research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of trans-diammine(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N)chromium(III) tetra­chlorido­zincate chloride monohydrate from synchrotron data

CROSSMARK_Color_square_no_text.svg

aPohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea, and bDepartment of Chemistry, Andong National University, Andong 36729, Republic of Korea
*Correspondence e-mail: jhchoi@anu.ac.kr

Edited by M. Weil, Vienna University of Technology, Austria (Received 4 February 2016; accepted 1 March 2016; online 4 March 2016)

The asymmetric unit of the title complex salt, [Cr(C10H24N4)(NH3)2][ZnCl4]Cl·H2O, is comprised of four halves of the CrIII complex cations (the counterparts being generated by application of inversion symmetry), two tetra­chlorido­zincate anions, two chloride anions and two water mol­ecules. Each CrIII ion is coordinated by the four N atoms of the cyclam (1,4,8,11-tetra­aza­cyclo­tetra­deca­ne) ligand in the equatorial plane and by two N atoms of ammine ligands in axial positions, displaying an overall distorted octa­hedral coordination environment. The Cr—N(cyclam) bond lengths range from 2.0501 (15) to 2.0615 (15) Å, while the Cr—(NH3) bond lengths range from 2.0976 (13) to 2.1062 (13) Å. The macrocyclic cyclam moieties adopt the trans-III conformation with six- and five-membered chelate rings in chair and gauche conformations. The [ZnCl4]2− anions have a slightly distorted tetra­hedral shape. In the crystal, the Cl anions link the complex cations, as well as the solvent water mol­ecules, through N—H⋯Cl and O—H⋯Cl hydrogen-bonding inter­actions. The supra­molecular set-up also includes N—H⋯Cl, C—H⋯Cl, N—H⋯O and O—H⋯Cl hydrogen bonding between N—H or C—H groups of cyclam, ammine N—H and water O—H donor groups, and O atoms of the water mol­ecules, Cl anions or Cl atoms of the [ZnCl4]2− anions as acceptors, leading to a three-dimensional network structure.

1. Chemical context

The cyclam macrocycle (1,4,8,11-tetra­aza­cyclo­tetra­decane, C10H24N4) can adopt both planar (trans) and folded (cis) configurations (Poon & Pun, 1980[Poon, C. K. & Pun, K. C. (1980). Inorg. Chem. 19, 568-569.]). There are five conformational trans isomers for the macrocycle, which differ in the chirality of the sec-NH groups (Choi, 2009[Choi, J.-H. (2009). Inorg. Chim. Acta, 362, 4231-4236.]). The trans-I, trans-II and trans-V conformations can fold to form cis-I, cis-II and cis-V isomers, respectively (Subhan et al., 2011[Subhan, M. A., Choi, J. H. & Ng, S. W. (2011). Z. Anorg. Allg. Chem. 637, 2193-2197.]). Recently, it has been reported that cyclam derivatives and their metal complexes exhibit anti-HIV activity (Ronconi & Sadler, 2007[Ronconi, L. & Sadler, P. J. (2007). Coord. Chem. Rev. 251, 1633-1648.]; De Clercq, 2010[De Clercq, E. (2010). J. Med. Chem. 53, 1438-1450.]; Ross et al., 2012[Ross, A., Choi, J.-H., Hunter, T. M., Pannecouque, C., Moggach, S. A., Parsons, S., De Clercq, E. & Sadler, P. J. (2012). Dalton Trans. 41, 6408-6418.]) whereby the strength of binding to the CXCR4 receptor correlates with the anti-HIV activity. The conformation of the macrocyclic ligand and the orientations of the N—H bonds are very important factors for co-receptor recognition. Therefore, a deeper knowledge of the conformation and crystal packing of metal complexes containing the cyclam ligand has become important in the development of new highly effective anti-HIV drugs that specifially target alternative events in the HIV replicative cycle (De Clercq, 2010[De Clercq, E. (2010). J. Med. Chem. 53, 1438-1450.]). In addition, counter-anionic species play an important role in chemistry, pharmacy and biology (Flores-Velez et al., 1991[Flores-Velez, L. M., Sosa-Rivadeneyra, J., Sosa-Torres, M. E., Rosales-Hoz, M. J. & Toscano, R. A. (1991). J. Chem. Soc. Dalton Trans. pp. 3243-3247.]; Fabbrizzi & Poggi, 2013[Fabbrizzi, L. & Poggi, A. (2013). Chem. Soc. Rev. 42, 1681-1699.]). As part of a study on the structural and supra­molecular features of chromium(III) complex cations with a macrocyclic ligand and with different anions, we report here the structural characterization of trans-[Cr(NH3)2(cyclam)][ZnCl4]Cl·H2O, (I)[link].

[Scheme 1]

2. Structural commentary

Compound (I)[link] is another example containing a trans-[Cr(NH3)2(cyclam)]3+ moiety but with a different double counter-anion (Derwahl et al., 1999[Derwahl, A., Wasgestian, F., House, D. A. & Edwards, R. A. (1999). Inorg. Chim. Acta, 285, 313-317.]). The asymmetric unit of (I)[link] comprises four halves of the CrIII complex cations, two tetra­chlorido­zincate anions, two chloride anions and two water mol­ecules. The four Cr atoms are located on crystallographic centers of symmetry. Since the complex cations have mol­ecular Ci symmetry, the cyclam ligand has a trans-III conformation (Fig. 1[link]). In each of the complex cations, the CrIII ion is coordinated by the nitro­gen atoms of the cyclam ligand occupying the equatorial sites. Two ammine ligands complete the distorted trans-configured octa­hedral coordination sphere at the axial positions. The Cr—N bond lengths including the donor atoms of the cyclam ligand range from 2.0501 (15) to 2.0615 (15) Å, comparable to those determined for trans-[CrCl2(cyclam)]2[ZnCl4] (Flores-Velez et al., 1991[Flores-Velez, L. M., Sosa-Rivadeneyra, J., Sosa-Torres, M. E., Rosales-Hoz, M. J. & Toscano, R. A. (1991). J. Chem. Soc. Dalton Trans. pp. 3243-3247.]), trans-[Cr(nic-O)2(cyclam)]ClO4 (nic-O = O-coordinating nicotinate; Choi, 2009[Choi, J.-H. (2009). Inorg. Chim. Acta, 362, 4231-4236.]), trans-[CrF2(2,2,3-tet)]ClO4 (2,2,3-tet = 1,4,7,11-tetra­aza­undecane; Choi & Moon, 2014[Choi, J.-H. & Moon, D. (2014). J. Mol. Struct. 1059, 325-331.]), [Cr(ox)(cyclam)]ClO4 (ox = oxalate; Choi et al., 2004[Choi, J.-H., Oh, I.-G., Suzuki, T. & Kaizaki, S. (2004). J. Mol. Struct. 694, 39-44.]) or [Cr(acac)(cyclam)](ClO4)2·0.5H2O (acac = acetyl­acetonate; Subhan et al., 2011[Subhan, M. A., Choi, J. H. & Ng, S. W. (2011). Z. Anorg. Allg. Chem. 637, 2193-2197.]). However, the Cr—N bond lengths of the secondary amine group of the cyclam ligands are slightly shorter than those of the primary amine group as determined for trans-[CrCl2(Me2tn)2]2ZnCl4 (Me2tn = 2,2-di­methyl­propane-1,3-di­amine; Choi et al., 2011[Choi, J.-H., Joshi, T. & Spiccia, L. (2011). Z. Anorg. Allg. Chem. 637, 1194-1198.]), trans-[Cr(N3)2(Me2tn)2]ClO4·2H2O (Moon & Choi, 2015[Moon, D. & Choi, J.-H. (2015). Spectrochim. Acta Part A, 138, 774-779.]), or trans-[Cr(NCS)2(Me2tn)2]SCN·0.5H2O (Choi & Lee, 2009[Choi, J.-H. & Lee, S. H. (2009). J. Mol. Struct. 932, 84-89.]). The Cr—(NH3) bond lengths range from 2.0976 (13) to 2.1062 (13) Å, similar to the average value of 2.095 (3) Å found in trans-[Cr(NH3)2(cyclam)](ClO4)Cl2 (Derwahl et al., 1999[Derwahl, A., Wasgestian, F., House, D. A. & Edwards, R. A. (1999). Inorg. Chim. Acta, 285, 313-317.]). The five-membered chelate rings of the cyclam ligands adopt gauche and six-membered ring chair conformations. The tetra­hedral [ZnCl4]2− anion is distorted due to its involvement in hydrogen-bonding inter­actions. It exhibits Zn—Cl bond lengths ranging from 2.2238 (10) to 2.3232 (8) Å and Cl—Zn—Cl angles from 105.67 (3) to 115.38 (3)°.

[Figure 1]
Figure 1
The mol­ecular structures (drawn with displacement ellipsoids at the 50% probability level) of one independent chromium(III) complex cation, one tetra­chlorido­zincate anion, one chloride anion and one water mol­ecule in compound (I)[link]. The primed atoms are related by symmetry code (−x, −y + 1, −z + 2).

3. Supra­molecular features

In the crystal, the complex cations are stacked parallel to the a-axis direction. A series of N—H⋯Cl and C—H⋯Cl hydrogen bonds link the cations to neighboring anions. An extensive array of additional N—H⋯O and O—H⋯Cl contacts including the lattice water mol­ecule generates a three-dimensional network (Table 1[link], Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1NA⋯Cl3Fi 0.90 2.80 3.3602 (16) 121
N1A—H1NA⋯Cl2Wii 0.90 2.60 3.3363 (18) 140
N1A—H3NA⋯Cl3Eiii 0.90 2.58 3.384 (2) 149
N2A—H1A⋯Cl2Wii 0.99 2.20 3.1754 (15) 170
N3A—H2A⋯Cl3Fi 0.99 2.30 3.2752 (14) 170
C1A—H1A2⋯Cl4Eii 0.98 2.59 3.4739 (19) 150
N1B—H2NB⋯Cl1Wiv 0.90 2.45 3.2683 (19) 152
N1B—H2NB⋯O1W 0.90 2.46 3.034 (2) 122
N1B—H3NB⋯Cl2Eiv 0.90 2.57 3.3556 (15) 147
N2B—H1B⋯Cl1W 0.99 2.20 3.1704 (17) 165
N3B—H2B⋯O1Wiv 0.99 1.98 2.968 (2) 177
N1C—H2NC⋯Cl3Fv 0.90 2.68 3.4211 (19) 140
N1C—H3NC⋯Cl2Wvi 0.90 2.38 3.2673 (17) 167
N1C—H3NC⋯O2Wvi 0.90 2.54 2.975 (2) 111
N2C—H1C⋯O2Wvii 0.99 1.96 2.932 (2) 167
N3C—H2C⋯Cl2Wvii 0.99 2.23 3.2082 (16) 171
C5C—H5C2⋯Cl4F 0.98 2.79 3.761 (2) 174
N1D—H2ND⋯Cl1Wviii 0.90 2.45 3.2796 (15) 154
N1D—H3ND⋯Cl1Eviii 0.90 2.71 3.5516 (16) 156
N2D—H1D⋯Cl1Wix 0.99 2.19 3.1589 (16) 166
N3D—H2D⋯Cl2Eix 0.99 2.36 3.3276 (17) 166
C1D—H1D1⋯Cl1Fi 0.98 2.66 3.6278 (17) 168
C1D—H1D2⋯Cl1Eviii 0.98 2.83 3.803 (2) 172
O1W—H1O1⋯Cl1Wiv 0.85 (1) 2.70 (2) 3.341 (2) 134 (2)
O1W—H2O1⋯Cl2F 0.84 (1) 2.39 (1) 3.2066 (17) 167 (2)
O2W—H1O2⋯Cl3E 0.83 (1) 2.37 (1) 3.1763 (19) 162 (2)
O2W—H2O2⋯Cl2W 0.84 (1) 2.55 (2) 3.2009 (19) 135 (2)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x, y, z+1; (iii) x-1, y, z+1; (iv) -x+1, -y+1, -z+1; (v) x+1, y, z; (vi) -x+1, -y+1, -z; (vii) x, y+1, z; (viii) -x+1, -y, -z+1; (ix) x-1, y, z.
[Figure 2]
Figure 2
The crystal packing in compound (I)[link], viewed perpendicular to the bc plane. Dashed lines represent hydrogen bonding inter­actions N—H⋯Cl (cyan), N—H⋯O (red) and O—H⋯Cl (purple), respectively. H atoms on C atoms have been omitted.

4. Database survey

A search in the Cambridge Structural Database (Version 5.36, last update May 2015; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) gave just one hit for a [Cr(NH3)2(cyclam)]3+ unit, viz. the crystal structure of trans-[Cr(NH3)2(cyclam)](ClO4)Cl2 (Derwahl et al., 1999[Derwahl, A., Wasgestian, F., House, D. A. & Edwards, R. A. (1999). Inorg. Chim. Acta, 285, 313-317.]). This dichloride perchlorate double salt and the title compound show the same trans-III conformation of the cyclam ligand, however with different hydrogen-bonding and crystal packing networks. The crystal structure of cis-[Cr(NH3)2(cyclam)]I3·H2O was also found (Kukina et al., 1991[Kukina, G. A., Porai-Koshits, M. A., Gerda, V. I., Shevchenko, Y. N. & Shchurkina, V. N. (1991). Sov. Phys. Crystallogr. 36, 739-740.]), but no structure of any double salt of trans-[Cr(NH3)2(cyclam)]3+ with an additional [ZnCl4]2− anion.

5. Synthesis and crystallization

Cyclam and CrCl3(THF)3 were purchased from Stream Chemicals and used as provided. All chemicals were reagent grade materials and used without further purification. The starting material, trans-[Cr(NH3)2(cyclam)](PF6)(NO3)·0.5H2O, was prepared according to a previously described procedure (Kane-Maguire et al., 1985[Kane-Maguire, A. A. P., Wallace, K. C. & Miller, D. B. (1985). Inorg. Chem. 24, 597-605.]). The hexa­fluorido­phosphate nitrate double salt (0.042 g) was dissolved in 5 ml of 0.01 M HCl and added to 2 ml of 1 M HCl containing 0.12 g of solid ZnCl2. The resulting solution was filtered and allowed to stand at room temperature for five days to give block-like yellow crystals of (I)[link] suitable for X-ray structural analysis.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.98 Å and N—H = 0.90–0.99 Å and with Uiso(H) values of 1.2 or 1.5 Ueq of the parent atoms. The hydrogen atoms of water mol­ecules were located in difference maps and restrained with O—H = 0.84 Å using DFIX and DANG commands (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]).

Table 2
Experimental details

Crystal data
Chemical formula [Cr(C10H24N4)(NH3)2][ZnCl4]Cl·H2O
Mr 547.03
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 243
a, b, c (Å) 9.3980 (19), 14.876 (3), 17.981 (4)
α, β, γ (°) 66.03 (3), 76.03 (3), 78.74 (3)
V3) 2215.6 (10)
Z 4
Radiation type Synchrotron, λ = 0.620 Å
μ (mm−1) 1.50
Crystal size (mm) 0.11 × 0.08 × 0.04
 
Data collection
Diffractometer ADSC Q210 CCD area-detector
Absorption correction Empirical (using intensity measurements) (HKL3000sm SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])
Tmin, Tmax 0.850, 0.938
No. of measured, independent and observed [I > 2σ(I)] reflections 23883, 12905, 11123
Rint 0.029
(sin θ/λ)max−1) 0.707
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.084, 1.07
No. of reflections 12905
No. of parameters 455
No. of restraints 6
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.66, −0.76
Computer programs: PAL BL2D-SMDC Program (Shin et al., 2016[Shin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369-373.]), HKL3000sm (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Putz & Brandenburg, 2014[Putz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: PAL BL2D-SMDC Program (Shin et al., 2016); cell refinement: HKL3000sm (Otwinowski & Minor, 1997); data reduction: HKL3000sm (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Putz & Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).

trans-Diammine(1,4,8,11-tetraazacyclotetradecane-κN4)chromium(III) tetrachloridozincate chloride monohydrate top
Crystal data top
[Cr(C10H24N4)(NH3)2][ZnCl4]Cl·H2OZ = 4
Mr = 547F(000) = 1124
Triclinic, P1Dx = 1.640 Mg m3
a = 9.3980 (19) ÅSynchrotron radiation, λ = 0.620 Å
b = 14.876 (3) ÅCell parameters from 76389 reflections
c = 17.981 (4) Åθ = 0.4–33.6°
α = 66.03 (3)°µ = 1.50 mm1
β = 76.03 (3)°T = 243 K
γ = 78.74 (3)°Block, yellow
V = 2215.6 (10) Å30.11 × 0.08 × 0.04 mm
Data collection top
ADSC Q210 CCD area-detector
diffractometer
11123 reflections with I > 2σ(I)
Radiation source: PLSII 2D bending magnetRint = 0.029
ω scanθmax = 26.0°, θmin = 1.1°
Absorption correction: empirical (using intensity measurements)
(HKL3000sm SCALEPACK; Otwinowski & Minor, 1997)
h = 1313
Tmin = 0.850, Tmax = 0.938k = 2121
23883 measured reflectionsl = 2525
12905 independent reflections
Refinement top
Refinement on F26 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0513P)2 + 0.1347P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.002
12905 reflectionsΔρmax = 0.66 e Å3
455 parametersΔρmin = 0.76 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr1A0.00000.50001.00000.00997 (6)
N1A0.05398 (13)0.36162 (9)1.01590 (7)0.0164 (2)
H1NA0.02930.32051.01250.025*
H2NA0.10310.36950.97610.025*
H3NA0.11110.33581.06580.025*
N2A0.17264 (13)0.42870 (9)1.06157 (7)0.0167 (2)
H1A0.17900.35821.06950.020*
N3A0.12143 (13)0.51146 (9)0.88534 (7)0.0157 (2)
H2A0.12190.44740.88060.019*
C1A0.12606 (17)0.43212 (12)1.14593 (9)0.0227 (3)
H1A10.13850.49711.14380.027*
H1A20.18700.38151.18380.027*
C2A0.32146 (16)0.46018 (12)1.01888 (10)0.0238 (3)
H2A10.39460.41811.05280.029*
H2A20.32300.52861.01270.029*
C3A0.36314 (16)0.45343 (13)0.93376 (11)0.0273 (3)
H3A10.46860.46050.91360.033*
H3A20.34830.38710.94000.033*
C4A0.27855 (16)0.52922 (12)0.86811 (9)0.0238 (3)
H4A10.28320.59560.86560.029*
H4A20.32570.52670.81400.029*
C5A0.03428 (17)0.58654 (12)0.82368 (8)0.0218 (3)
H5A10.06930.58100.76960.026*
H5A20.04570.65330.81770.026*
Cr2B0.50000.50000.50000.01185 (6)
N1B0.30918 (13)0.57334 (9)0.54783 (7)0.0188 (2)
H1NB0.24100.53070.57610.028*
H2NB0.27310.62390.50600.028*
H3NB0.33150.59690.58200.028*
N2B0.44033 (14)0.36582 (9)0.58615 (8)0.0204 (2)
H1B0.52530.31620.58120.024*
N3B0.62099 (14)0.51975 (10)0.57270 (8)0.0218 (2)
H2B0.71780.48030.56660.026*
C1B0.3178 (2)0.34242 (13)0.55956 (12)0.0317 (4)
H1B10.22420.37730.57680.038*
H1B20.30950.27120.58560.038*
C2B0.40555 (19)0.35503 (13)0.67422 (10)0.0299 (4)
H2B10.38510.28690.70920.036*
H2B20.31630.39900.68280.036*
C3B0.5303 (2)0.37936 (14)0.70072 (10)0.0318 (4)
H3B10.62060.33890.68730.038*
H3B20.50790.35910.76100.038*
C4B0.5622 (2)0.48701 (14)0.66301 (10)0.0300 (4)
H4B10.47120.52910.67250.036*
H4B20.63410.49500.69070.036*
C5B0.6501 (2)0.62542 (13)0.53436 (12)0.0315 (4)
H5B10.73470.63350.55310.038*
H5B20.56400.66670.55110.038*
Cr3C0.50001.00000.00000.01576 (6)
N1C0.54753 (15)0.84509 (9)0.04233 (8)0.0240 (3)
H1NC0.46280.81700.05950.036*
H2NC0.59660.82400.08470.036*
H3NC0.60360.82800.00090.036*
N2C0.63796 (15)1.01044 (11)0.06889 (8)0.0256 (3)
H1C0.62181.08010.06450.031*
N3C0.31688 (15)0.98526 (10)0.09225 (8)0.0243 (3)
H2C0.27941.05270.09130.029*
C1C0.79153 (19)0.99551 (16)0.02512 (12)0.0362 (4)
H1C10.82240.92460.03880.043*
H1C20.85901.02220.04290.043*
C2C0.6153 (2)0.94799 (15)0.15942 (11)0.0342 (4)
H2C10.67990.96570.18560.041*
H2C20.64320.87830.16690.041*
C3C0.4561 (2)0.96092 (15)0.20207 (10)0.0352 (4)
H3C10.45200.92710.26190.042*
H3C20.42781.03160.19080.042*
C4C0.3413 (2)0.92345 (13)0.17816 (10)0.0323 (4)
H4C10.37380.85500.18270.039*
H4C20.24790.92380.21680.039*
C5C0.20231 (19)0.95212 (15)0.06752 (12)0.0338 (4)
H5C10.10450.96760.09700.041*
H5C20.21980.88030.08220.041*
Cr4D0.00000.00000.50000.00919 (6)
N1D0.22787 (12)0.04570 (9)0.48598 (7)0.0160 (2)
H1ND0.27530.00020.44100.024*
H2ND0.24500.10420.47980.024*
H3ND0.26090.05230.53110.024*
N2D0.02941 (13)0.09509 (9)0.55052 (8)0.0177 (2)
H1D0.06670.13560.55580.021*
N3D0.02438 (12)0.10266 (9)0.38037 (7)0.0155 (2)
H2D0.07270.14230.37380.019*
C1D0.05317 (18)0.03371 (13)0.63680 (10)0.0255 (3)
H1D10.03370.07520.66950.031*
H1D20.15550.00310.63630.031*
C2D0.13974 (19)0.16666 (12)0.50160 (11)0.0284 (3)
H2D10.23850.13050.49780.034*
H2D20.13820.21080.53010.034*
C3D0.1080 (2)0.22836 (12)0.41438 (12)0.0320 (4)
H3D10.00480.25730.41930.038*
H3D20.16940.28320.38930.038*
C4D0.13418 (17)0.17441 (12)0.35548 (10)0.0264 (3)
H4D10.12810.22290.29940.032*
H4D20.23370.13900.35450.032*
C5D0.05122 (17)0.04541 (12)0.32576 (9)0.0238 (3)
H5D10.15360.01490.32130.029*
H5D20.03400.08960.27020.029*
Zn1E0.61151 (2)0.20650 (2)0.29082 (2)0.02403 (5)
Cl1E0.53804 (5)0.05903 (4)0.38072 (3)0.04285 (12)
Cl2E0.72540 (4)0.26657 (3)0.35901 (2)0.02630 (8)
Cl3E0.79024 (5)0.18205 (4)0.18756 (3)0.03439 (9)
Cl4E0.43263 (5)0.32125 (4)0.23927 (3)0.04760 (14)
Zn2F0.01806 (2)0.67654 (2)0.21094 (2)0.02221 (5)
Cl1F0.02844 (7)0.79302 (4)0.26421 (3)0.04689 (13)
Cl2F0.00187 (5)0.52354 (3)0.31592 (2)0.02954 (8)
Cl3F0.16681 (4)0.70070 (3)0.13702 (2)0.02651 (8)
Cl4F0.23650 (5)0.67718 (4)0.12345 (3)0.03785 (10)
Cl1W0.72406 (5)0.20867 (3)0.60004 (2)0.02949 (9)
Cl2W0.20883 (5)0.19663 (3)0.10707 (3)0.03019 (9)
O1W0.09042 (18)0.60251 (13)0.43830 (10)0.0463 (4)
H1O10.103 (3)0.6621 (9)0.4071 (13)0.056*
H2O10.055 (3)0.5784 (17)0.4128 (14)0.056*
O2W0.55603 (19)0.20704 (13)0.07745 (10)0.0473 (4)
H1O20.6248 (18)0.211 (2)0.0971 (15)0.057*
H2O20.4729 (15)0.215 (2)0.1061 (14)0.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr1A0.00887 (12)0.00962 (12)0.00992 (12)0.00051 (9)0.00151 (9)0.00252 (10)
N1A0.0176 (5)0.0146 (5)0.0162 (5)0.0023 (4)0.0015 (4)0.0056 (4)
N2A0.0132 (5)0.0156 (5)0.0202 (5)0.0000 (4)0.0071 (4)0.0043 (5)
N3A0.0147 (5)0.0159 (5)0.0150 (5)0.0033 (4)0.0015 (4)0.0061 (4)
C1A0.0261 (7)0.0253 (7)0.0168 (6)0.0044 (6)0.0111 (5)0.0031 (6)
C2A0.0131 (6)0.0249 (7)0.0320 (8)0.0014 (5)0.0076 (5)0.0078 (6)
C3A0.0127 (6)0.0316 (8)0.0361 (8)0.0008 (6)0.0006 (6)0.0155 (7)
C4A0.0163 (6)0.0289 (8)0.0241 (7)0.0065 (5)0.0062 (5)0.0117 (6)
C5A0.0280 (7)0.0240 (7)0.0113 (6)0.0066 (6)0.0044 (5)0.0021 (5)
Cr2B0.01081 (12)0.01190 (13)0.01273 (13)0.00091 (10)0.00002 (10)0.00589 (11)
N1B0.0173 (5)0.0188 (6)0.0183 (5)0.0006 (4)0.0005 (4)0.0081 (5)
N2B0.0189 (6)0.0160 (6)0.0209 (6)0.0024 (4)0.0027 (4)0.0048 (5)
N3B0.0206 (6)0.0259 (6)0.0243 (6)0.0011 (5)0.0058 (5)0.0147 (5)
C1B0.0276 (8)0.0266 (8)0.0400 (9)0.0135 (6)0.0015 (7)0.0115 (7)
C2B0.0306 (8)0.0269 (8)0.0184 (7)0.0007 (6)0.0054 (6)0.0018 (6)
C3B0.0370 (9)0.0351 (9)0.0174 (7)0.0065 (7)0.0056 (6)0.0081 (7)
C4B0.0353 (9)0.0363 (9)0.0230 (7)0.0062 (7)0.0104 (6)0.0175 (7)
C5B0.0338 (9)0.0286 (8)0.0420 (10)0.0100 (7)0.0075 (7)0.0199 (8)
Cr3C0.01463 (14)0.01256 (14)0.01522 (14)0.00175 (11)0.00218 (11)0.00211 (11)
N1C0.0272 (6)0.0172 (6)0.0221 (6)0.0031 (5)0.0050 (5)0.0042 (5)
N2C0.0237 (6)0.0261 (7)0.0250 (6)0.0005 (5)0.0076 (5)0.0069 (6)
N3C0.0221 (6)0.0203 (6)0.0228 (6)0.0000 (5)0.0018 (5)0.0048 (5)
C1C0.0201 (7)0.0428 (11)0.0411 (10)0.0004 (7)0.0091 (7)0.0111 (9)
C2C0.0407 (10)0.0337 (9)0.0252 (8)0.0004 (8)0.0146 (7)0.0051 (7)
C3C0.0482 (11)0.0321 (9)0.0191 (7)0.0011 (8)0.0037 (7)0.0061 (7)
C4C0.0388 (9)0.0270 (8)0.0192 (7)0.0024 (7)0.0040 (6)0.0024 (6)
C5C0.0198 (7)0.0373 (10)0.0372 (9)0.0077 (7)0.0014 (6)0.0087 (8)
Cr4D0.00721 (11)0.00831 (12)0.01150 (12)0.00106 (9)0.00070 (9)0.00365 (10)
N1D0.0103 (5)0.0159 (5)0.0192 (5)0.0007 (4)0.0014 (4)0.0050 (4)
N2D0.0163 (5)0.0159 (5)0.0249 (6)0.0011 (4)0.0047 (4)0.0116 (5)
N3D0.0123 (5)0.0140 (5)0.0156 (5)0.0012 (4)0.0018 (4)0.0015 (4)
C1D0.0275 (7)0.0327 (8)0.0244 (7)0.0014 (6)0.0093 (6)0.0183 (7)
C2D0.0268 (8)0.0224 (7)0.0427 (9)0.0117 (6)0.0071 (7)0.0145 (7)
C3D0.0342 (9)0.0152 (7)0.0440 (10)0.0122 (6)0.0086 (7)0.0037 (7)
C4D0.0209 (7)0.0220 (7)0.0255 (7)0.0094 (6)0.0011 (6)0.0032 (6)
C5D0.0231 (7)0.0316 (8)0.0140 (6)0.0018 (6)0.0018 (5)0.0090 (6)
Zn1E0.01617 (8)0.02918 (10)0.01970 (9)0.00577 (7)0.00537 (6)0.00052 (7)
Cl1E0.02366 (19)0.0392 (2)0.0439 (3)0.01488 (18)0.00507 (17)0.0108 (2)
Cl2E0.02669 (18)0.02502 (18)0.02753 (18)0.00389 (14)0.01067 (14)0.01004 (15)
Cl3E0.0306 (2)0.0393 (2)0.02640 (19)0.00741 (17)0.00146 (15)0.00763 (18)
Cl4E0.02096 (19)0.0463 (3)0.0538 (3)0.00297 (18)0.01940 (19)0.0098 (2)
Zn2F0.02487 (9)0.02355 (9)0.02018 (9)0.00586 (7)0.00014 (6)0.01115 (7)
Cl1F0.0642 (3)0.0419 (3)0.0483 (3)0.0180 (2)0.0050 (2)0.0338 (2)
Cl2F0.0346 (2)0.02632 (19)0.02337 (17)0.00454 (15)0.00178 (15)0.00646 (15)
Cl3F0.02952 (18)0.02757 (18)0.02467 (17)0.00596 (14)0.00829 (14)0.01429 (15)
Cl4F0.0297 (2)0.0382 (2)0.0430 (2)0.01085 (17)0.01168 (17)0.0196 (2)
Cl1W0.0332 (2)0.02203 (17)0.02665 (18)0.01129 (15)0.00334 (15)0.01016 (15)
Cl2W0.0311 (2)0.01957 (17)0.0317 (2)0.00488 (14)0.00070 (15)0.00768 (15)
O1W0.0420 (8)0.0565 (10)0.0491 (9)0.0026 (7)0.0231 (7)0.0239 (8)
O2W0.0468 (9)0.0571 (10)0.0496 (9)0.0097 (8)0.0099 (7)0.0294 (8)
Geometric parameters (Å, º) top
Cr1A—N2Ai2.0553 (13)N1C—H1NC0.9000
Cr1A—N2A2.0553 (13)N1C—H2NC0.9000
Cr1A—N3Ai2.0582 (13)N1C—H3NC0.9000
Cr1A—N3A2.0582 (13)N2C—C1C1.490 (2)
Cr1A—N1A2.1062 (13)N2C—C2C1.496 (2)
Cr1A—N1Ai2.1062 (13)N2C—H1C0.9900
N1A—H1NA0.9000N3C—C5C1.489 (2)
N1A—H2NA0.9000N3C—C4C1.490 (2)
N1A—H3NA0.9000N3C—H2C0.9900
N2A—C2A1.4866 (19)C1C—C5Ciii1.517 (3)
N2A—C1A1.4928 (19)C1C—H1C10.9800
N2A—H1A0.9900C1C—H1C20.9800
N3A—C4A1.4869 (19)C2C—C3C1.522 (3)
N3A—C5A1.491 (2)C2C—H2C10.9800
N3A—H2A0.9900C2C—H2C20.9800
C1A—C5Ai1.513 (2)C3C—C4C1.521 (3)
C1A—H1A10.9800C3C—H3C10.9800
C1A—H1A20.9800C3C—H3C20.9800
C2A—C3A1.525 (2)C4C—H4C10.9800
C2A—H2A10.9800C4C—H4C20.9800
C2A—H2A20.9800C5C—C1Ciii1.517 (3)
C3A—C4A1.523 (2)C5C—H5C10.9800
C3A—H3A10.9800C5C—H5C20.9800
C3A—H3A20.9800Cr4D—N2Div2.0544 (12)
C4A—H4A10.9800Cr4D—N2D2.0544 (12)
C4A—H4A20.9800Cr4D—N3D2.0593 (14)
C5A—C1Ai1.513 (2)Cr4D—N3Div2.0593 (14)
C5A—H5A10.9800Cr4D—N1Div2.1029 (12)
C5A—H5A20.9800Cr4D—N1D2.1029 (12)
Cr2B—N2Bii2.0501 (15)N1D—H1ND0.9000
Cr2B—N2B2.0502 (15)N1D—H2ND0.9000
Cr2B—N3B2.0611 (13)N1D—H3ND0.9000
Cr2B—N3Bii2.0611 (13)N2D—C2D1.487 (2)
Cr2B—N1B2.0976 (13)N2D—C1D1.492 (2)
Cr2B—N1Bii2.0977 (13)N2D—H1D0.9900
N1B—H1NB0.9000N3D—C4D1.491 (2)
N1B—H2NB0.9000N3D—C5D1.4932 (19)
N1B—H3NB0.9000N3D—H2D0.9900
N2B—C2B1.485 (2)C1D—C5Div1.513 (2)
N2B—C1B1.494 (2)C1D—H1D10.9800
N2B—H1B0.9900C1D—H1D20.9800
N3B—C4B1.486 (2)C2D—C3D1.530 (3)
N3B—C5B1.489 (2)C2D—H2D10.9800
N3B—H2B0.9900C2D—H2D20.9800
C1B—C5Bii1.525 (3)C3D—C4D1.521 (3)
C1B—H1B10.9800C3D—H3D10.9800
C1B—H1B20.9800C3D—H3D20.9800
C2B—C3B1.519 (3)C4D—H4D10.9800
C2B—H2B10.9800C4D—H4D20.9800
C2B—H2B20.9800C5D—C1Div1.513 (2)
C3B—C4B1.524 (3)C5D—H5D10.9800
C3B—H3B10.9800C5D—H5D20.9800
C3B—H3B20.9800Zn1E—Cl4E2.2238 (10)
C4B—H4B10.9800Zn1E—Cl1E2.2523 (11)
C4B—H4B20.9800Zn1E—Cl3E2.2817 (9)
C5B—C1Bii1.525 (3)Zn1E—Cl2E2.3118 (7)
C5B—H5B10.9800Zn2F—Cl1F2.2275 (7)
C5B—H5B20.9800Zn2F—Cl4F2.2640 (9)
Cr3C—N3Ciii2.0579 (15)Zn2F—Cl2F2.2960 (11)
Cr3C—N3C2.0579 (15)Zn2F—Cl3F2.3232 (8)
Cr3C—N2Ciii2.0615 (15)O1W—H1O10.848 (9)
Cr3C—N2C2.0615 (15)O1W—H2O10.836 (9)
Cr3C—N1C2.1039 (14)O2W—H1O20.832 (9)
Cr3C—N1Ciii2.1039 (14)O2W—H2O20.843 (9)
N2Ai—Cr1A—N2A180.0N3C—Cr3C—N1C90.06 (6)
N2Ai—Cr1A—N3Ai94.49 (5)N2Ciii—Cr3C—N1C88.08 (6)
N2A—Cr1A—N3Ai85.51 (5)N2C—Cr3C—N1C91.92 (6)
N2Ai—Cr1A—N3A85.51 (5)N3Ciii—Cr3C—N1Ciii90.05 (6)
N2A—Cr1A—N3A94.49 (5)N3C—Cr3C—N1Ciii89.94 (6)
N3Ai—Cr1A—N3A180.00 (4)N2Ciii—Cr3C—N1Ciii91.92 (6)
N2Ai—Cr1A—N1A90.76 (5)N2C—Cr3C—N1Ciii88.08 (6)
N2A—Cr1A—N1A89.24 (5)N1C—Cr3C—N1Ciii180.00 (8)
N3Ai—Cr1A—N1A91.07 (6)Cr3C—N1C—H1NC109.5
N3A—Cr1A—N1A88.93 (6)Cr3C—N1C—H2NC109.5
N2Ai—Cr1A—N1Ai89.24 (5)H1NC—N1C—H2NC109.5
N2A—Cr1A—N1Ai90.76 (5)Cr3C—N1C—H3NC109.5
N3Ai—Cr1A—N1Ai88.93 (6)H1NC—N1C—H3NC109.5
N3A—Cr1A—N1Ai91.07 (6)H2NC—N1C—H3NC109.5
N1A—Cr1A—N1Ai180.00 (6)C1C—N2C—C2C113.16 (14)
Cr1A—N1A—H1NA109.5C1C—N2C—Cr3C106.52 (11)
Cr1A—N1A—H2NA109.5C2C—N2C—Cr3C117.72 (12)
H1NA—N1A—H2NA109.5C1C—N2C—H1C106.2
Cr1A—N1A—H3NA109.5C2C—N2C—H1C106.2
H1NA—N1A—H3NA109.5Cr3C—N2C—H1C106.2
H2NA—N1A—H3NA109.5C5C—N3C—C4C113.35 (14)
C2A—N2A—C1A114.29 (12)C5C—N3C—Cr3C107.00 (10)
C2A—N2A—Cr1A117.18 (9)C4C—N3C—Cr3C116.36 (11)
C1A—N2A—Cr1A106.44 (9)C5C—N3C—H2C106.5
C2A—N2A—H1A106.0C4C—N3C—H2C106.5
C1A—N2A—H1A106.0Cr3C—N3C—H2C106.5
Cr1A—N2A—H1A106.0N2C—C1C—C5Ciii109.33 (14)
C4A—N3A—C5A113.52 (12)N2C—C1C—H1C1109.8
C4A—N3A—Cr1A117.51 (9)C5Ciii—C1C—H1C1109.8
C5A—N3A—Cr1A106.14 (9)N2C—C1C—H1C2109.8
C4A—N3A—H2A106.3C5Ciii—C1C—H1C2109.8
C5A—N3A—H2A106.3H1C1—C1C—H1C2108.3
Cr1A—N3A—H2A106.3N2C—C2C—C3C112.24 (15)
N2A—C1A—C5Ai108.42 (12)N2C—C2C—H2C1109.2
N2A—C1A—H1A1110.0C3C—C2C—H2C1109.2
C5Ai—C1A—H1A1110.0N2C—C2C—H2C2109.2
N2A—C1A—H1A2110.0C3C—C2C—H2C2109.2
C5Ai—C1A—H1A2110.0H2C1—C2C—H2C2107.9
H1A1—C1A—H1A2108.4C4C—C3C—C2C116.90 (15)
N2A—C2A—C3A111.60 (13)C4C—C3C—H3C1108.1
N2A—C2A—H2A1109.3C2C—C3C—H3C1108.1
C3A—C2A—H2A1109.3C4C—C3C—H3C2108.1
N2A—C2A—H2A2109.3C2C—C3C—H3C2108.1
C3A—C2A—H2A2109.3H3C1—C3C—H3C2107.3
H2A1—C2A—H2A2108.0N3C—C4C—C3C111.92 (15)
C4A—C3A—C2A115.86 (13)N3C—C4C—H4C1109.2
C4A—C3A—H3A1108.3C3C—C4C—H4C1109.2
C2A—C3A—H3A1108.3N3C—C4C—H4C2109.2
C4A—C3A—H3A2108.3C3C—C4C—H4C2109.2
C2A—C3A—H3A2108.3H4C1—C4C—H4C2107.9
H3A1—C3A—H3A2107.4N3C—C5C—C1Ciii109.26 (15)
N3A—C4A—C3A112.23 (13)N3C—C5C—H5C1109.8
N3A—C4A—H4A1109.2C1Ciii—C5C—H5C1109.8
C3A—C4A—H4A1109.2N3C—C5C—H5C2109.8
N3A—C4A—H4A2109.2C1Ciii—C5C—H5C2109.8
C3A—C4A—H4A2109.2H5C1—C5C—H5C2108.3
H4A1—C4A—H4A2107.9N2Div—Cr4D—N2D180.0
N3A—C5A—C1Ai108.15 (12)N2Div—Cr4D—N3D85.25 (5)
N3A—C5A—H5A1110.1N2D—Cr4D—N3D94.75 (5)
C1Ai—C5A—H5A1110.1N2Div—Cr4D—N3Div94.76 (5)
N3A—C5A—H5A2110.1N2D—Cr4D—N3Div85.24 (5)
C1Ai—C5A—H5A2110.1N3D—Cr4D—N3Div180.0
H5A1—C5A—H5A2108.4N2Div—Cr4D—N1Div89.83 (5)
N2Bii—Cr2B—N2B180.0N2D—Cr4D—N1Div90.17 (5)
N2Bii—Cr2B—N3B85.91 (6)N3D—Cr4D—N1Div88.87 (6)
N2B—Cr2B—N3B94.09 (6)N3Div—Cr4D—N1Div91.13 (6)
N2Bii—Cr2B—N3Bii94.09 (6)N2Div—Cr4D—N1D90.17 (5)
N2B—Cr2B—N3Bii85.91 (6)N2D—Cr4D—N1D89.83 (5)
N3B—Cr2B—N3Bii180.00 (7)N3D—Cr4D—N1D91.13 (6)
N2Bii—Cr2B—N1B89.22 (6)N3Div—Cr4D—N1D88.87 (6)
N2B—Cr2B—N1B90.78 (6)N1Div—Cr4D—N1D180.0
N3B—Cr2B—N1B91.36 (5)Cr4D—N1D—H1ND109.5
N3Bii—Cr2B—N1B88.64 (5)Cr4D—N1D—H2ND109.5
N2Bii—Cr2B—N1Bii90.78 (6)H1ND—N1D—H2ND109.5
N2B—Cr2B—N1Bii89.22 (6)Cr4D—N1D—H3ND109.5
N3B—Cr2B—N1Bii88.64 (5)H1ND—N1D—H3ND109.5
N3Bii—Cr2B—N1Bii91.36 (5)H2ND—N1D—H3ND109.5
N1B—Cr2B—N1Bii180.00 (6)C2D—N2D—C1D114.07 (12)
Cr2B—N1B—H1NB109.5C2D—N2D—Cr4D117.13 (10)
Cr2B—N1B—H2NB109.5C1D—N2D—Cr4D107.05 (9)
H1NB—N1B—H2NB109.5C2D—N2D—H1D105.9
Cr2B—N1B—H3NB109.5C1D—N2D—H1D105.9
H1NB—N1B—H3NB109.5Cr4D—N2D—H1D105.9
H2NB—N1B—H3NB109.5C4D—N3D—C5D113.03 (12)
C2B—N2B—C1B112.86 (13)C4D—N3D—Cr4D117.41 (10)
C2B—N2B—Cr2B116.96 (11)C5D—N3D—Cr4D106.16 (9)
C1B—N2B—Cr2B106.88 (10)C4D—N3D—H2D106.5
C2B—N2B—H1B106.5C5D—N3D—H2D106.5
C1B—N2B—H1B106.5Cr4D—N3D—H2D106.5
Cr2B—N2B—H1B106.5N2D—C1D—C5Div108.07 (12)
C4B—N3B—C5B112.83 (13)N2D—C1D—H1D1110.1
C4B—N3B—Cr2B117.59 (11)C5Div—C1D—H1D1110.1
C5B—N3B—Cr2B106.77 (10)N2D—C1D—H1D2110.1
C4B—N3B—H2B106.3C5Div—C1D—H1D2110.1
C5B—N3B—H2B106.3H1D1—C1D—H1D2108.4
Cr2B—N3B—H2B106.3N2D—C2D—C3D111.55 (13)
N2B—C1B—C5Bii109.12 (14)N2D—C2D—H2D1109.3
N2B—C1B—H1B1109.9C3D—C2D—H2D1109.3
C5Bii—C1B—H1B1109.9N2D—C2D—H2D2109.3
N2B—C1B—H1B2109.9C3D—C2D—H2D2109.3
C5Bii—C1B—H1B2109.9H2D1—C2D—H2D2108.0
H1B1—C1B—H1B2108.3C4D—C3D—C2D116.59 (14)
N2B—C2B—C3B112.58 (14)C4D—C3D—H3D1108.1
N2B—C2B—H2B1109.1C2D—C3D—H3D1108.1
C3B—C2B—H2B1109.1C4D—C3D—H3D2108.1
N2B—C2B—H2B2109.1C2D—C3D—H3D2108.1
C3B—C2B—H2B2109.1H3D1—C3D—H3D2107.3
H2B1—C2B—H2B2107.8N3D—C4D—C3D111.82 (13)
C2B—C3B—C4B116.95 (15)N3D—C4D—H4D1109.3
C2B—C3B—H3B1108.1C3D—C4D—H4D1109.3
C4B—C3B—H3B1108.1N3D—C4D—H4D2109.3
C2B—C3B—H3B2108.1C3D—C4D—H4D2109.3
C4B—C3B—H3B2108.1H4D1—C4D—H4D2107.9
H3B1—C3B—H3B2107.3N3D—C5D—C1Div108.31 (12)
N3B—C4B—C3B112.03 (13)N3D—C5D—H5D1110.0
N3B—C4B—H4B1109.2C1Div—C5D—H5D1110.0
C3B—C4B—H4B1109.2N3D—C5D—H5D2110.0
N3B—C4B—H4B2109.2C1Div—C5D—H5D2110.0
C3B—C4B—H4B2109.2H5D1—C5D—H5D2108.4
H4B1—C4B—H4B2107.9Cl4E—Zn1E—Cl1E115.38 (3)
N3B—C5B—C1Bii109.08 (13)Cl4E—Zn1E—Cl3E110.99 (3)
N3B—C5B—H5B1109.9Cl1E—Zn1E—Cl3E108.75 (4)
C1Bii—C5B—H5B1109.9Cl4E—Zn1E—Cl2E107.79 (3)
N3B—C5B—H5B2109.9Cl1E—Zn1E—Cl2E107.77 (3)
C1Bii—C5B—H5B2109.9Cl3E—Zn1E—Cl2E105.67 (3)
H5B1—C5B—H5B2108.3Cl1F—Zn2F—Cl4F115.32 (3)
N3Ciii—Cr3C—N3C180.00 (6)Cl1F—Zn2F—Cl2F109.63 (3)
N3Ciii—Cr3C—N2Ciii94.32 (6)Cl4F—Zn2F—Cl2F109.79 (4)
N3C—Cr3C—N2Ciii85.68 (6)Cl1F—Zn2F—Cl3F107.62 (3)
N3Ciii—Cr3C—N2C85.68 (6)Cl4F—Zn2F—Cl3F107.31 (2)
N3C—Cr3C—N2C94.32 (6)Cl2F—Zn2F—Cl3F106.77 (4)
N2Ciii—Cr3C—N2C180.0H1O1—O1W—H2O1107.9 (19)
N3Ciii—Cr3C—N1C89.94 (6)H1O2—O2W—H2O2112.1 (19)
C2A—N2A—C1A—C5Ai171.57 (12)C2C—N2C—C1C—C5Ciii170.49 (16)
Cr1A—N2A—C1A—C5Ai40.59 (14)Cr3C—N2C—C1C—C5Ciii39.61 (18)
C1A—N2A—C2A—C3A179.11 (12)C1C—N2C—C2C—C3C177.36 (16)
Cr1A—N2A—C2A—C3A55.38 (15)Cr3C—N2C—C2C—C3C52.33 (19)
N2A—C2A—C3A—C4A70.45 (18)N2C—C2C—C3C—C4C67.1 (2)
C5A—N3A—C4A—C3A178.01 (12)C5C—N3C—C4C—C3C178.55 (14)
Cr1A—N3A—C4A—C3A53.37 (15)Cr3C—N3C—C4C—C3C56.74 (17)
C2A—C3A—C4A—N3A69.39 (18)C2C—C3C—C4C—N3C69.9 (2)
C4A—N3A—C5A—C1Ai172.82 (12)C4C—N3C—C5C—C1Ciii167.98 (14)
Cr1A—N3A—C5A—C1Ai42.24 (13)Cr3C—N3C—C5C—C1Ciii38.36 (16)
C2B—N2B—C1B—C5Bii169.01 (14)C2D—N2D—C1D—C5Div171.39 (12)
Cr2B—N2B—C1B—C5Bii39.06 (15)Cr4D—N2D—C1D—C5Div40.14 (13)
C1B—N2B—C2B—C3B179.75 (14)C1D—N2D—C2D—C3D179.09 (13)
Cr2B—N2B—C2B—C3B55.15 (16)Cr4D—N2D—C2D—C3D54.77 (16)
N2B—C2B—C3B—C4B68.20 (19)N2D—C2D—C3D—C4D70.12 (19)
C5B—N3B—C4B—C3B178.83 (14)C5D—N3D—C4D—C3D177.52 (13)
Cr2B—N3B—C4B—C3B53.86 (17)Cr4D—N3D—C4D—C3D53.38 (16)
C2B—C3B—C4B—N3B67.16 (19)C2D—C3D—C4D—N3D69.25 (19)
C4B—N3B—C5B—C1Bii169.58 (14)C4D—N3D—C5D—C1Div172.59 (12)
Cr2B—N3B—C5B—C1Bii38.92 (16)Cr4D—N3D—C5D—C1Div42.50 (13)
Symmetry codes: (i) x, y+1, z+2; (ii) x+1, y+1, z+1; (iii) x+1, y+2, z; (iv) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1NA···Cl3Fv0.902.803.3602 (16)121
N1A—H1NA···Cl2Wvi0.902.603.3363 (18)140
N1A—H3NA···Cl3Evii0.902.583.384 (2)149
N2A—H1A···Cl2Wvi0.992.203.1754 (15)170
N3A—H2A···Cl3Fv0.992.303.2752 (14)170
C1A—H1A2···Cl4Evi0.982.593.4739 (19)150
N1B—H2NB···Cl1Wii0.902.453.2683 (19)152
N1B—H2NB···O1W0.902.463.034 (2)122
N1B—H3NB···Cl2Eii0.902.573.3556 (15)147
N2B—H1B···Cl1W0.992.203.1704 (17)165
N3B—H2B···O1Wii0.991.982.968 (2)177
N1C—H2NC···Cl3Fviii0.902.683.4211 (19)140
N1C—H3NC···Cl2Wix0.902.383.2673 (17)167
N1C—H3NC···O2Wix0.902.542.975 (2)111
N2C—H1C···O2Wx0.991.962.932 (2)167
N3C—H2C···Cl2Wx0.992.233.2082 (16)171
C5C—H5C2···Cl4F0.982.793.761 (2)174
N1D—H2ND···Cl1Wxi0.902.453.2796 (15)154
N1D—H3ND···Cl1Exi0.902.713.5516 (16)156
N2D—H1D···Cl1Wxii0.992.193.1589 (16)166
N3D—H2D···Cl2Exii0.992.363.3276 (17)166
C1D—H1D1···Cl1Fv0.982.663.6278 (17)168
C1D—H1D2···Cl1Exi0.982.833.803 (2)172
O1W—H1O1···Cl1Wii0.85 (1)2.70 (2)3.341 (2)134 (2)
O1W—H2O1···Cl2F0.84 (1)2.39 (1)3.2066 (17)167 (2)
O2W—H1O2···Cl3E0.83 (1)2.37 (1)3.1763 (19)162 (2)
O2W—H2O2···Cl2W0.84 (1)2.55 (2)3.2009 (19)135 (2)
Symmetry codes: (ii) x+1, y+1, z+1; (v) x, y+1, z+1; (vi) x, y, z+1; (vii) x1, y, z+1; (viii) x+1, y, z; (ix) x+1, y+1, z; (x) x, y+1, z; (xi) x+1, y, z+1; (xii) x1, y, z.
 

Acknowledgements

This work was supported by a grant from 2016 Research Funds of Andong National University. The X-ray crystallography experiment at the PLS-II BL2D-SMC beamline was supported in part by MSIP and POSTECH.

References

First citationChoi, J.-H. (2009). Inorg. Chim. Acta, 362, 4231–4236.  Web of Science CSD CrossRef CAS Google Scholar
First citationChoi, J.-H., Joshi, T. & Spiccia, L. (2011). Z. Anorg. Allg. Chem. 637, 1194–1198.  Web of Science CSD CrossRef CAS Google Scholar
First citationChoi, J.-H. & Lee, S. H. (2009). J. Mol. Struct. 932, 84–89.  Web of Science CSD CrossRef CAS Google Scholar
First citationChoi, J.-H. & Moon, D. (2014). J. Mol. Struct. 1059, 325–331.  Web of Science CSD CrossRef CAS Google Scholar
First citationChoi, J.-H., Oh, I.-G., Suzuki, T. & Kaizaki, S. (2004). J. Mol. Struct. 694, 39–44.  Web of Science CSD CrossRef CAS Google Scholar
First citationDe Clercq, E. (2010). J. Med. Chem. 53, 1438–1450.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDerwahl, A., Wasgestian, F., House, D. A. & Edwards, R. A. (1999). Inorg. Chim. Acta, 285, 313–317.  Web of Science CSD CrossRef CAS Google Scholar
First citationFabbrizzi, L. & Poggi, A. (2013). Chem. Soc. Rev. 42, 1681–1699.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFlores-Velez, L. M., Sosa-Rivadeneyra, J., Sosa-Torres, M. E., Rosales-Hoz, M. J. & Toscano, R. A. (1991). J. Chem. Soc. Dalton Trans. pp. 3243–3247.  Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationKane-Maguire, A. A. P., Wallace, K. C. & Miller, D. B. (1985). Inorg. Chem. 24, 597–605.  CAS Google Scholar
First citationKukina, G. A., Porai-Koshits, M. A., Gerda, V. I., Shevchenko, Y. N. & Shchurkina, V. N. (1991). Sov. Phys. Crystallogr. 36, 739–740.  Google Scholar
First citationMoon, D. & Choi, J.-H. (2015). Spectrochim. Acta Part A, 138, 774–779.  Web of Science CSD CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPoon, C. K. & Pun, K. C. (1980). Inorg. Chem. 19, 568–569.  CrossRef CAS Web of Science Google Scholar
First citationPutz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationRonconi, L. & Sadler, P. J. (2007). Coord. Chem. Rev. 251, 1633–1648.  Web of Science CrossRef CAS Google Scholar
First citationRoss, A., Choi, J.-H., Hunter, T. M., Pannecouque, C., Moggach, S. A., Parsons, S., De Clercq, E. & Sadler, P. J. (2012). Dalton Trans. 41, 6408–6418.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369–373.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSubhan, M. A., Choi, J. H. & Ng, S. W. (2011). Z. Anorg. Allg. Chem. 637, 2193–2197.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds