometer
2857 reflections with I > 2σ(I)
ω and φ scansRint = 0.027
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
θmax = 26.5°, θmin = 2.0°
Tmin = 0.745, Tmax = 0.865h = 89
11596 measured reflectionsk = 1212
3154 independent reflectionsl = 1313
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.0512P)2 + 0.1914P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.099(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.26 e Å3
3154 reflectionsΔρmin = 0.29 e Å3
201 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.080 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0574 (2)0.60395 (15)0.12357 (14)0.0461 (3)
H10.05810.61650.12520.055*
C20.1286 (2)0.69706 (17)0.03984 (16)0.0562 (4)
H20.06160.77360.01380.067*
C30.2978 (3)0.67730 (18)0.03519 (16)0.0596 (4)
H30.34390.73980.02230.072*
C40.3993 (2)0.56519 (19)0.11541 (17)0.0579 (4)
H40.51340.55190.11170.069*
C50.3315 (2)0.47264 (16)0.20141 (15)0.0483 (3)
H50.40050.39770.25670.058*
C60.15975 (18)0.49176 (14)0.20510 (12)0.0384 (3)
C70.09783 (18)0.39381 (14)0.30353 (12)0.0392 (3)
C80.15463 (18)0.31751 (15)0.37198 (13)0.0400 (3)
C90.15816 (19)0.17391 (15)0.39018 (14)0.0442 (3)
H90.11590.12860.33950.053*
C100.22566 (19)0.09777 (14)0.48531 (14)0.0412 (3)
H100.22470.00060.50040.049*
C110.29489 (16)0.16457 (13)0.55862 (12)0.0346 (3)
C120.29666 (19)0.31025 (14)0.53336 (14)0.0406 (3)
H120.34660.35650.57900.049*
C130.22498 (19)0.38662 (14)0.44118 (14)0.0433 (3)
H130.22430.48380.42600.052*
C140.36348 (17)0.08555 (13)0.66391 (12)0.0353 (3)
C150.2849 (2)0.05203 (16)0.73732 (16)0.0549 (4)
H15A0.36420.10190.78200.082*
H15B0.27370.10560.67550.082*
H15C0.16610.03730.80180.082*
C160.70223 (17)0.13075 (13)0.78932 (12)0.0358 (3)
N10.48733 (14)0.14652 (11)0.68311 (10)0.0361 (2)
N20.54777 (15)0.08471 (11)0.78611 (11)0.0374 (2)
H2A0.48830.01880.84640.045*
N30.79854 (16)0.21798 (13)0.68277 (11)0.0467 (3)
H3A0.76110.24230.61620.056*
H3B0.89840.25020.68030.056*
O10.19599 (15)0.31803 (12)0.39711 (10)0.0550 (3)
O20.08423 (13)0.40017 (11)0.27880 (9)0.0477 (3)
S10.77088 (5)0.07598 (4)0.92056 (4)0.05405 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0487 (8)0.0491 (8)0.0399 (7)0.0026 (6)0.0165 (6)0.0032 (6)
C20.0671 (10)0.0487 (8)0.0458 (8)0.0029 (7)0.0183 (7)0.0033 (6)
C30.0728 (11)0.0613 (10)0.0465 (8)0.0207 (8)0.0300 (8)0.0070 (7)
C40.0528 (9)0.0721 (10)0.0583 (9)0.0112 (8)0.0323 (8)0.0149 (8)
C50.0451 (8)0.0555 (8)0.0467 (8)0.0013 (6)0.0206 (6)0.0055 (6)
C60.0423 (7)0.0432 (7)0.0315 (6)0.0014 (5)0.0157 (5)0.0067 (5)
C70.0409 (7)0.0454 (7)0.0333 (6)0.0030 (5)0.0159 (5)0.0048 (5)
C80.0341 (6)0.0523 (7)0.0320 (6)0.0008 (5)0.0134 (5)0.0004 (5)
C90.0457 (7)0.0526 (8)0.0419 (7)0.0009 (6)0.0224 (6)0.0131 (6)
C100.0426 (7)0.0409 (7)0.0447 (7)0.0023 (5)0.0196 (6)0.0112 (5)
C110.0308 (6)0.0398 (6)0.0328 (6)0.0008 (5)0.0115 (5)0.0055 (5)
C120.0425 (7)0.0419 (7)0.0429 (7)0.0020 (5)0.0211 (6)0.0073 (5)
C130.0451 (7)0.0394 (7)0.0473 (7)0.0026 (5)0.0214 (6)0.0006 (5)
C140.0332 (6)0.0384 (6)0.0345 (6)0.0000 (5)0.0128 (5)0.0054 (5)
C150.0616 (10)0.0520 (8)0.0568 (9)0.0181 (7)0.0328 (8)0.0094 (7)
C160.0333 (6)0.0364 (6)0.0365 (6)0.0022 (5)0.0130 (5)0.0010 (5)
N10.0360 (5)0.0396 (5)0.0339 (5)0.0005 (4)0.0162 (4)0.0013 (4)
N20.0365 (6)0.0404 (6)0.0354 (5)0.0073 (4)0.0166 (4)0.0047 (4)
N30.0427 (6)0.0574 (7)0.0394 (6)0.0168 (5)0.0187 (5)0.0098 (5)
O10.0480 (6)0.0675 (7)0.0456 (6)0.0137 (5)0.0208 (5)0.0146 (5)
O20.0404 (5)0.0622 (6)0.0387 (5)0.0055 (4)0.0193 (4)0.0083 (4)
S10.0454 (2)0.0720 (3)0.0464 (2)0.01842 (18)0.02749 (17)0.01713 (18)
Geometric parameters (Å, º) top
C1—C21.381 (2)C10—C111.3923 (18)
C1—C61.3853 (19)C10—H100.9300
C1—H10.9300C11—C121.3947 (18)
C2—C31.375 (3)C11—C141.4881 (17)
C2—H20.9300C12—C131.3815 (18)
C3—C41.378 (3)C12—H120.9300
C3—H30.9300C13—H130.9300
C4—C51.381 (2)C14—N11.2820 (16)
C4—H40.9300C14—C151.4894 (18)
C5—C61.389 (2)C15—H15A0.9600
C5—H50.9300C15—H15B0.9600
C6—C71.4767 (17)C15—H15C0.9600
C7—O11.1995 (16)C16—N31.3273 (16)
C7—O21.3555 (16)C16—N21.3437 (16)
C8—C91.375 (2)C16—S11.6785 (13)
C8—C131.376 (2)N1—N21.3816 (14)
C8—O21.4067 (15)N2—H2A0.8600
C9—C101.3858 (19)N3—H3A0.8600
C9—H90.9300N3—H3B0.8600
C2—C1—C6119.40 (14)C10—C11—C12118.52 (12)
C2—C1—H1120.3C10—C11—C14122.07 (11)
C6—C1—H1120.3C12—C11—C14119.40 (11)
C3—C2—C1120.47 (15)C13—C12—C11120.66 (12)
C3—C2—H2119.8C13—C12—H12119.7
C1—C2—H2119.8C11—C12—H12119.7
C2—C3—C4120.27 (14)C8—C13—C12119.37 (13)
C2—C3—H3119.9C8—C13—H13120.3
C4—C3—H3119.9C12—C13—H13120.3
C3—C4—C5119.92 (16)N1—C14—C11114.67 (11)
C3—C4—H4120.0N1—C14—C15126.07 (12)
C5—C4—H4120.0C11—C14—C15119.26 (11)
C4—C5—C6119.80 (14)C14—C15—H15A109.5
C4—C5—H5120.1C14—C15—H15B109.5
C6—C5—H5120.1H15A—C15—H15B109.5
C1—C6—C5120.12 (13)C14—C15—H15C109.5
C1—C6—C7122.27 (12)H15A—C15—H15C109.5
C5—C6—C7117.51 (12)H15B—C15—H15C109.5
O1—C7—O2122.72 (12)N3—C16—N2116.66 (11)
O1—C7—C6124.71 (12)N3—C16—S1122.30 (10)
O2—C7—C6112.56 (11)N2—C16—S1121.02 (9)
C9—C8—C13121.44 (12)C14—N1—N2118.03 (10)
C9—C8—O2121.45 (12)C16—N2—N1117.98 (10)
C13—C8—O2117.08 (12)C16—N2—H2A121.0
C8—C9—C10118.95 (12)N1—N2—H2A121.0
C8—C9—H9120.5C16—N3—H3A120.0
C10—C9—H9120.5C16—N3—H3B120.0
C9—C10—C11120.96 (12)H3A—N3—H3B120.0
C9—C10—H10119.5C7—O2—C8116.96 (10)
C11—C10—H10119.5
C6—C1—C2—C31.3 (2)C14—C11—C12—C13176.57 (12)
C1—C2—C3—C40.8 (3)C9—C8—C13—C121.6 (2)
C2—C3—C4—C50.4 (3)O2—C8—C13—C12179.67 (12)
C3—C4—C5—C61.0 (2)C11—C12—C13—C81.3 (2)
C2—C1—C6—C50.7 (2)C10—C11—C14—N1152.10 (12)
C2—C1—C6—C7175.72 (13)C12—C11—C14—N128.98 (17)
C4—C5—C6—C10.5 (2)C10—C11—C14—C1528.60 (19)
C4—C5—C6—C7177.06 (13)C12—C11—C14—C15150.32 (14)
C1—C6—C7—O1160.66 (14)C11—C14—N1—N2175.16 (10)
C5—C6—C7—O115.8 (2)C15—C14—N1—N24.1 (2)
C1—C6—C7—O218.01 (18)N3—C16—N2—N19.43 (18)
C5—C6—C7—O2165.53 (12)S1—C16—N2—N1172.24 (9)
C13—C8—C9—C103.3 (2)C14—N1—N2—C16166.17 (12)
O2—C8—C9—C10178.70 (12)O1—C7—O2—C82.8 (2)
C8—C9—C10—C112.2 (2)C6—C7—O2—C8175.91 (11)
C9—C10—C11—C120.6 (2)C9—C8—O2—C766.31 (17)
C9—C10—C11—C14178.29 (12)C13—C8—O2—C7115.64 (14)
C10—C11—C12—C132.4 (2)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
N3—H3A···N10.862.242.5953 (18)105
N2—H2A···S1i0.862.683.4697 (12)153
N3—H3A···O1ii0.862.273.0653 (15)153
C15—H15B···O1iii0.962.553.454 (2)156
N3—H3B···Cg2ii0.862.473.3385 (15)122
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y, z; (iii) x, y, z+1.
 

Acknowledgements

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection. VV thanks the DBT, Government of India, for a fellowship.

References

First citationArora, S., Agarwal, S. & Singhal, S. (2014). Int. J. Pharm. Pharm. Sci. 6, 9, 34–41.  Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFatondji, H. R., Kpoviessi, S., Gbaguidi, F., Bero, J., Hannaert, V., Quetin-Leclercq, J., Poupaert, J., Moudachirou, M. & Accrombessi, G. C. (2013). Med. Chem. Res. 22, 2151–2162.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMani, K. A., Viswanathan, V., Narasimhan, S. & Velmurugan, D. (2015). Acta Cryst. E71, o43–o44.  CSD CrossRef IUCr Journals Google Scholar
First citationParul, N., Subhangkar, N. & Arun, M. (2012). Inter. Res. J. Phar. 3, 5, 350–363.  Google Scholar
First citationSeena, E. B., Manoj, E. & Kurup, M. R. P (2006). Acta Cryst. C62, o486–o488.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, R., Mishra, P. S. & Mishra, R. (2011). Inter. J. PharmTech. Res. 3, 3, 1625–1629.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVenkatesh, K., Rayam, P., Sekhar, K. P. C. & Mukkanti, K. (2016). Int. J. Appl. Biol. Pharm. Tech. 7, 258–266.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds