research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1,3-bis­­(3-tert-butyl-2-hy­dr­oxy-5-methyl­benz­yl)-1,3-diazinan-5-ol monohydrate

CROSSMARK_Color_square_no_text.svg

aUniversidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Química, Cra 30 No. 45-03, Bogotá, Código Postal 111321, Colombia, and bInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von Laue-Strasse 7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: ariverau@unal.edu.co

Edited by J. Simpson, University of Otago, New Zealand (Received 19 August 2016; accepted 24 August 2016; online 31 August 2016)

In the title hydrate, C28H42N2O3·H2O, the central 1,3-diazinan-5-ol ring adopts a chair conformation with the two benzyl substituents equatorial and the lone pairs of the N atoms axial. The dihedral angle between the aromatic rings is 19.68 (38)°. There are two intra­molecular O—H⋯N hydrogen bonds, each generating an S(6) ring motif. In the crystal, classical O—H⋯O hydrogen bonds connect the 1,3-diazinane and water mol­ecules into columns extending along the b axis. The crystal structure was refined as a two-component twin with a fractional contribution to the minor domain of 0.0922 (18).

1. Chemical context

Current research of our group is directed toward the synthesis of cyclic aminals with conformational inter­est, which may have the structural requirement for hydrogen-bonded inter­actions. Obvious targets are the 5-hy­droxy-1,3-diazinanes because a hydroxyl group in the six-membered 1,3-di­aza­cyclic ring may alter the conformational preferences resulting from the inter­actions of the hydroxyl group and the endocyclic nitro­gen atoms (Salzner, 1995[Salzner, U. (1995). J. Org. Chem. 60, 986-995.]). We gradually realized that the structural features of this class of compounds are much more complex than previously believed and defined. Thus, we intend to use X-ray investigations to complement the information on conformational preferences and electronic parameters of 5-hy­droxy-1,3-diazinanes obtained using NMR chemical shift data, spin–spin coupling constants, and their NOESY spectra.

[Scheme 1]

We have previously reported the synthesis and crystal structure of 1,3-bis­(3-tert-butyl-2-hy­droxy-5-meth­oxy­benz­yl)-1,3-diazinan-5-ol monohydrate (II) and this study has shown that the hydroxyl substituent on the 1,3-diazinane ring is disordered over two positions, namely one component equatorial and the other axial (Rivera et al., 2014[Rivera, A., Miranda-Carvajal, I., Osorio, H. J., Ríos-Motta, J. & Bolte, M. (2014). Acta Cryst. E70, o687-o688.]). As a logical step in the progression of these studies, in this paper we discuss the synthesis and crystal structure of the title compound (I), 1,3-bis­(3-tert-butyl-2-hy­droxy-5-methyl­benz­yl)-1,3-diazinan-5-ol monohydrate. The X-ray study again reveals that compound crystallizes with a solvent water mol­ecule that links to the organic mol­ecule through an O—H⋯O hydrogen bond. Furthermore, the hydroxyl group in the pyrimidine ring is also disordered over two positions (axial, equatorial).

2. Structural commentary

The mol­ecular structure of the title compound is presented in Fig. 1[link]. The structure consists of a 1,3-bis­(3-tert-butyl-2-hy­droxy-5-methyl­benz­yl)-1,3-diazinan-5-ol mol­ecule and a water mol­ecule. These components are connected by an O3—H3⋯O1W hydrogen bond (Table 1[link]) with the water-O atom as the acceptor. The 1,3-diazinane ring adopts a chair conformation with puckering parameters: Q = 0.588 (2) Å, θ = 176.9 (5) and φ = 245 (9)°. Atoms N1 and N2 are essentially tetra­hedral (bond-angle sums are 331.5° for N1 and 331.6° for N2), with their benzyl substituents in equatorial positions and the lone pairs axial. The aromatic rings of these substituents are roughly parallel, with a dihedral angle between the two benzene rings of 19.7 (4)°. Intra­molecular O—H⋯N hydrogen bonds form between the pyrimidine N atoms and the OH groups of the benzyl substit­uents and the pyrimidine N atoms, each with an S(6) graph-set motif (Table 1[link]). These inter­actions stabilize the mol­ecular conformation, with O1⋯N1 = 2.696 (5) and O2⋯N2 = 2.702 (5) Å. These distances are closely comparable to those observed in the related structure (II) (Rivera et al., 2014[Rivera, A., Miranda-Carvajal, I., Osorio, H. J., Ríos-Motta, J. & Bolte, M. (2014). Acta Cryst. E70, o687-o688.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.95 (7) 1.84 (7) 2.696 (5) 148 (5)
O2—H2⋯N2 0.96 (6) 1.81 (6) 2.702 (5) 152 (5)
O3—H3⋯O1Wi 0.76 (9) 2.12 (9) 2.882 (8) 177 (9)
O1W—H1WA⋯O3ii 0.94 1.98 2.873 (8) 158
O1W—H1WA⋯O3′ii 0.94 2.19 2.80 (2) 122
O1W—H1WB⋯O2 0.84 2.64 3.057 (7) 112
Symmetry codes: (i) x, y+1, z; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are drawn as dashed lines and, for clarity, only the major-disorder component (equatorial) of the –OH substituent on the pyrimidine ring is included.

The N2—C7 distance of 1.485 (6) Å is slightly longer than the typical value for an N—C bond [1.469 Å]. The remaining C—N bonds in the mol­ecule are also typical and compare well with those found in the the related structure (II) (Rivera et al., 2014[Rivera, A., Miranda-Carvajal, I., Osorio, H. J., Ríos-Motta, J. & Bolte, M. (2014). Acta Cryst. E70, o687-o688.]). The C12—O1 and C22—O2 distances are typical of those for a hy­droxy substituent on an aromatic ring [1.376 (6) and 1.374 (5) Å, respectively]. Bond angles within the 1,3-diazinane ring are unexceptional. The hydroxyl group is disordered over two positions, with site occupancies refining to 0.794 (13) and 0.206 (13). The OH group of the major component is in the equatorial position with the minor component axial.

3. Supra­molecular features

In the crystal, O3—H3⋯O1W hydrogen bonds form chains along b. These contacts are augmented by additional strong O1W—H1WA⋯O3 hydrogen bonds, this time with O3 as the acceptor (Fig. 2[link], Table 1[link]). The chains are held together by van der Waals forces.

[Figure 2]
Figure 2
Part of the crystal packing of the title compound, showing the extensive inter­molecular hydrogen-bonding inter­actions (dashed lines). For clarity, only the major-disorder components (equatorial) of the OH substituents on the pyrimidine rings are included.

4. Database survey

Apart from the previously published structure (Rivera et al., 2014[Rivera, A., Miranda-Carvajal, I., Osorio, H. J., Ríos-Motta, J. & Bolte, M. (2014). Acta Cryst. E70, o687-o688.]), there is only one similar entry in the CSD (Mendes et al., 2014[Mendes, L. L., Fernandes, C., Franco, R. W. A., Lube, L. M., Wei, S.-H., Reibenspies, J. H., Darnesbourg, D. J. & Horn, A. Jr (2014). J. Braz. Chem. Soc. 25, 1050-1061.]). In this latter structure, the 1,3-diazinane mol­ecule acts as a ligand to an iron(III) cation, which would affect comparisons with the geometric parameters of the title compound.

5. Synthesis and crystallization

The title compound was prepared according to our reported method (Rivera et al., 2016[Rivera, A., Miranda-Carvajal, I. & Ríos-Motta, J. (2016). J. Chil. Chem. Soc. Accepted (Paper number, 4317).]). The crude product was recrystallized from hexane solution, giving colorless crystals suitable for X-ray diffraction. M.p. 400 K, yield, 38%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The O3—H3 hydroxyl group is disordered over two positions, one with the OH group equatorial with the minor component axial. The site occupancies refine to 0.794 (13) and 0.206 (13), respectively. The H atom of the hydroxyl group of the major component was located in a difference map and refined freely while that of the minor component was fixed geometrically, both with Uiso(H) set to 1.2Ueq(O). The H atoms of the water mol­ecule were fixed in their found locations with Uiso(H) set to 1.5Ueq(O). C-bound H atoms were fixed geometrically (C—-H = 0.95 or 0.99 Å) and refined using a riding-model approximation, with Uiso(H) set to 1.2Ueq of the parent atom. The crystal was a two-component twin with a fractional contribution to the minor domain of 0.0922 (18).

Table 2
Experimental details

Crystal data
Chemical formula C28H42N2O3·H2O
Mr 472.65
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 10.11944 (9), 8.25445 (8), 33.8907 (3)
β (°) 97.8676 (4)
V3) 2804.26 (4)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.59
Crystal size (mm) 0.25 × 0.25 × 0.09
 
Data collection
Diffractometer Bruker APEXII CCD three-circle
Absorption correction Multi-scan (SADABS; Bruker, 1998[Bruker (1998). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.746, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 25653, 3138, 2895
Rint 0.053
θmax (°) 51.7
(sin θ/λ)max−1) 0.509
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.079, 0.207, 1.07
No. of reflections 3138
No. of parameters 333
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.28, −0.31
Computer programs: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 1998[Bruker (1998). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

1,3-Bis(3-tert-butyl-2-hydroxy-5-methylbenzyl)-1,3-diazinan-5-ol monohydrate top
Crystal data top
C28H42N2O3·H2OF(000) = 1032
Mr = 472.65Dx = 1.120 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54187 Å
a = 10.11944 (9) ÅCell parameters from 9999 reflections
b = 8.25445 (8) Åθ = 2–50°
c = 33.8907 (3) ŵ = 0.59 mm1
β = 97.8676 (4)°T = 173 K
V = 2804.26 (4) Å3Plate, colourless
Z = 40.25 × 0.25 × 0.09 mm
Data collection top
Bruker APEXII CCD three-circle
diffractometer
2895 reflections with I > 2σ(I)
Radiation source: Incoatec microfocus sourceRint = 0.053
ω scansθmax = 51.7°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 910
Tmin = 0.746, Tmax = 1.000k = 78
25653 measured reflectionsl = 3434
3138 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.079H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.207 w = 1/[σ2(Fo2) + (0.0797P)2 + 7.0703P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3138 reflectionsΔρmax = 0.28 e Å3
333 parametersΔρmin = 0.31 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.3254 (4)0.7763 (5)0.21069 (11)0.0316 (10)
N20.3688 (4)0.7733 (5)0.28166 (11)0.0328 (10)
O10.2304 (4)0.5043 (4)0.17291 (11)0.0455 (10)
H10.255 (6)0.578 (8)0.1942 (19)0.07 (2)*
O20.3143 (3)0.5008 (4)0.32058 (10)0.0400 (9)
H20.329 (5)0.575 (7)0.2996 (17)0.056 (17)*
O30.0542 (5)0.9917 (7)0.25116 (16)0.0540 (19)0.794 (13)
H30.091 (8)1.073 (11)0.251 (2)0.05 (3)*0.794 (13)
O3'0.087 (2)0.732 (3)0.2516 (8)0.084 (10)0.206 (13)
H3'0.12480.65810.24010.126*0.206 (13)
C10.4256 (4)0.8013 (6)0.24530 (13)0.0316 (11)
H1A0.50120.72620.24410.038*
H1B0.46000.91350.24510.038*
C20.2173 (5)0.8935 (6)0.21124 (14)0.0375 (12)
H2A0.14830.87530.18800.045*
H2B0.25261.00470.20940.045*
C30.1561 (5)0.8758 (6)0.24922 (15)0.0379 (13)
H3A0.11560.76540.24950.046*0.794 (13)
H3B0.09140.96670.25030.046*0.206 (13)
C40.2634 (5)0.8907 (6)0.28543 (14)0.0370 (12)
H4A0.30071.00170.28700.044*
H4B0.22400.86950.31010.044*
C60.3872 (5)0.7878 (6)0.17401 (14)0.0378 (13)
H6A0.46940.72130.17720.045*
H6B0.41350.90170.17030.045*
C70.4746 (5)0.7809 (6)0.31659 (14)0.0387 (12)
H7A0.50610.89420.32020.046*
H7B0.55120.71400.31100.046*
C110.2987 (4)0.7334 (5)0.13747 (14)0.0308 (12)
C120.2251 (5)0.5891 (5)0.13778 (14)0.0310 (12)
C130.1507 (5)0.5278 (6)0.10314 (15)0.0377 (13)
C140.1514 (6)0.6207 (7)0.06904 (15)0.0485 (15)
H140.10220.58210.04500.058*
C150.2198 (6)0.7672 (7)0.06775 (15)0.0490 (15)
C160.2925 (5)0.8205 (6)0.10255 (15)0.0405 (13)
H160.33980.91990.10250.049*
C170.0760 (5)0.3666 (6)0.10303 (17)0.0499 (15)
C180.0022 (8)0.3268 (9)0.0615 (2)0.095 (3)
H18A0.06210.41300.05300.143*
H18B0.06670.31840.04250.143*
H18C0.04520.22360.06250.143*
C190.1749 (6)0.2298 (6)0.1152 (2)0.071 (2)
H19A0.12680.12670.11510.106*
H19B0.23990.22400.09630.106*
H19C0.22160.25080.14200.106*
C200.0288 (6)0.3723 (7)0.1317 (2)0.0652 (18)
H20A0.09210.46010.12390.098*
H20B0.07670.26890.13080.098*
H20C0.01560.39150.15890.098*
C210.4305 (4)0.7238 (5)0.35448 (14)0.0292 (11)
C220.3553 (4)0.5812 (5)0.35560 (13)0.0259 (11)
C230.3228 (4)0.5197 (6)0.39176 (13)0.0307 (11)
C240.3686 (6)0.6071 (7)0.42536 (15)0.0469 (14)
H240.34900.56730.45020.056*
C250.4417 (6)0.7497 (7)0.42547 (16)0.0535 (16)
C260.4698 (5)0.8058 (6)0.38942 (15)0.0431 (14)
H260.51800.90430.38860.052*
C270.2443 (5)0.3604 (6)0.39375 (15)0.0370 (13)
C280.1069 (5)0.3741 (7)0.36836 (19)0.0559 (16)
H28A0.05690.46340.37830.084*
H28B0.11850.39500.34060.084*
H28C0.05770.27260.37000.084*
C290.3219 (6)0.2220 (6)0.3783 (2)0.0593 (17)
H29A0.33770.24570.35100.089*
H29B0.40750.20940.39540.089*
H29C0.27040.12150.37860.089*
C300.2210 (8)0.3202 (9)0.4363 (2)0.081 (2)
H30A0.17090.40840.44670.121*
H30B0.16990.21930.43630.121*
H30C0.30710.30720.45310.121*
C1510.2103 (9)0.8663 (9)0.03030 (18)0.090 (2)
H15A0.12290.91940.02560.135*
H15B0.22110.79560.00770.135*
H15C0.28070.94870.03320.135*
C2510.4875 (10)0.8412 (10)0.4634 (2)0.105 (3)
H25A0.44310.94690.46250.158*
H25B0.58430.85700.46600.158*
H25C0.46510.77930.48620.158*
O1W0.1841 (5)0.3019 (6)0.2497 (2)0.120 (2)
H1WA0.10120.35260.24270.179*
H1WB0.22320.39200.24880.179*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.027 (2)0.028 (2)0.040 (2)0.0053 (18)0.0046 (18)0.0030 (18)
N20.031 (2)0.029 (2)0.037 (2)0.0030 (19)0.0001 (18)0.0044 (18)
O10.052 (2)0.030 (2)0.053 (2)0.0120 (18)0.0012 (18)0.0074 (19)
O20.048 (2)0.032 (2)0.039 (2)0.0141 (17)0.0033 (16)0.0058 (17)
O30.037 (3)0.046 (4)0.080 (4)0.009 (3)0.013 (3)0.000 (3)
O3'0.054 (15)0.10 (2)0.101 (18)0.040 (14)0.025 (12)0.002 (15)
C10.027 (3)0.024 (2)0.044 (3)0.003 (2)0.004 (2)0.002 (2)
C20.034 (3)0.031 (3)0.046 (3)0.005 (2)0.000 (2)0.003 (2)
C30.024 (3)0.032 (3)0.057 (3)0.012 (3)0.004 (2)0.002 (2)
C40.034 (3)0.029 (3)0.048 (3)0.004 (2)0.009 (2)0.002 (2)
C60.036 (3)0.033 (3)0.046 (3)0.011 (2)0.010 (2)0.000 (2)
C70.034 (3)0.030 (3)0.050 (3)0.006 (2)0.005 (2)0.003 (2)
C110.030 (3)0.019 (3)0.044 (3)0.004 (2)0.010 (2)0.006 (2)
C120.028 (3)0.020 (3)0.045 (3)0.004 (2)0.007 (2)0.003 (2)
C130.035 (3)0.026 (3)0.052 (3)0.002 (2)0.005 (2)0.010 (2)
C140.052 (4)0.051 (4)0.040 (3)0.001 (3)0.001 (3)0.014 (3)
C150.065 (4)0.044 (4)0.040 (3)0.002 (3)0.014 (3)0.001 (3)
C160.051 (3)0.030 (3)0.043 (3)0.004 (3)0.016 (3)0.001 (2)
C170.038 (3)0.036 (3)0.073 (4)0.004 (3)0.001 (3)0.016 (3)
C180.106 (6)0.072 (5)0.100 (6)0.043 (5)0.015 (5)0.030 (4)
C190.046 (4)0.021 (3)0.148 (6)0.001 (3)0.022 (4)0.017 (3)
C200.035 (3)0.041 (4)0.121 (5)0.004 (3)0.016 (4)0.006 (3)
C210.022 (3)0.018 (3)0.044 (3)0.002 (2)0.007 (2)0.004 (2)
C220.023 (3)0.017 (3)0.035 (3)0.004 (2)0.007 (2)0.008 (2)
C230.026 (3)0.028 (3)0.038 (3)0.005 (2)0.003 (2)0.002 (2)
C240.059 (4)0.046 (3)0.036 (3)0.003 (3)0.009 (3)0.005 (3)
C250.068 (4)0.045 (4)0.044 (3)0.008 (3)0.002 (3)0.021 (3)
C260.046 (3)0.027 (3)0.053 (4)0.007 (3)0.006 (3)0.010 (3)
C270.027 (3)0.030 (3)0.055 (3)0.001 (2)0.010 (2)0.005 (2)
C280.031 (3)0.040 (3)0.098 (5)0.004 (3)0.014 (3)0.003 (3)
C290.048 (4)0.023 (3)0.110 (5)0.003 (3)0.022 (3)0.002 (3)
C300.103 (6)0.069 (5)0.073 (4)0.024 (4)0.023 (4)0.014 (4)
C1510.132 (7)0.088 (5)0.048 (4)0.009 (5)0.010 (4)0.016 (4)
C2510.157 (8)0.097 (6)0.059 (4)0.050 (6)0.006 (5)0.036 (4)
O1W0.081 (4)0.058 (3)0.220 (7)0.002 (3)0.022 (4)0.010 (4)
Geometric parameters (Å, º) top
N1—C11.456 (6)C17—C201.535 (8)
N1—C21.462 (6)C17—C181.536 (8)
N1—C61.469 (6)C18—H18A0.9800
N2—C11.448 (6)C18—H18B0.9800
N2—C41.460 (6)C18—H18C0.9800
N2—C71.485 (6)C19—H19A0.9800
O1—C121.376 (6)C19—H19B0.9800
O1—H10.95 (7)C19—H19C0.9800
O2—C221.374 (5)C20—H20A0.9800
O2—H20.96 (6)C20—H20B0.9800
O3—C31.415 (6)C20—H20C0.9800
O3—H30.76 (9)C21—C261.375 (7)
O3'—C31.38 (2)C21—C221.405 (6)
O3'—H3'0.8400C22—C231.407 (6)
C1—H1A0.9900C23—C241.374 (7)
C1—H1B0.9900C23—C271.542 (7)
C2—C31.510 (7)C24—C251.390 (8)
C2—H2A0.9900C24—H240.9500
C2—H2B0.9900C25—C261.372 (8)
C3—C41.528 (7)C25—C2511.507 (8)
C3—H3A1.0000C26—H260.9500
C3—H3B1.0000C27—C291.519 (7)
C4—H4A0.9900C27—C301.529 (8)
C4—H4B0.9900C27—C281.536 (7)
C6—C111.494 (7)C28—H28A0.9800
C6—H6A0.9900C28—H28B0.9800
C6—H6B0.9900C28—H28C0.9800
C7—C211.493 (7)C29—H29A0.9800
C7—H7A0.9900C29—H29B0.9800
C7—H7B0.9900C29—H29C0.9800
C11—C161.378 (7)C30—H30A0.9800
C11—C121.406 (6)C30—H30B0.9800
C12—C131.400 (7)C30—H30C0.9800
C13—C141.388 (7)C151—H15A0.9800
C13—C171.530 (7)C151—H15B0.9800
C14—C151.397 (8)C151—H15C0.9800
C14—H140.9500C251—H25A0.9800
C15—C161.374 (7)C251—H25B0.9800
C15—C1511.502 (8)C251—H25C0.9800
C16—H160.9500O1W—H1WA0.9381
C17—C191.528 (8)O1W—H1WB0.8447
C1—N1—C2109.6 (4)C20—C17—C18107.2 (5)
C1—N1—C6110.0 (3)C17—C18—H18A109.5
C2—N1—C6111.9 (4)C17—C18—H18B109.5
C1—N2—C4110.4 (4)H18A—C18—H18B109.5
C1—N2—C7110.2 (4)C17—C18—H18C109.5
C4—N2—C7111.0 (4)H18A—C18—H18C109.5
C12—O1—H1108 (4)H18B—C18—H18C109.5
C22—O2—H2106 (3)C17—C19—H19A109.5
C3—O3—H3104 (6)C17—C19—H19B109.5
C3—O3'—H3'109.5H19A—C19—H19B109.5
N2—C1—N1110.5 (3)C17—C19—H19C109.5
N2—C1—H1A109.6H19A—C19—H19C109.5
N1—C1—H1A109.6H19B—C19—H19C109.5
N2—C1—H1B109.6C17—C20—H20A109.5
N1—C1—H1B109.6C17—C20—H20B109.5
H1A—C1—H1B108.1H20A—C20—H20B109.5
N1—C2—C3110.0 (4)C17—C20—H20C109.5
N1—C2—H2A109.7H20A—C20—H20C109.5
C3—C2—H2A109.7H20B—C20—H20C109.5
N1—C2—H2B109.7C26—C21—C22118.9 (4)
C3—C2—H2B109.7C26—C21—C7120.0 (4)
H2A—C2—H2B108.2C22—C21—C7121.0 (4)
O3'—C3—C2113.6 (11)O2—C22—C21118.8 (4)
O3—C3—C2111.2 (4)O2—C22—C23119.9 (4)
O3'—C3—C4109.2 (12)C21—C22—C23121.2 (4)
O3—C3—C4110.5 (4)C24—C23—C22116.1 (4)
C2—C3—C4110.4 (4)C24—C23—C27121.9 (4)
O3—C3—H3A108.2C22—C23—C27122.0 (4)
C2—C3—H3A108.2C23—C24—C25124.5 (5)
C4—C3—H3A108.2C23—C24—H24117.8
O3'—C3—H3B107.8C25—C24—H24117.8
C2—C3—H3B107.8C26—C25—C24117.3 (5)
C4—C3—H3B107.8C26—C25—C251120.8 (6)
N2—C4—C3108.9 (4)C24—C25—C251121.9 (6)
N2—C4—H4A109.9C25—C26—C21122.0 (5)
C3—C4—H4A109.9C25—C26—H26119.0
N2—C4—H4B109.9C21—C26—H26119.0
C3—C4—H4B109.9C29—C27—C30108.3 (5)
H4A—C4—H4B108.3C29—C27—C28109.5 (5)
N1—C6—C11114.0 (4)C30—C27—C28107.4 (5)
N1—C6—H6A108.8C29—C27—C23109.4 (4)
C11—C6—H6A108.8C30—C27—C23111.9 (4)
N1—C6—H6B108.8C28—C27—C23110.2 (4)
C11—C6—H6B108.8C27—C28—H28A109.5
H6A—C6—H6B107.7C27—C28—H28B109.5
N2—C7—C21113.8 (4)H28A—C28—H28B109.5
N2—C7—H7A108.8C27—C28—H28C109.5
C21—C7—H7A108.8H28A—C28—H28C109.5
N2—C7—H7B108.8H28B—C28—H28C109.5
C21—C7—H7B108.8C27—C29—H29A109.5
H7A—C7—H7B107.7C27—C29—H29B109.5
C16—C11—C12119.1 (4)H29A—C29—H29B109.5
C16—C11—C6120.4 (4)C27—C29—H29C109.5
C12—C11—C6120.4 (4)H29A—C29—H29C109.5
O1—C12—C13119.6 (4)H29B—C29—H29C109.5
O1—C12—C11118.7 (4)C27—C30—H30A109.5
C13—C12—C11121.6 (4)C27—C30—H30B109.5
C14—C13—C12115.8 (4)H30A—C30—H30B109.5
C14—C13—C17122.5 (5)C27—C30—H30C109.5
C12—C13—C17121.7 (5)H30A—C30—H30C109.5
C13—C14—C15124.3 (5)H30B—C30—H30C109.5
C13—C14—H14117.8C15—C151—H15A109.5
C15—C14—H14117.8C15—C151—H15B109.5
C16—C15—C14117.3 (5)H15A—C151—H15B109.5
C16—C15—C151121.0 (5)C15—C151—H15C109.5
C14—C15—C151121.6 (5)H15A—C151—H15C109.5
C15—C16—C11121.8 (5)H15B—C151—H15C109.5
C15—C16—H16119.1C25—C251—H25A109.5
C11—C16—H16119.1C25—C251—H25B109.5
C19—C17—C13109.7 (4)H25A—C251—H25B109.5
C19—C17—C20109.6 (5)C25—C251—H25C109.5
C13—C17—C20110.8 (4)H25A—C251—H25C109.5
C19—C17—C18107.9 (5)H25B—C251—H25C109.5
C13—C17—C18111.5 (5)H1WA—O1W—H1WB90.3
C4—N2—C1—N163.3 (5)C151—C15—C16—C11177.9 (6)
C7—N2—C1—N1173.7 (4)C12—C11—C16—C152.2 (7)
C2—N1—C1—N262.5 (5)C6—C11—C16—C15175.2 (5)
C6—N1—C1—N2174.0 (4)C14—C13—C17—C19118.1 (6)
C1—N1—C2—C358.2 (5)C12—C13—C17—C1960.6 (6)
C6—N1—C2—C3179.4 (4)C14—C13—C17—C20120.7 (6)
N1—C2—C3—O3'68.0 (13)C12—C13—C17—C2060.6 (6)
N1—C2—C3—O3178.0 (4)C14—C13—C17—C181.4 (7)
N1—C2—C3—C455.0 (5)C12—C13—C17—C18179.9 (5)
C1—N2—C4—C358.5 (5)N2—C7—C21—C26139.0 (4)
C7—N2—C4—C3179.0 (4)N2—C7—C21—C2244.8 (6)
O3'—C3—C4—N270.9 (11)C26—C21—C22—O2179.0 (4)
O3—C3—C4—N2178.0 (4)C7—C21—C22—O24.8 (6)
C2—C3—C4—N254.7 (5)C26—C21—C22—C231.5 (6)
C1—N1—C6—C11169.1 (4)C7—C21—C22—C23174.7 (4)
C2—N1—C6—C1168.8 (5)O2—C22—C23—C24179.6 (4)
C1—N2—C7—C21169.3 (4)C21—C22—C23—C240.1 (6)
C4—N2—C7—C2168.0 (5)O2—C22—C23—C271.5 (6)
N1—C6—C11—C16137.4 (5)C21—C22—C23—C27178.0 (4)
N1—C6—C11—C1245.3 (6)C22—C23—C24—C250.8 (8)
C16—C11—C12—O1179.0 (4)C27—C23—C24—C25178.9 (5)
C6—C11—C12—O13.6 (6)C23—C24—C25—C260.2 (9)
C16—C11—C12—C133.0 (7)C23—C24—C25—C251179.2 (6)
C6—C11—C12—C13174.3 (4)C24—C25—C26—C211.3 (8)
O1—C12—C13—C14179.7 (4)C251—C25—C26—C21179.3 (6)
C11—C12—C13—C141.8 (7)C22—C21—C26—C252.2 (7)
O1—C12—C13—C170.9 (7)C7—C21—C26—C25174.1 (5)
C11—C12—C13—C17177.0 (4)C24—C23—C27—C29117.7 (5)
C12—C13—C14—C150.3 (8)C22—C23—C27—C2960.2 (6)
C17—C13—C14—C15179.1 (5)C24—C23—C27—C302.3 (7)
C13—C14—C15—C161.1 (8)C22—C23—C27—C30179.7 (5)
C13—C14—C15—C151176.6 (6)C24—C23—C27—C28121.8 (5)
C14—C15—C16—C110.2 (8)C22—C23—C27—C2860.2 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.95 (7)1.84 (7)2.696 (5)148 (5)
O2—H2···N20.96 (6)1.81 (6)2.702 (5)152 (5)
O3—H3···O1Wi0.76 (9)2.12 (9)2.882 (8)177 (9)
O1W—H1WA···O3ii0.941.982.873 (8)158
O1W—H1WA···O3ii0.942.192.80 (2)122
O1W—H1WB···O20.842.643.057 (7)112
Symmetry codes: (i) x, y+1, z; (ii) x, y1/2, z+1/2.
 

Acknowledgements

We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia for financial support of this work (research project No. 28427). IMC is also grateful to COLCIENCIAS for his doctoral scholarship.

References

First citationBruker (1998). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMendes, L. L., Fernandes, C., Franco, R. W. A., Lube, L. M., Wei, S.-H., Reibenspies, J. H., Darnesbourg, D. J. & Horn, A. Jr (2014). J. Braz. Chem. Soc. 25, 1050–1061.  CAS Google Scholar
First citationRivera, A., Miranda-Carvajal, I., Osorio, H. J., Ríos-Motta, J. & Bolte, M. (2014). Acta Cryst. E70, o687–o688.  CrossRef IUCr Journals Google Scholar
First citationRivera, A., Miranda-Carvajal, I. & Ríos-Motta, J. (2016). J. Chil. Chem. Soc. Accepted (Paper number, 4317).  Google Scholar
First citationSalzner, U. (1995). J. Org. Chem. 60, 986–995.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds