research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (acetato-κO)(ethanol-κO)[(9S,17S,21S,29S)-9,17,21,29-tetra­hy­droxy-18,30-dioxa­octa­cyclo­[18.10.0.02,7.08,19.09,17.011,16.021,29.023,28]triaconta-1,3,5,7,11(16),12,14,19,23(28),24,26-undeca­ene-10,22-dione-κ3O18,O21,O22]caesium ethanol monosolvate

CROSSMARK_Color_square_no_text.svg

aInstitute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel, and bDepartment of Chemistry, Nuclear Research Centre Negev, Beer Sheva, 84190, Israel
*Correspondence e-mail: ravell.bengiat@mail.huji.ac.il

Edited by A. J. Lough, University of Toronto, Canada (Received 12 May 2016; accepted 1 June 2016; online 3 June 2016)

The title compound, [Cs(CH3COO)(C28H16O8)(C2H5OH)]·C2H5OH, is the product of the complexation between one vasarene analogue [1], bis ninhydrin naphthalene-1,3-diol and CsF, where the F ion has reacted with residual acetic acid (AcOH), to form a [1]·CsOAc complex. The inter­molecular inter­actions with the multiple oxygen-containing functional groups of the ligand, as well as O—H⋯O hydrogen bonds involving the ethanol solvent mol­ecules, stabilize the complex, forming a chain along [100]. Additional parallel-displaced ππ stacking, with an inter­planar distance of 3.669 (1) Å, connect several unit cells in a three-dimensional supra­molecular structure, though, the larger size of AcO (1.60 Å) compared to F (1.33 Å) prevents the tight packing that was once achieved with other vasarene complexes of CsF.

1. Chemical context

The supra­molecular reactions of ligands from the vasarene family with ion-pairs of type M+F, provided M is a large monovalent cation, have been studied extensively by our group in the past years (Almog et al., 2009[Almog, J., Rozin, R., Klein, A., Shamuilov-Levinton, G. & Cohen, S. (2009). Tetrahedron, 65, 7954-7962.], 2012[Almog, J., Gavish-Abramovich, I., Rozin, R., Cohen, S., Yardeni, G. & Zilbermann, I. (2012). Eur. J. Inorg. Chem. pp. 4427-4432.]; Bengiat et al., 2016a[Bengiat, R., Gil, M., Klein, A., Bogoslavsky, B., Cohen, S. & Almog, J. (2016a). Acta Cryst. E72, 399-402.],b[Bengiat, R., Gil, M., Klein, A., Bogoslavsky, B., Cohen, S., Dubnikova, F., Yardeni, G., Zilbermann, I. & Almog, J. (2016b). Dalton Trans. 45, 8734-8739.],c[Bengiat, R., Gil, M., Klein, A., Cohen, O., Bogoslavsky, B., Cohen, S., Dubnikova, F. & Almog, J. (2016c). Tetrahedron, 72, 2429-2439.]). The prerequisite regarding the size of the cation rests in the key role of the fluoride ion in initiating the complex formation (Bengiat et al., 2016b[Bengiat, R., Gil, M., Klein, A., Bogoslavsky, B., Cohen, S., Dubnikova, F., Yardeni, G., Zilbermann, I. & Almog, J. (2016b). Dalton Trans. 45, 8734-8739.]), though the contribution of the F ion to the stability of the complex once formed has yet to be explored. In several cases, however, the F ions have been absent from the final complex which contained acetate ions instead. This observation can be explained by the presence of acetic acid (AcOH) residues from the synthesis of the ligand, but the exact mechanism is still unknown. Here, we review the structure of the title complex and the effect of the AcO anion on its supra­molecular features.

2. Structural commentary

The complex was formed in the reaction of the bis ninhydrin naphthalene-1,3-diol ligand [1] (Fig. 1[link]) with CsF. As mentioned earlier, we suggest that the presence of residual AcOH results in a selective precipitation with AcO rather than F in the final complex. Similar to the original vasarene complexes with CsF (Almog et al., 2012[Almog, J., Gavish-Abramovich, I., Rozin, R., Cohen, S., Yardeni, G. & Zilbermann, I. (2012). Eur. J. Inorg. Chem. pp. 4427-4432.]; Bengiat et al., 2016b[Bengiat, R., Gil, M., Klein, A., Bogoslavsky, B., Cohen, S., Dubnikova, F., Yardeni, G., Zilbermann, I. & Almog, J. (2016b). Dalton Trans. 45, 8734-8739.],c[Bengiat, R., Gil, M., Klein, A., Cohen, O., Bogoslavsky, B., Cohen, S., Dubnikova, F. & Almog, J. (2016c). Tetrahedron, 72, 2429-2439.]), the Cs+ ion is stabilized by several inter­actions with the oxygen-containing functional groups of the ligand: hydroxyl (O3), carbonyl (O4) and etheric (O5), as well as by the additional EtOH solvate mol­ecule (O1E) and the acetate counter-ion (O1A) (Scheme, Fig. 2[link]).

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of the bis ninhydrin naphthalene-1,3-diol ligand [1], showing 50% probability ellipsoids for non-H atoms. Solvent mol­ecules and the CsI ion have been omitted for clarity.
[Figure 2]
Figure 2
The mol­ecular structure of the bis ninhydrin naphthalene-1,3-diol [1] complex with CsOAc showing 50% probability ellipsoids for non-H atoms. Hydrogen bonding is represented by the orange dashed lines. Aromatic H atoms have been omitted for clarity. The codes for symmetry-related atoms are given in Table 1[link].

Fig. 2[link] shows the hydrogen bonding between the different unit cells (Table 1[link]) involving a second solvent mol­ecule of EtOH, O2E⋯H–O1E and O2E–H⋯O2A. Further stabilization of the lattice is achieved by the parallel-displaced ππ stacking between the aromatic rings of the `side-walls' of ligands in different unit cells with an inter-planar distance of 3.669 (1) Å (Janiak, 2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]) (Fig. 3[link]). In other complexes of the vasarane analogues with CsF, there has been an alternating arrangement of ligand and salt layers, forming `salt channels' that are held by supra­molecular inter­actions of hydrogen bonds, cation–π and metal coordination with the ligands (Bengiat et al., 2016b[Bengiat, R., Gil, M., Klein, A., Bogoslavsky, B., Cohen, S., Dubnikova, F., Yardeni, G., Zilbermann, I. & Almog, J. (2016b). Dalton Trans. 45, 8734-8739.],c[Bengiat, R., Gil, M., Klein, A., Cohen, O., Bogoslavsky, B., Cohen, S., Dubnikova, F. & Almog, J. (2016c). Tetrahedron, 72, 2429-2439.]). In this case, however, it is suggested that the difference in the ionic radius between the F (1.33 Å) and AcO (1.60 Å) (Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]; Manku, 1980[Manku, G. S. (1980). In Theoretical Principles of Inorganic Chemistry. Tata McGraw-Hill.]) results in steric hindrance that prevents the tight packing of the lattice (Figs. 4[link] and 5[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O1Ai 0.72 (4) 1.98 (4) 2.704 (3) 175 (4)
O3—H3O⋯O2Ai 0.72 (3) 1.92 (3) 2.643 (3) 179 (4)
O6—H6O⋯O2Aii 0.68 (4) 1.98 (4) 2.650 (3) 175 (4)
O7—H7O⋯O6iii 0.70 (4) 2.10 (4) 2.798 (3) 173 (4)
O1E—H1E⋯O2E 0.84 (4) 1.92 (5) 2.747 (4) 166 (4)
O2E—H2E⋯O1A 0.82 (4) 1.93 (4) 2.736 (3) 170 (4)
Symmetry codes: (i) -x, -y, -z+2; (ii) x+1, y, z; (iii) -x+1, -y, -z+2.
[Figure 3]
Figure 3
A fragment of the crystal packing of the [1]·CsOAc complex showing the parallel-displaced ππ stacking with an inter­planar distance of 3.669 Å at 50% probability ellipsoids for non-H atoms. Aromatic H atoms and solvent mol­ecules have been omitted for clarity.
[Figure 4]
Figure 4
The crystal packing of the [1]·CsOAc complex showing 2 × 2 × 2 unit cells. Aromatic H atoms and solvent mol­ecules have been omitted for clarity.
[Figure 5]
Figure 5
The crystal packing of the complex of bis ninhydrin 1,3-benzene­diol with CsF (Bengiat et al., 2016b[Bengiat, R., Gil, M., Klein, A., Bogoslavsky, B., Cohen, S., Dubnikova, F., Yardeni, G., Zilbermann, I. & Almog, J. (2016b). Dalton Trans. 45, 8734-8739.]) showing 2 × 2 × 2 unit cells. Aromatic H atoms and solvent mol­ecules have been omitted for clarity.

3. Database survey

The bowl-shaped compound formed upon reaction between ninhydrin and 1,3,5-benzene­triol was first reported by Kim and his co-workers (Na et al., 2005[Na, J. E., Lee, K. Y., Seo, J. & Kim, J. N. (2005). Tetrahedron Lett. 46, 4505-4508.]), while other groups attempted similar reactions involving ninhydrin and poly­hydroxy aromatics (Kundu et al., 2004[Kundu, S. K., Patra, A. & Pramanik, A. (2004). ChemInform, 35, 604-611.]; Mahmood et al., 2011[Mahmood, K., Yaqub, M., Tahir, M. N., Shafiq, Z. & Qureshi, A. M. (2011). Acta Cryst. E67, o910-o911.]). Since then, the reaction has been thoroughly explored by our group, expanding the family of these ligands, which we have named vasarenes (Almog et al., 2009[Almog, J., Rozin, R., Klein, A., Shamuilov-Levinton, G. & Cohen, S. (2009). Tetrahedron, 65, 7954-7962.]; Gil et al., 2014[Gil, M., Almog, J., Dubnikova, F., Bogoslavski, B. & Cohen, S. (2014). Acta Cryst. E70, o506.]; Bengiat et al., 2016c[Bengiat, R., Gil, M., Klein, A., Cohen, O., Bogoslavsky, B., Cohen, S., Dubnikova, F. & Almog, J. (2016c). Tetrahedron, 72, 2429-2439.],d[Bengiat, R., Klein, A., Gil, M., Bogoslavsky, B., Cohen, S., Yardeni, G., Zilbermann, I. & Almog, J. (2016d). IUCrData, 1, x160261.]). A comprehensive study of the supra­molecular reactions of the vasarenes and their analogues with M+F salts has also been carried out (Almog et al., 2012[Almog, J., Gavish-Abramovich, I., Rozin, R., Cohen, S., Yardeni, G. & Zilbermann, I. (2012). Eur. J. Inorg. Chem. pp. 4427-4432.]; Bengiat et al., 2016a[Bengiat, R., Gil, M., Klein, A., Bogoslavsky, B., Cohen, S. & Almog, J. (2016a). Acta Cryst. E72, 399-402.],b[Bengiat, R., Gil, M., Klein, A., Bogoslavsky, B., Cohen, S., Dubnikova, F., Yardeni, G., Zilbermann, I. & Almog, J. (2016b). Dalton Trans. 45, 8734-8739.],c[Bengiat, R., Gil, M., Klein, A., Cohen, O., Bogoslavsky, B., Cohen, S., Dubnikova, F. & Almog, J. (2016c). Tetrahedron, 72, 2429-2439.]). However, this is the first time that a complex with an anion other than fluoride has been reported.

4. Synthesis and crystallization

The ligand [1] was synthesized according to a recently reported procedure (Bengiat et al. 2016c[Bengiat, R., Gil, M., Klein, A., Cohen, O., Bogoslavsky, B., Cohen, S., Dubnikova, F. & Almog, J. (2016c). Tetrahedron, 72, 2429-2439.]) in a one-pot reaction in AcOH. Ligand [1] (151.0 mg, 0.314 mmol) was dissolved in warm EtOH (10 mL). An equivalent amount of CsF (50.1 mg, 0.329 mmol) was dissolved in warm EtOH (2 mL) with few drops of H2Odist. and added to the solution of [1]. Upon addition of the CsF solution an immediate color change to intense yellow was observed, later changing to bright orange. The mixture was left to crystallize at RT for a few days, forming a colorless crystalline precipitate suitable for single crystal X-ray diffraction.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydroxyl H atoms of the ligand mol­ecules and H atoms of the EtOH mol­ecule were located in a different Fourier map and all H-atom parameters refined. Other H atoms were placed in calculated positions with C—H = 0.95 (aromatic), 0.99 (methyl­ene) and 0.98 Å (meth­yl), and refined in riding mode with Uiso(H) = 1.2Ueq(C) for aromatic and aliphatic H atoms and 1.5Ueq(C) for the methyl H atoms.

Table 2
Experimental details

Crystal data
Chemical formula [Cs(C2H3O2)(C28H16O8)(C2H6O)]·C2H6O
Mr 764.50
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 10.609 (2), 11.669 (2), 14.319 (2)
α, β, γ (°) 74.741 (2), 70.932 (2), 89.095 (2)
V3) 1611.5 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.21
Crystal size (mm) 0.64 × 0.24 × 0.13
 
Data collection
Diffractometer Bruker SMART CCD
Absorption correction Multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.511, 0.858
No. of measured, independent and observed [I > 2σ(I)] reflections 17584, 6917, 6818
Rint 0.029
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.085, 1.19
No. of reflections 6917
No. of parameters 451
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.72, −0.66
Computer programs: SMART and SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(Acetato-κO)(ethanol-κO)[(9S,17S,21S,29S)-9,17,21,29-tetrahydroxy-18,30-dioxaoctacyclo[18.10.0.02,7.08,19.09,17.011,16.021,29.023,28]triaconta-1,3,5,7,11(16),12,14,19,23(28),24,26-undecaene-10,22-dione-κ3O18,O21,O22]caesium ethanol monosolvate top
Crystal data top
[Cs(C2H3O2)(C28H16O8)(C2H6O)]·C2H6OZ = 2
Mr = 764.50F(000) = 772
Triclinic, P1Dx = 1.576 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.609 (2) ÅCell parameters from 7362 reflections
b = 11.669 (2) Åθ = 2.1–28.1°
c = 14.319 (2) ŵ = 1.21 mm1
α = 74.741 (2)°T = 173 K
β = 70.932 (2)°Prisme, colorless
γ = 89.095 (2)°0.64 × 0.24 × 0.13 mm
V = 1611.5 (4) Å3
Data collection top
Bruker SMART CCD
diffractometer
6917 independent reflections
Radiation source: fine-focus sealed tube6818 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
φ and ω scansθmax = 27.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1313
Tmin = 0.511, Tmax = 0.858k = 1414
17584 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.19 w = 1/[σ2(Fo2) + (0.0375P)2 + 1.213P]
where P = (Fo2 + 2Fc2)/3
6917 reflections(Δ/σ)max = 0.007
451 parametersΔρmax = 1.72 e Å3
0 restraintsΔρmin = 0.66 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2002 (2)0.13669 (19)1.17244 (17)0.0175 (4)
C20.1777 (2)0.1095 (2)1.27587 (18)0.0199 (4)
C30.2805 (2)0.1067 (2)1.31994 (18)0.0209 (5)
C40.4154 (2)0.1316 (2)1.25043 (19)0.0213 (5)
C50.4384 (2)0.1527 (2)1.14390 (18)0.0194 (4)
C60.3334 (2)0.15554 (19)1.10705 (17)0.0181 (4)
C70.2532 (3)0.0832 (2)1.4266 (2)0.0264 (5)
H70.16380.06401.47250.032*
C80.3557 (3)0.0882 (3)1.4641 (2)0.0316 (6)
H80.33750.07311.53590.038*
C90.4886 (3)0.1158 (3)1.3959 (2)0.0327 (6)
H90.55860.12131.42260.039*
C100.5189 (3)0.1348 (2)1.2928 (2)0.0273 (5)
H100.60950.15021.24890.033*
C110.0331 (2)0.1068 (2)1.26594 (18)0.0204 (4)
C120.0699 (2)0.1299 (2)1.15298 (18)0.0186 (4)
C130.0413 (2)0.2535 (2)1.09573 (19)0.0211 (5)
C140.0449 (2)0.3084 (2)1.17370 (19)0.0230 (5)
C150.0903 (2)0.2250 (2)1.26866 (19)0.0225 (5)
C160.1744 (3)0.2560 (3)1.3541 (2)0.0307 (6)
H160.20590.19951.41950.037*
C170.2108 (3)0.3720 (3)1.3405 (2)0.0404 (7)
H170.26780.39521.39790.048*
C180.1660 (3)0.4555 (3)1.2449 (3)0.0404 (7)
H180.19310.53441.23800.049*
C190.0827 (3)0.4247 (2)1.1601 (2)0.0320 (6)
H190.05210.48111.09460.038*
C210.5131 (2)0.1982 (2)0.96238 (18)0.0196 (4)
C220.5672 (2)0.1622 (2)1.05530 (18)0.0208 (5)
C230.6674 (2)0.2676 (2)1.0343 (2)0.0259 (5)
C240.6405 (2)0.3677 (2)0.9577 (2)0.0251 (5)
C250.5503 (2)0.3302 (2)0.91796 (19)0.0220 (5)
C260.5078 (3)0.4087 (2)0.8450 (2)0.0290 (5)
H260.44450.38330.81920.035*
C270.5618 (3)0.5262 (3)0.8112 (2)0.0364 (6)
H270.53460.58240.76140.044*
C280.6550 (3)0.5628 (2)0.8490 (2)0.0380 (7)
H280.69190.64310.82320.046*
C290.6945 (3)0.4858 (2)0.9226 (2)0.0340 (6)
H290.75680.51190.94900.041*
Cs10.191153 (14)0.124796 (13)0.862730 (11)0.02585 (7)
O10.04685 (16)0.08256 (15)1.33507 (13)0.0226 (3)
O20.12922 (17)0.01494 (17)1.29727 (14)0.0243 (4)
H2O0.099 (3)0.041 (3)1.299 (3)0.034 (10)*
O30.06070 (17)0.04548 (16)1.10108 (13)0.0212 (3)
H3O0.093 (3)0.005 (3)1.122 (2)0.021 (8)*
O40.08513 (19)0.29564 (16)1.00382 (14)0.0289 (4)
O50.36872 (15)0.17430 (15)1.00338 (12)0.0197 (3)
O60.55495 (19)0.13249 (16)0.89154 (14)0.0229 (4)
H6O0.623 (4)0.137 (3)0.874 (3)0.031 (10)*
O70.63353 (19)0.05673 (17)1.06295 (15)0.0262 (4)
H7O0.584 (3)0.013 (3)1.071 (3)0.031 (10)*
O80.7534 (2)0.2654 (2)1.07278 (17)0.0417 (5)
C1A0.0995 (3)0.2127 (2)0.7471 (2)0.0292 (5)
C2A0.1497 (4)0.3298 (3)0.7045 (3)0.0605 (11)
H2A10.12260.39110.73100.091*
H2A20.24750.32140.72540.091*
H2A30.11160.35290.62930.091*
O1A0.02108 (18)0.19599 (17)0.70590 (15)0.0322 (4)
O2A0.18031 (18)0.13858 (16)0.82327 (15)0.0302 (4)
C1E0.4943 (4)0.3196 (4)0.5980 (3)0.0606 (10)
H1E10.54920.38910.59510.073*
H1E20.49180.32750.52810.073*
C2E0.5549 (5)0.2099 (5)0.6319 (3)0.0800 (15)
H2E10.55240.19990.70270.120*
H2E20.64790.21460.58690.120*
H2E30.50490.14180.62900.120*
O1E0.3619 (3)0.3185 (3)0.6666 (2)0.0576 (7)
H1E0.319 (4)0.340 (4)0.625 (3)0.063 (13)*
C3E0.2150 (3)0.3851 (3)0.4560 (2)0.0419 (7)
H3E10.28170.32710.43870.050*
H3E20.25510.46530.41220.050*
C4E0.0925 (4)0.3560 (3)0.4324 (3)0.0483 (8)
H4E10.05300.27620.47480.072*
H4E20.11800.35840.35960.072*
H4E30.02710.41460.44740.072*
O2E0.1861 (2)0.3825 (2)0.56062 (18)0.0436 (5)
H2E0.131 (4)0.329 (4)0.600 (3)0.056 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0179 (10)0.0144 (10)0.0202 (11)0.0014 (8)0.0073 (8)0.0036 (8)
C20.0186 (10)0.0173 (10)0.0221 (11)0.0024 (8)0.0057 (9)0.0038 (9)
C30.0225 (11)0.0184 (11)0.0210 (11)0.0028 (8)0.0088 (9)0.0025 (9)
C40.0210 (11)0.0171 (11)0.0248 (12)0.0021 (8)0.0088 (9)0.0026 (9)
C50.0169 (10)0.0157 (10)0.0244 (12)0.0002 (8)0.0060 (9)0.0048 (9)
C60.0203 (11)0.0130 (10)0.0201 (11)0.0014 (8)0.0064 (9)0.0034 (8)
C70.0258 (12)0.0272 (12)0.0239 (12)0.0045 (10)0.0082 (10)0.0035 (10)
C80.0355 (14)0.0364 (15)0.0242 (13)0.0058 (11)0.0151 (11)0.0041 (11)
C90.0318 (14)0.0391 (15)0.0314 (14)0.0029 (11)0.0194 (11)0.0053 (12)
C100.0229 (12)0.0284 (13)0.0300 (13)0.0023 (10)0.0118 (10)0.0034 (10)
C110.0173 (10)0.0225 (11)0.0206 (11)0.0017 (8)0.0057 (9)0.0055 (9)
C120.0162 (10)0.0185 (11)0.0206 (11)0.0015 (8)0.0052 (8)0.0058 (9)
C130.0185 (10)0.0198 (11)0.0256 (12)0.0024 (8)0.0091 (9)0.0053 (9)
C140.0210 (11)0.0230 (12)0.0267 (12)0.0053 (9)0.0091 (9)0.0083 (10)
C150.0178 (10)0.0238 (12)0.0278 (12)0.0019 (9)0.0079 (9)0.0099 (10)
C160.0255 (12)0.0344 (14)0.0301 (14)0.0027 (10)0.0030 (10)0.0131 (11)
C170.0386 (16)0.0392 (16)0.0418 (17)0.0116 (13)0.0039 (13)0.0211 (14)
C180.0453 (17)0.0292 (15)0.0471 (18)0.0155 (12)0.0113 (14)0.0167 (13)
C190.0349 (14)0.0252 (13)0.0349 (15)0.0079 (11)0.0108 (11)0.0080 (11)
C210.0154 (10)0.0189 (11)0.0234 (11)0.0004 (8)0.0038 (8)0.0074 (9)
C220.0179 (10)0.0184 (11)0.0247 (12)0.0014 (8)0.0065 (9)0.0043 (9)
C230.0201 (11)0.0275 (13)0.0276 (13)0.0035 (9)0.0042 (9)0.0078 (10)
C240.0224 (11)0.0237 (12)0.0256 (12)0.0026 (9)0.0023 (9)0.0079 (10)
C250.0193 (11)0.0197 (11)0.0227 (12)0.0022 (8)0.0006 (9)0.0069 (9)
C260.0291 (13)0.0259 (13)0.0275 (13)0.0048 (10)0.0055 (10)0.0048 (10)
C270.0418 (16)0.0249 (13)0.0324 (15)0.0093 (11)0.0030 (12)0.0036 (11)
C280.0459 (17)0.0169 (12)0.0388 (16)0.0022 (11)0.0014 (13)0.0066 (11)
C290.0333 (14)0.0278 (14)0.0358 (15)0.0069 (11)0.0012 (11)0.0128 (12)
Cs10.02629 (10)0.02675 (10)0.02485 (10)0.00161 (6)0.01049 (6)0.00509 (6)
O10.0181 (8)0.0271 (9)0.0194 (8)0.0011 (6)0.0046 (6)0.0032 (7)
O20.0197 (8)0.0216 (9)0.0273 (9)0.0019 (7)0.0034 (7)0.0053 (7)
O30.0224 (8)0.0179 (8)0.0249 (9)0.0026 (7)0.0096 (7)0.0066 (7)
O40.0327 (9)0.0260 (9)0.0232 (9)0.0066 (7)0.0065 (7)0.0026 (7)
O50.0154 (7)0.0229 (8)0.0191 (8)0.0000 (6)0.0040 (6)0.0050 (6)
O60.0181 (9)0.0226 (9)0.0262 (9)0.0009 (7)0.0022 (7)0.0099 (7)
O70.0199 (9)0.0219 (9)0.0353 (10)0.0055 (7)0.0085 (7)0.0064 (8)
O80.0324 (10)0.0480 (13)0.0437 (12)0.0132 (9)0.0196 (9)0.0014 (10)
C1A0.0294 (13)0.0248 (13)0.0281 (13)0.0048 (10)0.0062 (10)0.0029 (10)
C2A0.0462 (19)0.0423 (19)0.056 (2)0.0219 (15)0.0086 (16)0.0148 (16)
O1A0.0236 (9)0.0261 (9)0.0361 (10)0.0034 (7)0.0023 (8)0.0003 (8)
O2A0.0249 (9)0.0228 (9)0.0331 (10)0.0031 (7)0.0015 (7)0.0019 (8)
C1E0.050 (2)0.068 (3)0.048 (2)0.0046 (18)0.0024 (16)0.0071 (19)
C2E0.092 (3)0.105 (4)0.049 (2)0.049 (3)0.025 (2)0.033 (2)
O1E0.0424 (13)0.0750 (19)0.0410 (14)0.0083 (13)0.0057 (11)0.0026 (13)
C3E0.0445 (17)0.0315 (15)0.0380 (17)0.0020 (12)0.0029 (13)0.0036 (13)
C4E0.055 (2)0.0434 (18)0.0427 (18)0.0000 (15)0.0115 (15)0.0115 (15)
O2E0.0448 (13)0.0393 (12)0.0366 (12)0.0098 (10)0.0067 (10)0.0015 (10)
Geometric parameters (Å, º) top
C1—C21.369 (3)C26—C271.392 (4)
C1—C61.399 (3)C26—H260.9500
C1—C121.504 (3)C27—C281.392 (5)
C2—O11.360 (3)C27—H270.9500
C2—C31.423 (3)C28—C291.368 (5)
C3—C71.409 (3)C28—H280.9500
C3—C41.434 (3)C29—H290.9500
C4—C51.417 (3)Cs1—O7i3.0101 (18)
C4—C101.422 (3)Cs1—O33.1163 (18)
C5—C61.377 (3)Cs1—O1E3.121 (3)
C5—C221.512 (3)Cs1—O43.1441 (18)
C6—O51.364 (3)Cs1—O3ii3.1744 (17)
C7—C81.369 (4)Cs1—O1A3.257 (2)
C7—H70.9500Cs1—O53.3263 (16)
C8—C91.412 (4)Cs1—O2ii3.3650 (19)
C8—H80.9500Cs1—Cs1ii4.9310 (5)
C9—C101.361 (4)Cs1—H3O3.43 (3)
C9—H90.9500O2—Cs1ii3.3650 (19)
C10—H100.9500O2—H2O0.72 (4)
C11—O21.368 (3)O3—Cs1ii3.1744 (17)
C11—O11.474 (3)O3—H3O0.72 (3)
C11—C151.503 (3)O6—H6O0.68 (4)
C11—C121.584 (3)O7—Cs1i3.0101 (18)
C12—O31.402 (3)O7—H7O0.70 (4)
C12—C131.539 (3)C1A—O1A1.258 (3)
C13—O41.207 (3)C1A—O2A1.261 (3)
C13—C141.478 (3)C1A—C2A1.507 (4)
C14—C151.385 (4)C2A—H2A10.9800
C14—C191.392 (4)C2A—H2A20.9800
C15—C161.390 (3)C2A—H2A30.9800
C16—C171.383 (4)C1E—O1E1.424 (4)
C16—H160.9500C1E—C2E1.462 (6)
C17—C181.391 (5)C1E—H1E10.9900
C17—H170.9500C1E—H1E20.9900
C18—C191.379 (4)C2E—H2E10.9800
C18—H180.9500C2E—H2E20.9800
C19—H190.9500C2E—H2E30.9800
C21—O61.385 (3)O1E—H1E0.84 (4)
C21—O51.452 (3)C3E—O2E1.420 (4)
C21—C251.508 (3)C3E—C4E1.509 (5)
C21—C221.572 (3)C3E—H3E10.9900
C22—O71.405 (3)C3E—H3E20.9900
C22—C231.540 (3)C4E—H4E10.9800
C23—O81.207 (3)C4E—H4E20.9800
C23—C241.472 (4)C4E—H4E30.9800
C24—C251.389 (4)O2E—H1E1.92 (5)
C24—C291.398 (4)O2E—H2E0.82 (4)
C25—C261.387 (4)
C2—C1—C6117.4 (2)O3—Cs1—O454.35 (5)
C2—C1—C12110.02 (19)O1E—Cs1—O497.22 (7)
C6—C1—C12132.4 (2)O7i—Cs1—O3ii99.87 (5)
O1—C2—C1114.2 (2)O3—Cs1—O3ii76.77 (5)
O1—C2—C3121.7 (2)O1E—Cs1—O3ii130.26 (7)
C1—C2—C3124.1 (2)O4—Cs1—O3ii105.68 (5)
C7—C3—C2122.5 (2)O7i—Cs1—O1A143.97 (5)
C7—C3—C4120.5 (2)O3—Cs1—O1A123.70 (5)
C2—C3—C4117.0 (2)O1E—Cs1—O1A71.34 (6)
C5—C4—C10123.7 (2)O4—Cs1—O1A101.41 (5)
C5—C4—C3118.6 (2)O3ii—Cs1—O1A61.26 (5)
C10—C4—C3117.7 (2)O7i—Cs1—O558.07 (5)
C6—C5—C4120.9 (2)O3—Cs1—O561.73 (4)
C6—C5—C22108.2 (2)O1E—Cs1—O593.43 (6)
C4—C5—C22130.6 (2)O4—Cs1—O561.33 (4)
O5—C6—C5115.3 (2)O3ii—Cs1—O5136.30 (4)
O5—C6—C1122.8 (2)O1A—Cs1—O5156.10 (4)
C5—C6—C1121.9 (2)O7i—Cs1—O2ii95.85 (5)
C8—C7—C3119.9 (2)O3—Cs1—O2ii124.63 (4)
C8—C7—H7120.1O1E—Cs1—O2ii86.84 (7)
C3—C7—H7120.1O4—Cs1—O2ii146.21 (5)
C7—C8—C9120.0 (2)O3ii—Cs1—O2ii50.73 (4)
C7—C8—H8120.0O1A—Cs1—O2ii48.17 (5)
C9—C8—H8120.0O5—Cs1—O2ii152.22 (4)
C10—C9—C8121.6 (2)O7i—Cs1—Cs1ii86.79 (4)
C10—C9—H9119.2O3—Cs1—Cs1ii38.81 (3)
C8—C9—H9119.2O1E—Cs1—Cs1ii162.27 (5)
C9—C10—C4120.3 (2)O4—Cs1—Cs1ii78.79 (4)
C9—C10—H10119.9O3ii—Cs1—Cs1ii37.97 (3)
C4—C10—H10119.9O1A—Cs1—Cs1ii92.36 (3)
O2—C11—O1108.65 (18)O5—Cs1—Cs1ii99.56 (3)
O2—C11—C15113.02 (19)O2ii—Cs1—Cs1ii87.23 (3)
O1—C11—C15107.72 (19)O7i—Cs1—H3O63.4 (5)
O2—C11—C12116.42 (19)O3—Cs1—H3O11.5 (5)
O1—C11—C12106.32 (17)O1E—Cs1—H3O150.9 (5)
C15—C11—C12104.20 (19)O4—Cs1—H3O63.9 (5)
O3—C12—C1114.48 (18)O3ii—Cs1—H3O78.1 (5)
O3—C12—C13110.29 (19)O1A—Cs1—H3O131.6 (5)
C1—C12—C13110.50 (18)O5—Cs1—H3O58.5 (5)
O3—C12—C11115.78 (18)O2ii—Cs1—H3O121.5 (5)
C1—C12—C11100.72 (18)Cs1ii—Cs1—H3O41.2 (5)
C13—C12—C11104.30 (18)C2—O1—C11107.60 (17)
O4—C13—C14127.9 (2)C11—O2—Cs1ii123.60 (14)
O4—C13—C12124.6 (2)C11—O2—H2O110 (3)
C14—C13—C12107.4 (2)Cs1ii—O2—H2O68 (3)
C15—C14—C19121.5 (2)C12—O3—Cs1116.40 (13)
C15—C14—C13110.2 (2)C12—O3—Cs1ii128.36 (13)
C19—C14—C13128.3 (2)Cs1—O3—Cs1ii103.23 (5)
C14—C15—C16120.6 (2)C12—O3—H3O105 (2)
C14—C15—C11112.3 (2)Cs1—O3—H3O110 (2)
C16—C15—C11127.1 (2)Cs1ii—O3—H3O90 (2)
C17—C16—C15117.7 (3)C13—O4—Cs1118.88 (15)
C17—C16—H16121.1C6—O5—C21106.32 (17)
C15—C16—H16121.1C6—O5—Cs1130.11 (13)
C16—C17—C18121.7 (3)C21—O5—Cs1122.45 (12)
C16—C17—H17119.2C21—O6—H6O107 (3)
C18—C17—H17119.2C22—O7—Cs1i156.51 (16)
C19—C18—C17120.6 (3)C22—O7—H7O104 (3)
C19—C18—H18119.7Cs1i—O7—H7O92 (3)
C17—C18—H18119.7O1A—C1A—O2A124.0 (2)
C18—C19—C14117.9 (3)O1A—C1A—C2A118.1 (2)
C18—C19—H19121.1O2A—C1A—C2A118.0 (2)
C14—C19—H19121.1C1A—C2A—H2A1109.5
O6—C21—O5104.28 (18)C1A—C2A—H2A2109.5
O6—C21—C25114.35 (19)H2A1—C2A—H2A2109.5
O5—C21—C25110.50 (18)C1A—C2A—H2A3109.5
O6—C21—C22115.48 (19)H2A1—C2A—H2A3109.5
O5—C21—C22107.60 (18)H2A2—C2A—H2A3109.5
C25—C21—C22104.53 (18)C1A—O1A—Cs1114.97 (17)
O7—C22—C5113.06 (19)O1E—C1E—C2E110.5 (4)
O7—C22—C23108.95 (19)O1E—C1E—H1E1109.6
C5—C22—C23115.6 (2)C2E—C1E—H1E1109.6
O7—C22—C21115.02 (19)O1E—C1E—H1E2109.6
C5—C22—C21100.30 (17)C2E—C1E—H1E2109.6
C23—C22—C21103.53 (19)H1E1—C1E—H1E2108.1
O8—C23—C24127.4 (2)C1E—C2E—H2E1109.5
O8—C23—C22125.3 (2)C1E—C2E—H2E2109.5
C24—C23—C22107.3 (2)H2E1—C2E—H2E2109.5
C25—C24—C29120.6 (3)C1E—C2E—H2E3109.5
C25—C24—C23110.6 (2)H2E1—C2E—H2E3109.5
C29—C24—C23128.8 (2)H2E2—C2E—H2E3109.5
C26—C25—C24121.5 (2)C1E—O1E—Cs1131.0 (2)
C26—C25—C21127.6 (2)C1E—O1E—H1E101 (3)
C24—C25—C21110.9 (2)Cs1—O1E—H1E111 (3)
C25—C26—C27117.3 (3)O2E—C3E—C4E112.8 (3)
C25—C26—H26121.4O2E—C3E—H3E1109.0
C27—C26—H26121.4C4E—C3E—H3E1109.0
C26—C27—C28121.1 (3)O2E—C3E—H3E2109.0
C26—C27—H27119.5C4E—C3E—H3E2109.0
C28—C27—H27119.5H3E1—C3E—H3E2107.8
C29—C28—C27121.5 (3)C3E—C4E—H4E1109.5
C29—C28—H28119.2C3E—C4E—H4E2109.5
C27—C28—H28119.2H4E1—C4E—H4E2109.5
C28—C29—C24118.0 (3)C3E—C4E—H4E3109.5
C28—C29—H29121.0H4E1—C4E—H4E3109.5
C24—C29—H29121.0H4E2—C4E—H4E3109.5
O7i—Cs1—O374.74 (5)C3E—O2E—H1E120.1 (14)
O7i—Cs1—O1E110.43 (6)C3E—O2E—H2E113 (3)
O3—Cs1—O1E148.09 (7)H1E—O2E—H2E96 (3)
O7i—Cs1—O4113.67 (5)
Symmetry codes: (i) x+1, y, z+2; (ii) x, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O1Aii0.72 (4)1.98 (4)2.704 (3)175 (4)
O3—H3O···O2Aii0.72 (3)1.92 (3)2.643 (3)179 (4)
O6—H6O···O2Aiii0.68 (4)1.98 (4)2.650 (3)175 (4)
O7—H7O···O6i0.70 (4)2.10 (4)2.798 (3)173 (4)
O1E—H1E···O2E0.84 (4)1.92 (5)2.747 (4)166 (4)
O2E—H2E···O1A0.82 (4)1.93 (4)2.736 (3)170 (4)
Symmetry codes: (i) x+1, y, z+2; (ii) x, y, z+2; (iii) x+1, y, z.
 

Acknowledgements

This research was supported by the Pazy Research Foundation.

References

First citationAlmog, J., Gavish-Abramovich, I., Rozin, R., Cohen, S., Yardeni, G. & Zilbermann, I. (2012). Eur. J. Inorg. Chem. pp. 4427–4432.  Web of Science CSD CrossRef Google Scholar
First citationAlmog, J., Rozin, R., Klein, A., Shamuilov-Levinton, G. & Cohen, S. (2009). Tetrahedron, 65, 7954–7962.  Web of Science CSD CrossRef CAS Google Scholar
First citationBengiat, R., Gil, M., Klein, A., Bogoslavsky, B., Cohen, S. & Almog, J. (2016a). Acta Cryst. E72, 399–402.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBengiat, R., Gil, M., Klein, A., Bogoslavsky, B., Cohen, S., Dubnikova, F., Yardeni, G., Zilbermann, I. & Almog, J. (2016b). Dalton Trans. 45, 8734–8739.  CSD CrossRef CAS PubMed Google Scholar
First citationBengiat, R., Gil, M., Klein, A., Cohen, O., Bogoslavsky, B., Cohen, S., Dubnikova, F. & Almog, J. (2016c). Tetrahedron, 72, 2429–2439.  Web of Science CSD CrossRef CAS Google Scholar
First citationBengiat, R., Klein, A., Gil, M., Bogoslavsky, B., Cohen, S., Yardeni, G., Zilbermann, I. & Almog, J. (2016d). IUCrData, 1, x160261.  Google Scholar
First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGil, M., Almog, J., Dubnikova, F., Bogoslavski, B. & Cohen, S. (2014). Acta Cryst. E70, o506.  CSD CrossRef IUCr Journals Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationKundu, S. K., Patra, A. & Pramanik, A. (2004). ChemInform, 35, 604–611.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMahmood, K., Yaqub, M., Tahir, M. N., Shafiq, Z. & Qureshi, A. M. (2011). Acta Cryst. E67, o910–o911.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationManku, G. S. (1980). In Theoretical Principles of Inorganic Chemistry. Tata McGraw-Hill.  Google Scholar
First citationNa, J. E., Lee, K. Y., Seo, J. & Kim, J. N. (2005). Tetrahedron Lett. 46, 4505–4508.  Web of Science CSD CrossRef CAS Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds