research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of trans-di­aqua­bis­­(4-cyano­benzoato-κO)bis­­(N,N-di­ethyl­nicotinamide-κN)cadmium

CROSSMARK_Color_square_no_text.svg

aSANAEM, Saray Mahallesi, Atom Caddesi, No:27, 06980 Saray-Kazan, Ankara, Turkey, bDepartment of Chemical Engineering, Kafkas University, 36100 Kars, Turkey, cDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey, dInternational Scientific Research Centre, Baku State University, 1148 Baku, Azerbaijan, and eDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

Edited by M. Weil, Vienna University of Technology, Austria (Received 8 November 2016; accepted 14 November 2016; online 18 November 2016)

The mononuclear title cadmium complex, [Cd(C10H14N2O)2(C8H4NO2)2(H2O)2], is centrosymmetric and contains two water mol­ecules, two 4-cyanobenzoate (CB) ligands and two di­ethyl­nicotinamide (DENA) ligands. All the ligands are coordinated to the CdII atom in a monodentate mode. The four nearest O atoms around the CdII atom form a slightly distorted square-planar arrangement, with the distorted octa­hedral coordination sphere being completed by the two pyridine N atoms of the DENA ligands at distances of 2.3336 (13) Å. The dihedral angle between the carboxyl­ate group and the adjacent benzene ring is 8.75 (16)°, while the benzene and pyridine rings are oriented at a dihedral angle of 57.83 (5)°. The water mol­ecules exhibit both intra­molecular [to the non-coordinating carboxyl­ate O atom, enclosing an S(6) hydrogen-bonding motif, where O⋯O = 2.670 (2) Å] and inter­molecular [to the amide carbonyl O atom, enclosing an R22(16) ring motif, where O⋯O = 2.781 (2) Å] O—H⋯O hydrogen bonds. The latter lead to the formation of supra­molecular chains propagating along [110].

1. Chemical context

Nicotinamide (NA) is one form of niacin. A deficiency of this vitamin leads to loss of copper from the body, known as pellagra disease. Pellagra patients show unusually high serum and urinary copper levels (Krishnamachari, 1974[Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.]). The nicotinic acid derivative N,N′-di­ethyl­nicotinamide (DENA) is an important respiratory stimulant (Bigoli et al., 1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]). The crystal structures of some complexes obtained from the reactions of transition metal(II) ions with NA or DENA as ligands, e.g. [Ni(NA)2(C7H4ClO2)2(H2O)2] (Hökelek et al., 2009a[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009a). Acta Cryst. E65, m466-m467.]) and [Ni(DENA)2(C7H4ClO2)2(H2O)2] (Hökelek et al., 2009b[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009b). Acta Cryst. E65, m545-m546.]), have been determined in our laboratory.

The structure–function–coordination relationships of the aryl­carboxyl­ate ion in CdII complexes of benzoic acid deriv­atives may change depending on the nature and position of the substituent groups on the benzene ring, the nature of the additional ligand mol­ecule or solvent, and the pH and temperature of synthesis (Shnulin et al., 1981[Shnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409-1416.]; Nadzhafov et al., 1981[Nadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124-128.]; Antsyshkina et al., 1980[Antsyshkina, A. S., Chiragov, F. M. & Poray-Koshits, M. A. (1980). Koord. Khim. 15, 1098-1103.]; Adiwidjaja et al., 1978[Adiwidjaja, G., Rossmanith, E. & Küppers, H. (1978). Acta Cryst. B34, 3079-3083.]). When pyridine and its derivatives are used instead of water mol­ecules, the structure is completely different (Catterick et al., 1974[Catterick (neé Drew), J., Hursthouse, M. B., New, D. B. & Thornton, P. (1974). J. Chem. Soc. Chem. Commun. pp. 843-844.]). In this context, we synthesized a CdII-containing compound with 4-cyano­benzoate (CB) and DENA ligands, namely trans-di­aqua­bis­(4-cyano­benzoato-κO)bis­(N,N′-di­ethyl­nicotinamide-κN)cadmium, [Cd(CB)2(DENA)2(H2O)2], and report herein its crystal structure.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the mononuclear title complex contains one CdII atom located on an inversion centre, one CB ligand, one DENA ligand as well as one water mol­ecule, all ligands coordinating to the CdII atom in a monodentate mode (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the title complex with the atom-numbering scheme for the asymmetric unit. Unlabelled atoms are generated by symmetry operation (−x, −y, −z). Displacement ellipsoids are drawn at the 50% probability level. Intra­molecular O—Hw⋯Oc (w = water, c = non-coordinating carboxyl­ate O atom) hydrogen bonds, enclosing S(6) hydrogen-bonding motifs, are shown as dashed lines.

The two carboxyl­ate O atoms (O2 and O2i) [symmetry code: (i) −x, −y, −z] of the two symmetry-related monodentate CB anions and water O atoms (O4 and O4i) form a slightly distorted square-planar arrangement around the Cd1 atom, while the slightly distorted octa­hedral coordination sphere is completed by the two pyridine N atoms (N1 and N1i) of two DENA ligands (Fig. 1[link]). The Cd—O bond lengths involving the water O atoms [2.3192 (14) Å] are ca 0.06 Å longer than those involving the benzoate oxygen atoms [2.2588 (12) Å]; the Cd—N bond length is the longest with 2.3336 (13) Å in the CdO4N2 octa­hedron. The Cd1 atom lies 0.7558 (1) Å below the planar (O1/O2/C1) carboxyl­ate group. The O—Cd—O and O—Cd—N bond angles range from 87.54 (5) to 92.46 (5)°. In the carboxyl­ate groups, the C—O bonds of the coordinating O atoms [C1—O1 = 1.244 (2) Å and C1—O2 = 1.259 (2) Å] are 0.015 (2) Å longer than those of the non-coordinating ones, indicating delocalized bonding arrangements rather than localized single and double bonds. The dihedral angle between the carboxyl­ate group (O1/O2/C1) and the adjacent benzene (C2–C7) ring is 8.75 (16)°, while the benzene and pyridine (N1/C9–C13) rings are oriented at a dihedral angle of 57.83 (5)°.

3. Supra­molecular features

Intra­molecular O—Hw⋯Oc (w = water, c = non-coordinating carboxyl­ate O atom) hydrogen bonds (Table 1[link]) link the water molecules by one of their H atoms to the CB anions, enclosing S(6) hydrogen-bonding motifs (Fig. 1[link]). The other water H atom is involved in inter­molecular O—Hw⋯ODENA (ODENA = carbonyl O atom of N,N′-di­ethyl­nicotinamide) hydrogen bonds (Table 1[link]), enclosing R22(16) ring motifs, leading to the formation of infinite chains (Fig. 2[link]) propagating along the [110] direction (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H41⋯O3i 0.78 (3) 2.01 (3) 2.781 (2) 169 (3)
O4—H42⋯O1ii 0.87 (3) 1.84 (3) 2.670 (2) 159 (3)
Symmetry codes: (i) x+1, y-1, z; (ii) -x, -y, -z.
[Figure 2]
Figure 2
Part of the supra­molecular chain of the title compound. Inter­molecular O—Hw ⋯ ODENA (ODENA = carbonyl O atom of N,N′-di­ethyl­nicotinamide) hydrogen bonds, enclosing R22(16) ring motifs, are shown as dashed lines. Non-bonding H atoms have been omitted for clarity.
[Figure 3]
Figure 3
Part of the crystal structure. Intra- and inter­molecular [O–Hw ⋯ Oc and O—Hw ⋯ ODENA, respectively] hydrogen bonds are shown as dashed lines (see Table 1[link]). Non-bonding H atoms have been omitted for clarity.

4. Synthesis and crystallization

The title compound was prepared by the reaction of CdSO4·8/3H2O (0.64 g, 2.5 mmol) in H2O (50 ml) and di­ethyl­nicotinamide (0.89 g, 5 mmol) in H2O (10 ml) with sodium 4-cyano­benzoate (0.85 g, 5 mmol) in H2O (100 ml). The mixture was filtered and set aside to crystallize at ambient temperature for several days, giving colourless single crystals.

5. Refinement

Experimental details including the crystal data, data collection and refinement are summarized in Table 2[link]. Atoms H41 and H42 (for H2O) were located in a difference Fourier map and were refined freely. The C-bound H atoms were positioned geometrically with C—H = 0.93, 0.97 and 0.96 Å, for aromatic, methyl­ene and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = k × Ueq(C), where k = 1.5 for methyl H atoms and k = 1.2 for aromatic and methyl­ene H-atoms.

Table 2
Experimental details

Crystal data
Chemical formula [Cd(C10H14N2O)2(C8H4NO2)2(H2O)2]
Mr 797.16
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 7.5125 (2), 8.6671 (3), 15.3079 (5)
α, β, γ (°) 86.198 (3), 76.249 (4), 74.730 (3)
V3) 933.97 (5)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.64
Crystal size (mm) 0.15 × 0.11 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.])
Tmin, Tmax 0.595, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 46611, 4638, 4538
Rint 0.044
(sin θ/λ)max−1) 0.669
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.068, 1.09
No. of reflections 4638
No. of parameters 243
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.42, −1.02
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

trans-Diaquabis(4-cyanobenzoato-κO)bis(N,N-diethylnicotinamide-κN)cadmium top
Crystal data top
[Cd(C10H14N2O)2(C8H4NO2)2(H2O)2]Z = 1
Mr = 797.16F(000) = 410
Triclinic, P1Dx = 1.417 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5125 (2) ÅCell parameters from 9549 reflections
b = 8.6671 (3) Åθ = 3.3–28.4°
c = 15.3079 (5) ŵ = 0.64 mm1
α = 86.198 (3)°T = 296 K
β = 76.249 (4)°Block, colourless
γ = 74.730 (3)°0.15 × 0.11 × 0.10 mm
V = 933.97 (5) Å3
Data collection top
Bruker APEXII CCD
diffractometer
4638 independent reflections
Radiation source: fine-focus sealed tube4538 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
φ and ω scansθmax = 28.4°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 1010
Tmin = 0.595, Tmax = 0.746k = 1111
46611 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0332P)2 + 0.4012P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
4638 reflectionsΔρmax = 0.42 e Å3
243 parametersΔρmin = 1.02 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.063 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.00000.00000.00000.03023 (7)
O10.1214 (2)0.0630 (2)0.22948 (11)0.0618 (4)
O20.25363 (17)0.01600 (17)0.11090 (8)0.0414 (3)
O30.5079 (2)0.6289 (2)0.12687 (10)0.0600 (4)
O40.1904 (2)0.1246 (2)0.09660 (10)0.0536 (4)
H410.281 (4)0.194 (3)0.0977 (17)0.054 (7)*
H420.106 (4)0.123 (3)0.147 (2)0.064 (8)*
N10.01528 (19)0.24366 (16)0.06156 (9)0.0312 (3)
N20.4728 (2)0.58766 (18)0.27019 (10)0.0400 (3)
N31.1521 (3)0.2028 (3)0.46792 (15)0.0799 (7)
C10.2592 (2)0.0188 (2)0.19381 (12)0.0349 (3)
C20.4546 (2)0.03711 (19)0.25493 (11)0.0324 (3)
C30.6144 (2)0.0663 (2)0.21992 (12)0.0388 (4)
H30.60080.05600.15840.047*
C40.7941 (3)0.1105 (2)0.27535 (13)0.0431 (4)
H40.90080.12890.25150.052*
C50.8134 (3)0.1272 (2)0.36706 (12)0.0412 (4)
C60.6546 (3)0.1021 (3)0.40264 (13)0.0498 (5)
H60.66840.11520.46390.060*
C70.4760 (3)0.0575 (3)0.34684 (13)0.0449 (4)
H70.36940.04090.37060.054*
C81.0022 (3)0.1694 (3)0.42433 (14)0.0546 (5)
C90.1852 (2)0.33349 (19)0.10302 (11)0.0317 (3)
H90.29190.29720.10450.038*
C100.2092 (2)0.47761 (19)0.14372 (11)0.0322 (3)
C110.0502 (3)0.5326 (2)0.13986 (13)0.0410 (4)
H110.06110.62890.16660.049*
C120.1253 (3)0.4418 (2)0.09551 (13)0.0413 (4)
H120.23390.47680.09160.050*
C130.1368 (2)0.2986 (2)0.05715 (11)0.0347 (3)
H130.25490.23820.02720.042*
C140.4097 (2)0.57261 (19)0.18114 (11)0.0357 (3)
C150.3659 (3)0.5045 (3)0.33602 (13)0.0504 (5)
H15A0.24400.44050.30410.060*
H15B0.43430.43250.37160.060*
C160.3345 (4)0.6172 (4)0.39795 (18)0.0699 (7)
H16A0.25360.55780.43530.105*
H16B0.45400.67150.43510.105*
H16C0.27570.69420.36300.105*
C170.6711 (3)0.6737 (3)0.30629 (14)0.0497 (5)
H17A0.71480.74920.26150.060*
H17B0.67840.73400.35880.060*
C180.7992 (4)0.5630 (5)0.3320 (3)0.0889 (9)
H18A0.92780.62450.35200.133*
H18B0.76240.49320.37960.133*
H18C0.78920.50030.28080.133*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02713 (10)0.02936 (10)0.03006 (10)0.00088 (6)0.00360 (6)0.00758 (6)
O10.0332 (7)0.0956 (13)0.0485 (8)0.0023 (7)0.0093 (6)0.0017 (8)
O20.0319 (6)0.0535 (7)0.0368 (6)0.0134 (5)0.0008 (5)0.0081 (5)
O30.0519 (8)0.0668 (10)0.0434 (7)0.0231 (7)0.0171 (6)0.0088 (7)
O40.0356 (7)0.0698 (10)0.0435 (8)0.0135 (7)0.0154 (6)0.0032 (7)
N10.0306 (6)0.0294 (6)0.0299 (6)0.0027 (5)0.0043 (5)0.0043 (5)
N20.0396 (8)0.0360 (7)0.0348 (7)0.0049 (6)0.0053 (6)0.0024 (6)
N30.0532 (12)0.0997 (18)0.0569 (12)0.0069 (12)0.0145 (10)0.0032 (12)
C10.0303 (8)0.0347 (8)0.0379 (8)0.0093 (6)0.0026 (6)0.0019 (6)
C20.0316 (8)0.0321 (7)0.0316 (7)0.0088 (6)0.0025 (6)0.0002 (6)
C30.0349 (8)0.0493 (10)0.0304 (8)0.0102 (7)0.0034 (6)0.0040 (7)
C40.0319 (8)0.0531 (11)0.0403 (9)0.0068 (7)0.0045 (7)0.0029 (8)
C50.0382 (9)0.0396 (9)0.0366 (9)0.0040 (7)0.0030 (7)0.0005 (7)
C60.0509 (11)0.0634 (13)0.0281 (8)0.0073 (9)0.0025 (7)0.0041 (8)
C70.0399 (9)0.0581 (11)0.0353 (9)0.0084 (8)0.0102 (7)0.0019 (8)
C80.0476 (11)0.0586 (12)0.0410 (10)0.0007 (9)0.0049 (9)0.0023 (9)
C90.0305 (7)0.0277 (7)0.0343 (8)0.0040 (6)0.0053 (6)0.0027 (6)
C100.0369 (8)0.0266 (7)0.0286 (7)0.0011 (6)0.0087 (6)0.0012 (6)
C110.0485 (10)0.0296 (8)0.0475 (10)0.0071 (7)0.0173 (8)0.0066 (7)
C120.0383 (9)0.0404 (9)0.0499 (10)0.0132 (7)0.0154 (8)0.0004 (8)
C130.0309 (8)0.0366 (8)0.0330 (8)0.0033 (6)0.0065 (6)0.0001 (6)
C140.0382 (8)0.0266 (7)0.0358 (8)0.0039 (6)0.0086 (7)0.0048 (6)
C150.0534 (11)0.0517 (11)0.0361 (9)0.0024 (9)0.0098 (8)0.0041 (8)
C160.0641 (15)0.0883 (19)0.0550 (13)0.0054 (13)0.0218 (12)0.0106 (13)
C170.0414 (10)0.0518 (11)0.0422 (10)0.0050 (8)0.0007 (8)0.0062 (8)
C180.0602 (16)0.111 (3)0.097 (2)0.0325 (17)0.0083 (16)0.003 (2)
Geometric parameters (Å, º) top
Cd1—O22.2588 (12)C6—H60.9300
Cd1—O2i2.2588 (12)C7—H70.9300
Cd1—O42.3192 (14)C8—N31.138 (3)
Cd1—O4i2.3192 (14)C9—C101.383 (2)
Cd1—N12.3336 (13)C9—H90.9300
Cd1—N1i2.3336 (13)C10—C111.386 (3)
O2—C11.259 (2)C10—C141.508 (2)
O3—C141.233 (2)C11—C121.384 (3)
O4—H410.78 (3)C11—H110.9300
O4—H420.87 (3)C12—H120.9300
N1—C91.340 (2)C13—C121.382 (3)
N1—C131.335 (2)C13—H130.9300
N2—C151.471 (2)C14—N21.336 (2)
N2—C171.469 (2)C15—C161.503 (3)
C1—O11.244 (2)C15—H15A0.9700
C2—C11.516 (2)C15—H15B0.9700
C2—C31.386 (2)C16—H16A0.9600
C2—C71.395 (2)C16—H16B0.9600
C3—C41.384 (2)C16—H16C0.9600
C3—H30.9300C17—C181.503 (4)
C4—H40.9300C17—H17A0.9700
C5—C41.390 (3)C17—H17B0.9700
C5—C61.387 (3)C18—H18A0.9600
C5—C81.446 (3)C18—H18B0.9600
C6—C71.380 (3)C18—H18C0.9600
O2i—Cd1—O2180.00 (6)C6—C7—H7119.9
O2—Cd1—O492.15 (5)N3—C8—C5178.6 (3)
O2i—Cd1—O487.85 (5)N1—C9—C10123.03 (15)
O2—Cd1—O4i87.85 (5)N1—C9—H9118.5
O2i—Cd1—O4i92.15 (5)C10—C9—H9118.5
O2—Cd1—N192.46 (5)C9—C10—C11118.26 (15)
O2i—Cd1—N187.54 (5)C9—C10—C14117.30 (15)
O2—Cd1—N1i87.54 (5)C11—C10—C14124.12 (15)
O2i—Cd1—N1i92.46 (5)C10—C11—H11120.5
O4—Cd1—O4i180.00 (5)C12—C11—C10118.93 (16)
O4—Cd1—N187.91 (6)C12—C11—H11120.5
O4i—Cd1—N192.09 (6)C11—C12—H12120.5
O4—Cd1—N1i92.09 (6)C13—C12—C11119.07 (16)
O4i—Cd1—N1i87.91 (6)C13—C12—H12120.5
N1i—Cd1—N1180.00 (11)N1—C13—C12122.42 (16)
C1—O2—Cd1125.35 (11)N1—C13—H13118.8
Cd1—O4—H41141.0 (19)C12—C13—H13118.8
Cd1—O4—H42101.5 (18)O3—C14—N2123.71 (16)
H41—O4—H42110 (3)O3—C14—C10117.33 (15)
C9—N1—Cd1118.45 (11)N2—C14—C10118.94 (14)
C13—N1—Cd1123.28 (11)N2—C15—C16112.93 (19)
C13—N1—C9118.27 (14)N2—C15—H15A109.0
C14—N2—C15124.30 (15)N2—C15—H15B109.0
C14—N2—C17118.61 (15)C16—C15—H15A109.0
C17—N2—C15116.50 (16)C16—C15—H15B109.0
O1—C1—O2126.45 (16)H15A—C15—H15B107.8
O1—C1—C2117.84 (16)C15—C16—H16A109.5
O2—C1—C2115.71 (15)C15—C16—H16B109.5
C3—C2—C1120.04 (15)C15—C16—H16C109.5
C3—C2—C7119.33 (16)H16A—C16—H16B109.5
C7—C2—C1120.63 (16)H16A—C16—H16C109.5
C2—C3—H3119.6H16B—C16—H16C109.5
C4—C3—C2120.80 (16)N2—C17—C18112.4 (2)
C4—C3—H3119.6N2—C17—H17A109.1
C3—C4—C5119.28 (17)N2—C17—H17B109.1
C3—C4—H4120.4C18—C17—H17A109.1
C5—C4—H4120.4C18—C17—H17B109.1
C4—C5—C8118.55 (19)H17A—C17—H17B107.9
C6—C5—C4120.48 (17)C17—C18—H18A109.5
C6—C5—C8120.97 (18)C17—C18—H18B109.5
C5—C6—H6120.1C17—C18—H18C109.5
C7—C6—C5119.80 (17)H18A—C18—H18B109.5
C7—C6—H6120.1H18A—C18—H18C109.5
C2—C7—H7119.9H18B—C18—H18C109.5
C6—C7—C2120.28 (17)
O2—Cd1—N1—C9148.84 (12)C7—C2—C1—O2172.21 (17)
O2i—Cd1—N1—C931.16 (12)C1—C2—C3—C4177.11 (17)
O2—Cd1—N1—C1330.80 (13)C7—C2—C3—C42.0 (3)
O2i—Cd1—N1—C13149.20 (13)C1—C2—C7—C6177.33 (19)
O4—Cd1—N1—C9119.09 (12)C3—C2—C7—C61.7 (3)
O4i—Cd1—N1—C960.91 (12)C2—C3—C4—C50.6 (3)
O4—Cd1—N1—C1361.26 (13)C6—C5—C4—C30.9 (3)
O4i—Cd1—N1—C13118.74 (13)C8—C5—C4—C3178.4 (2)
O4—Cd1—O2—C1152.29 (15)C4—C5—C6—C71.2 (3)
O4i—Cd1—O2—C127.71 (15)C8—C5—C6—C7178.2 (2)
N1—Cd1—O2—C1119.71 (14)C5—C6—C7—C20.2 (3)
N1i—Cd1—O2—C160.29 (14)N1—C9—C10—C111.2 (2)
Cd1—O2—C1—O124.2 (3)N1—C9—C10—C14175.06 (15)
Cd1—O2—C1—C2156.03 (11)C9—C10—C11—C120.1 (3)
Cd1—N1—C9—C10178.26 (12)C14—C10—C11—C12173.25 (17)
C13—N1—C9—C102.1 (2)C9—C10—C14—O367.2 (2)
Cd1—N1—C13—C12178.75 (13)C9—C10—C14—N2111.03 (19)
C9—N1—C13—C121.6 (2)C11—C10—C14—O3106.3 (2)
C14—N2—C15—C16122.5 (2)C11—C10—C14—N275.5 (2)
C17—N2—C15—C1666.5 (3)C10—C11—C12—C130.6 (3)
C14—N2—C17—C1895.2 (3)N1—C13—C12—C110.3 (3)
C15—N2—C17—C1876.3 (3)O3—C14—N2—C171.0 (3)
C3—C2—C1—O1171.04 (18)O3—C14—N2—C15171.9 (2)
C3—C2—C1—O28.7 (2)C10—C14—N2—C17177.05 (17)
C7—C2—C1—O18.0 (3)C10—C14—N2—C156.2 (3)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H41···O3ii0.78 (3)2.01 (3)2.781 (2)169 (3)
O4—H42···O1i0.87 (3)1.84 (3)2.670 (2)159 (3)
Symmetry codes: (i) x, y, z; (ii) x+1, y1, z.
 

Acknowledgements

The authors acknowledge the Scientific and Technological Research Application and Research Center, Sinop University, Turkey, for the use of the Bruker D8 QUEST diffractometer. This work was supported financially by Kafkas University, Scientific Research Projects Coordinator (project No. 2016-FM-49).

References

First citationAdiwidjaja, G., Rossmanith, E. & Küppers, H. (1978). Acta Cryst. B34, 3079–3083.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationAntsyshkina, A. S., Chiragov, F. M. & Poray-Koshits, M. A. (1980). Koord. Khim. 15, 1098–1103.  Google Scholar
First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationCatterick (neé Drew), J., Hursthouse, M. B., New, D. B. & Thornton, P. (1974). J. Chem. Soc. Chem. Commun. pp. 843–844.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009a). Acta Cryst. E65, m466–m467.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009b). Acta Cryst. E65, m545–m546.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.  CAS PubMed Web of Science Google Scholar
First citationNadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124–128.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409–1416.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds