research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 72| Part 2| February 2016| Pages 140-143

Supra­molecular hydrogen-bonding patterns in the N(9)—H protonated and N(7)—H tautomeric form of an N6-benzoyl­adenine salt: N6-benzoyl­adeninium nitrate

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, Bharathidasan University, Tiruchirappalli 620024, Tamilnadu, India, and bFaculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna pot 113, PO Box 537, SI-1000 Ljubljana, Slovenia
*Correspondence e-mail: tommtrichy@yahoo.co.in

Edited by J. Simpson, University of Otago, New Zealand (Received 9 December 2015; accepted 29 December 2015; online 9 January 2016)

In the title molecular salt, C12H10N5O+·NO3, the adenine unit has an N9-protonated N(7)—H tautomeric form with non-protonated N1 and N3 atoms. The dihedral angle between the adenine ring system and the phenyl ring is 51.10 (10)°. The typical intra­molecular N7—H⋯O hydrogen bond with an S(7) graph-set motif is also present. The benzoyl­adeninium cations also form base pairs through N—H⋯O and C—H⋯N hydrogen bonds involving the Watson–Crick face of the adenine ring and the C and O atoms of the benzoyl ring of an adjacent cation, forming a supra­molecular ribbon with R22(9) rings. Benzoyl­adeninum cations are also bridged by one of the oxygen atoms of the nitrate anion, which acts as a double acceptor, forming a pair of N—H⋯O hydrogen bonds to generate a second ribbon motif. These ribbons together with ππ stacking inter­actions between the phenyl ring and the five- and six-membered adenine rings of adjacent mol­ecules generate a three-dimensional supra­molecular architecture.

1. Chemical context

Non-covalent inter­actions, such as hydrogen bonding, halogen bonding and ππ inter­actions play major roles in mol­ecular recognition and pharmaceutical drug design processes (Desiraju, 1989[Desiraju, G. R. (1989). Crystal engineering: the design of organic solids. Amsterdam: Elsevier.]; Perumalla & Sun, 2014[Perumalla, S. R. & Sun, C. C. (2014). J. Pharm. Sci. 103, 1126-1132.]). N6-substituted adenine compounds continue to attract inter­est due to their biological activity as they can act as plant hormones and have anti-allergenic, anti­bacterial, anti­viral and anti­fungal properties (Hall, 1973[Hall, R. H. (1973). Annu. Rev. Plant Physiol. 24, 415-444.]; McHugh & Erxleben, 2011[McHugh, C. & Erxleben, A. (2011). Cryst. Growth Des. 11, 5096-5104.]). N6-substituted adenine compounds also exhibit an extensive variety of hydrogen-bonding patterns and supra­molecular architectures (Raghunathan & Pattabhi, 1981[Raghunathan, S. & Pattabhi, V. (1981). Acta Cryst. B37, 1670-1673.]; Nirmalram et al., 2011[Nirmalram, J. S., Tamilselvi, D. & Muthiah, P. T. (2011). J. Chem. Crystallogr. 41, 864-867.]; Tamilselvi & Mu­thiah, 2011[Tamilselvi, D. & Muthiah, P. T. (2011). Acta Cryst. C67, o192-o194.]; McHugh & Erxleben, 2011[McHugh, C. & Erxleben, A. (2011). Cryst. Growth Des. 11, 5096-5104.]; Jennifer et al., 2014[Jennifer, S. J., Thomas Muthiah, P. & Tamilselvi, D. (2014). Chem. Cent. J. 8, 58.]). The present investigation deals with the nitrate salt of N9-protonated benzoyl­adenine (I)[link]. Nitrate ions are known to play pivotal roles in hydrogen bonded supra­molecular architectures, as they have three oxygen atoms to act as good hydrogen bond acceptors (Murugesan et al., 1997[Murugesan, S. & Muthiah, P. T. (1997). Acta Cryst. C53, 763-764.]; Cherouana et al., 2003[Cherouana, A., Bouchouit, K., Bendjeddou, L. & Benali-Cherif, N. (2003). Acta Cryst. E59, o983-o985.]; Balasubramani et al., 2005[Balasubramani, K., Muthiah, P. T., Rychlewska, U. & Plutecka, A. (2005). Acta Cryst. C61, o586-o588.]; Nirmalram et al., 2011[Nirmalram, J. S., Tamilselvi, D. & Muthiah, P. T. (2011). J. Chem. Crystallogr. 41, 864-867.]).

2. Structural commentary

The asymmetric unit of compound (I)[link] consists of one N6-benzoyl­adeninium cation and one nitrate anion, Fig. 1[link]. In this salt, the N6-benzoyl­adenine moiety is found in the N(7)—H tautomeric form with N9 protonated and N1, N3 non-proton­ated. The inter­nal angles at N7 [C8—N7—C5 = 108.9 (2)°] and N9 [C8—N9—C4 = 107.9 (2)°] are similar as both carry hydrogen atoms (Raghunathan & Pattabhi, 1981[Raghunathan, S. & Pattabhi, V. (1981). Acta Cryst. B37, 1670-1673.]; Raghunathan et al., 1983[Raghunathan, S., Sinha, B. K., Pattabhi, V. & Gabe, E. J. (1983). Acta Cryst. C39, 1545-1547.]; Nirmalram et al., 2011[Nirmalram, J. S., Tamilselvi, D. & Muthiah, P. T. (2011). J. Chem. Crystallogr. 41, 864-867.]; Tamilselvi & Mu­thiah, 2011[Tamilselvi, D. & Muthiah, P. T. (2011). Acta Cryst. C67, o192-o194.]; García-Terán et al., 2004[García-Terán, J. P., Castillo, O., Luque, A., García-Couceiro, U., Román, P. & Lloret, F. (2004). Inorg. Chem. 43, 5761-5770.]; Bo et al., 2006[Bo, Y., Cheng, K., Bi, S. & Zhang, S.-S. (2006). Acta Cryst. E62, o4174-o4175.]). The inter­nal angles at N1 [C6—N1—C2 = 118.9 (3)°] and N3 [C4—N3—C2 = 111.0 (3)°] agree with those reported for the neutral six-membered rings in other ademine structures (Raghunathan & Pattabhi, 1981[Raghunathan, S. & Pattabhi, V. (1981). Acta Cryst. B37, 1670-1673.]; Karthikeyan et al., 2015[Karthikeyan, A., Swinton Darious, R., Thomas Muthiah, P. & Perdih, F. (2015). Acta Cryst. C71, 985-990.]). An intra­molecular N7—H7⋯O1 hydrogen bond (Table 1[link]) is observed on the Hoogsteen face of the purine ring with the benzoyl oxygen atom, generating an S(7) ring motif. A similar bond was found in the crystal structure of the neutral N6-benzoyl adenine (Raghunathan & Pattabhi, 1981[Raghunathan, S. & Pattabhi, V. (1981). Acta Cryst. B37, 1670-1673.]). The dihedral angle between the adenine ring system and the phenyl ring is 51.10 (10)°, and the C6—N6—C10—C11 torsion angle is −168.8 (2). The bond lengths and bond angles for the nitrate anion are in good agreement with literature values (Nirmalram et al., 2011[Nirmalram, J. S., Tamilselvi, D. & Muthiah, P. T. (2011). J. Chem. Crystallogr. 41, 864-867.]). Tables comparing dihedral and torsion angles in the title compound with those in related structures appear in the supporting information.

[Scheme 1]

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H6⋯O1i 0.86 2.33 3.135 (3) 156
N7—H7⋯O1 0.86 2.12 2.668 (3) 121
N7—H7⋯O3 0.86 1.99 2.709 (3) 140
N9—H9⋯O3ii 0.86 1.80 2.646 (3) 169
C16—H16⋯N1iii 0.93 2.55 3.426 (4) 157
Symmetry codes: (i) [-x+1, -y, z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (iii) [-x+1, -y, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The asymmetric unit of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines represent hydrogen bonds.

3. Supra­molecular features

In the crystal structure of (I)[link], the benzoyl­adeninium cations form base pairs via N—H⋯O and C—H⋯N hydrogen bonds (Table 1[link]) involving the N1 and N6 atoms on the Watson–Crick face of the adenine ring system and the C16 and O1 atoms of the benzoyl ring of an adjacent benzoyl­adeninium cation. These result in the formation of a supra­molecular ribbon based on R22(9) rings, Fig. 2[link]a. The benzoyl­adeninum cations are also bridged by the O3 oxygen atoms of the nitrate anion, which acts as a bifurcated acceptor, forming N9—H9⋯O3 and N7—H7⋯O3 hydrogen bonds to generate a second ribbon motif, Fig. 2[link]b. ππ stacking inter­actions occur between the one face of the C11–C16 phenyl ring and the C4/C5/N7/C8/N9 imidazole ring with a relatively short centroid-to-centroid separation Cg1⋯Cg3i = 3.4919 (17) Å [symmetry code: (i) 1 − x, −y, −[{1\over 2}] + z]. The other face of the phenyl ring makes offset ππ contacts with both the imidazole [Cg1⋯Cg3ii = 3.7213 (17) Å] and the pyrimidine rings [Cg2⋯Cg3ii = 3.5362 (16) Å; symmetry code (ii) [{1\over 2}] + x, [{1\over 2}] − y, z], Fig. 3[link]. Cg1, Cg2 and Cg3 are the centroids of the imidazole, pyrimidine and phenyl rings, respectively. Similar contacts are found in related structures (Raghunathan & Pattabhi, 1981[Raghunathan, S. & Pattabhi, V. (1981). Acta Cryst. B37, 1670-1673.]; Karthikeyan et al., 2015[Karthikeyan, A., Swinton Darious, R., Thomas Muthiah, P. & Perdih, F. (2015). Acta Cryst. C71, 985-990.]). These various contacts combine to generate a three-dimensional supra­molecular architecture Fig. 4[link].

[Figure 2]
Figure 2
A view of two supra­molecular ribbons of (I)[link]. (a) A view of adeninium–benzoyl inter­actions via N—H⋯O and C—H⋯N hydrogen bonding, forming a supra­molecular ribbon. (b) A view of adeninum cations bridged by one of the oxygen atoms of the nitrate anion via N9—H9⋯O3 and N7—H7⋯O3 hydrogen bonds (purple dashed lines), generating a second type of ribbon motif. The phenyl groups and H atoms not involved in hydrogen bonding have been omitted for clarity. The symmetry codes are as given in Table 1[link].
[Figure 3]
Figure 3
A view of ππ stacking inter­actions in (I)[link]. Cg1 is the centroid of the imidazole ring, Cg2 that of the pyrimidine ring, Cg3 that of the phenyl ring. Dashed lines indicate stacking inter­actions. Symmetry codes: (i) 1 − x, −y, −[{1\over 2}] + z; (ii) [{1\over 2}] + x, [{1\over 2}] − y, z.
[Figure 4]
Figure 4
Overall packing in (I)[link] viewed along the a-axis direction. Hydrogen bonds are drawn as light-blue dashed lines.

4. Database Survey

The crystal structures of a number of N6-substituted adenines, adeninium salts and their metal complexes have been investigated in a variety of crystalline environments. Neutral mol­ecules include N6-benzyl­adenine (Raghunathan et al., 1983[Raghunathan, S., Sinha, B. K., Pattabhi, V. & Gabe, E. J. (1983). Acta Cryst. C39, 1545-1547.]), N6-furfuryladenine (Soriano-Garcia & Parthasarathy, 1977[Soriano-Garcia, M. & Parthasarathy, R. (1977). Acta Cryst. B33, 2674-2677.]) and N6-benzoyl­adenine (Raghunathan & Pattabhi, 1981[Raghunathan, S. & Pattabhi, V. (1981). Acta Cryst. B37, 1670-1673.]). Recently our group reported the formation of two co-crystals, N6-benzoyl­adenine–3-hy­droxy­pyridinium-2-carboxyl­ate (1:1) and N6-benzoyl­adenine–DL-tartaric acid (1:1). In these, the benzoyl­adenine mol­ecule has a conformation similar to that reported for the neutral benzoyl­adenine crystal structure (Karthikeyan et al., 2015[Karthikeyan, A., Swinton Darious, R., Thomas Muthiah, P. & Perdih, F. (2015). Acta Cryst. C71, 985-990.]). N6-benzyl­adeninum salts with a wide variety of counter-anions have also been reported (Umadevi et al., 2001[Umadevi, B., Stanley, N., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2001). Acta Cryst. E57, o881-o883.]; Xia et al., 2010[Xia, M., Ma, K. & Zhu, Y. (2010). J. Chem. Crystallogr. 40, 634-638.]; Nirmalram et al., 2011[Nirmalram, J. S., Tamilselvi, D. & Muthiah, P. T. (2011). J. Chem. Crystallogr. 41, 864-867.]; Tamilselvi & Mu­thiah, 2011[Tamilselvi, D. & Muthiah, P. T. (2011). Acta Cryst. C67, o192-o194.]; McHugh & Erxleben, 2011[McHugh, C. & Erxleben, A. (2011). Cryst. Growth Des. 11, 5096-5104.]; Stanley et al., 2003[Stanley, N., Muthiah, P. T. & Geib, S. J. (2003). Acta Cryst. C59, o27-o29.]). A variety of metal complexes of neutral N6-benz­yl/furfuryladenines have been reported (Jennifer et al., 2014[Jennifer, S. J., Thomas Muthiah, P. & Tamilselvi, D. (2014). Chem. Cent. J. 8, 58.]), while structures of copper complexes of N6-furfuryladeninium (Umadevi et al., 2002[Umadevi, B., Stanley, N., Muthiah, P. T. & Varghese, B. (2002). Indian J. Chem. A41, 737-740.]) and N6-benzyl­adeninium (Balasubramanian et al., 1996[Balasubramanian, T., Muthiah, P. T., Ananthasaravanan, & Mazumdar, S. K. (1996). J. Inorg. Biochem. 63, 175-181.]) are also known.

5. Synthesis and crystallization

To a hot methanol solution of N6-benzolyadenine (60 mg), a few drops of nitric acid were added. The resulting solution was warmed over a water bath for half an hour and then kept at room temperature for crystallization. After a week colourless prismatic crystals of (I)[link] were obtained.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms were readily located in difference Fourier maps and were subsequently treated as riding atoms in geometrically idealized positions, with C—H = 0.93 and N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C, N).

Table 2
Experimental details

Crystal data
Chemical formula C12H10N5O+·NO3
Mr 302.26
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 293
a, b, c (Å) 12.7949 (10), 10.5639 (9), 9.6676 (6)
V3) 1306.71 (17)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.12
Crystal size (mm) 0.33 × 0.30 × 0.20
 
Data collection
Diffractometer Agilent SuperNova, Dual, Cu at zero, Atlas
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.])
Tmin, Tmax 0.791, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 4891, 2559, 2080
Rint 0.021
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.097, 1.10
No. of reflections 2559
No. of parameters 200
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.19, −0.14
Computer programs: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]), SIR97 (Altomare, 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Chemical context top

Non-covalent inter­actions, such as hydrogen bonding, halogen bonding and ππ inter­actions play major roles in molecular recognition and pharmaceutical drug design processes (Desiraju, 1989; Perumalla & Sun, 2014). N6-substituted adenine compounds continue to attract inter­est due to their biological activity as they can act as plant hormones and have anti-allergenic, anti­bacterial, anti­viral and anti­fungal properties (Hall, 1973; McHugh & Erxleben, 2011). N6-substituted adenine compounds also exhibit an extensive variety of hydrogen-bonding patterns and supra­molecular architectures (Raghunathan & Pattabhi, 1981; Nirmalram et al., 2011; Tamilselvi & Mu­thiah, 2011; McHugh & Erxleben, 2011; Jennifer et al., 2014). The present investigation deals with the nitrate salt of N9protonated benzoyl­adenine (I). Nitrate ions are known to play pivotal roles in hydrogen bonded supra­molecular architectures, as they have three oxygen atoms to act as good hydrogen bond acceptors (Murugesan et al., 1997; Cherouana et al., 2003; Balasubramani et al., 2005; Nirmalram et al., 2011).

Structural commentary top

The asymmetric unit of compound (I) consists of one N6-benzoyl­adeninium cation and one nitrate anion, Fig. 1. In this salt, the N6-benzoyl­adenine moiety is found in the N7—H tautomeric form with N9 protonated and N1, N3 non-protonated. The inter­nal angles at N7 [C8—N7—C5 = 108.9 (2)°] and N9 [C8—N9—C4 = 107.9 (2)°] are similar as both carry hydrogen atoms (Raghunathan & Pattabhi, 1981; Raghunathan et al., 1983; Nirmalram et al., 2011; Tamilselvi & Mu­thiah, 2011; García-Terán et al., 2004; Bo et al.,2006). The inter­nal angles at N1 [C6—N1—C2 = 118.9 (3)°] and N3 [C4—N3—C2 = 111.0 (3)°] agree with those reported for the neutral six-membered rings in other ademine structures (Raghunathan & Pattabhi, 1981; Karthikeyan et al., 2015). An intra­molecular N7—H7···O1 hydrogen bond (Table 1) is observed on the Hoogsteen face of the purine ring with the benzoyl oxygen atom, generating an S(7) ring motif. A similar bond was found in the crystal structure of the neutral N6-benzoyl adenine (Raghunathan & Pattabhi, 1981). The dihedral angle between the adenine ring system and the phenyl ring is 51.10 (10)°, and the C6—N6—C10—C11 torsion angle is is −168.8 (2). The bond lengths and bond angles for the nitrate anion are in good agreement with literature values (Nirmalram et al., 2011). Tables comparing dihedral and torsion angles in the title compound with those in related structures appear in the supporting information.

Supra­molecular features top

In the crystal structure of (I), the benzoyl­adeninium cations form base pairs via N—H···O and C—H···N hydrogen bonds (Table 1) involving the N1 and N6 atoms on the Watson–Crick face of the adenine ring system and the C16 and O1 atoms of the benzoyl ring of an adjacent benzoyl­adeninium cation. These result in the formation of a supra­molecular ribbon based on R22(9) rings, Fig. 2a. The benzoyl­adeninum cations are also bridged by the O3 oxygen atoms of the nitrate anion, which acts as a bifurcated acceptor, forming N9—H9···O3 and N7—H7···O3 hydrogen bonds to generate a second ribbon motif, Fig. 2b. ππ stacking inter­actions occur between the one face of the C11–C16 phenyl ring and the C4/C5/N7/C8/N9 imidazole ring with a relatively short centroid-to-centroid separation Cg1···Cg3i = 3.4919 (17) Å [symmetry code: (i) 1 − x, −y, −1/2 + z]. The other face of the phenyl ring makes offset ππ contacts with both the imidazole [Cg1···Cg3ii = 3.7213 (17) Å] and the pyrimidine rings [Cg2···Cg3ii = 3.5362 (16) Å; symmetry code (ii) 1/2 + x, 1/2 − y, z], Fig. 3. Cg1, Cg2 and Cg3 are the centroids of the imidazole, pyrimidine and phenyl rings, respectively. Similar contacts are found in related structures (Raghunathan & Pattabhi, 1981; Karthikeyan et al., 2015). These various contacts combine to generate a three-dimensional supra­molecular architecture Fig. 4.

Database Survey top

The crystal structures of a number of N6-substituted adenines, adeninium salts and their metal complexes have been investigated in a variety of crystalline environments. Neutral molecules include N6-benzyl­adenine (Raghunathan et al., 1983), N6-furfuryladenine (Soriano-Garcia & Parthasarathy, 1977) and N6-benzoyl­adenine (Raghunathan & Pattabhi, 1981). Recently our group reported the formation of two co-crystals, N6-benzoyl­adenine–3-hy­droxy­pyridinium-2-carboxyl­ate (1:1) and N6-benzoyl­adenine–DL-tartaric acid (1:1). In these, the benzoyl­adenine molecule has a conformation similar to that reported for the neutral benzoyl­adenine crystal structure (Karthikeyan et al., 2015). N6-benzyl­adeninum salts with a wide variety of counter-anions have also been reported (Umadevi et al., 2001; Xia et al., 2010; Nirmalram et al., 2011; Tamilselvi & Mu­thiah, 2011; McHugh & Erxleben, 2011; Stanley et al., 2003). A variety of metal complexes of neutral N6-benzyl/furfuryladenines have been reported (Jennifer et al., 2014), while structures of copper complexes of N6-furfuryladeninium (Umadevi et al., 2002) and N6-benzyl­adeninium (Balasubramanian et al., 1996) are also known.

Synthesis and crystallization top

To a hot methanol solution of N6-benzolyadenine (60 mg), a few drops of nitric acid were added. The resulting solution was warmed over a water bath for half an hour and then kept at room temperature for crystallization. After a week colourless prismatic crystals of (I) were obtained.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. Hydrogen atoms were readily located in difference Fourier maps and were subsequently treated as riding atoms in geometrically idealized positions, with C—H = 0.93 and N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C, N).

Structure description top

Non-covalent inter­actions, such as hydrogen bonding, halogen bonding and ππ inter­actions play major roles in molecular recognition and pharmaceutical drug design processes (Desiraju, 1989; Perumalla & Sun, 2014). N6-substituted adenine compounds continue to attract inter­est due to their biological activity as they can act as plant hormones and have anti-allergenic, anti­bacterial, anti­viral and anti­fungal properties (Hall, 1973; McHugh & Erxleben, 2011). N6-substituted adenine compounds also exhibit an extensive variety of hydrogen-bonding patterns and supra­molecular architectures (Raghunathan & Pattabhi, 1981; Nirmalram et al., 2011; Tamilselvi & Mu­thiah, 2011; McHugh & Erxleben, 2011; Jennifer et al., 2014). The present investigation deals with the nitrate salt of N9protonated benzoyl­adenine (I). Nitrate ions are known to play pivotal roles in hydrogen bonded supra­molecular architectures, as they have three oxygen atoms to act as good hydrogen bond acceptors (Murugesan et al., 1997; Cherouana et al., 2003; Balasubramani et al., 2005; Nirmalram et al., 2011).

The asymmetric unit of compound (I) consists of one N6-benzoyl­adeninium cation and one nitrate anion, Fig. 1. In this salt, the N6-benzoyl­adenine moiety is found in the N7—H tautomeric form with N9 protonated and N1, N3 non-protonated. The inter­nal angles at N7 [C8—N7—C5 = 108.9 (2)°] and N9 [C8—N9—C4 = 107.9 (2)°] are similar as both carry hydrogen atoms (Raghunathan & Pattabhi, 1981; Raghunathan et al., 1983; Nirmalram et al., 2011; Tamilselvi & Mu­thiah, 2011; García-Terán et al., 2004; Bo et al.,2006). The inter­nal angles at N1 [C6—N1—C2 = 118.9 (3)°] and N3 [C4—N3—C2 = 111.0 (3)°] agree with those reported for the neutral six-membered rings in other ademine structures (Raghunathan & Pattabhi, 1981; Karthikeyan et al., 2015). An intra­molecular N7—H7···O1 hydrogen bond (Table 1) is observed on the Hoogsteen face of the purine ring with the benzoyl oxygen atom, generating an S(7) ring motif. A similar bond was found in the crystal structure of the neutral N6-benzoyl adenine (Raghunathan & Pattabhi, 1981). The dihedral angle between the adenine ring system and the phenyl ring is 51.10 (10)°, and the C6—N6—C10—C11 torsion angle is is −168.8 (2). The bond lengths and bond angles for the nitrate anion are in good agreement with literature values (Nirmalram et al., 2011). Tables comparing dihedral and torsion angles in the title compound with those in related structures appear in the supporting information.

In the crystal structure of (I), the benzoyl­adeninium cations form base pairs via N—H···O and C—H···N hydrogen bonds (Table 1) involving the N1 and N6 atoms on the Watson–Crick face of the adenine ring system and the C16 and O1 atoms of the benzoyl ring of an adjacent benzoyl­adeninium cation. These result in the formation of a supra­molecular ribbon based on R22(9) rings, Fig. 2a. The benzoyl­adeninum cations are also bridged by the O3 oxygen atoms of the nitrate anion, which acts as a bifurcated acceptor, forming N9—H9···O3 and N7—H7···O3 hydrogen bonds to generate a second ribbon motif, Fig. 2b. ππ stacking inter­actions occur between the one face of the C11–C16 phenyl ring and the C4/C5/N7/C8/N9 imidazole ring with a relatively short centroid-to-centroid separation Cg1···Cg3i = 3.4919 (17) Å [symmetry code: (i) 1 − x, −y, −1/2 + z]. The other face of the phenyl ring makes offset ππ contacts with both the imidazole [Cg1···Cg3ii = 3.7213 (17) Å] and the pyrimidine rings [Cg2···Cg3ii = 3.5362 (16) Å; symmetry code (ii) 1/2 + x, 1/2 − y, z], Fig. 3. Cg1, Cg2 and Cg3 are the centroids of the imidazole, pyrimidine and phenyl rings, respectively. Similar contacts are found in related structures (Raghunathan & Pattabhi, 1981; Karthikeyan et al., 2015). These various contacts combine to generate a three-dimensional supra­molecular architecture Fig. 4.

The crystal structures of a number of N6-substituted adenines, adeninium salts and their metal complexes have been investigated in a variety of crystalline environments. Neutral molecules include N6-benzyl­adenine (Raghunathan et al., 1983), N6-furfuryladenine (Soriano-Garcia & Parthasarathy, 1977) and N6-benzoyl­adenine (Raghunathan & Pattabhi, 1981). Recently our group reported the formation of two co-crystals, N6-benzoyl­adenine–3-hy­droxy­pyridinium-2-carboxyl­ate (1:1) and N6-benzoyl­adenine–DL-tartaric acid (1:1). In these, the benzoyl­adenine molecule has a conformation similar to that reported for the neutral benzoyl­adenine crystal structure (Karthikeyan et al., 2015). N6-benzyl­adeninum salts with a wide variety of counter-anions have also been reported (Umadevi et al., 2001; Xia et al., 2010; Nirmalram et al., 2011; Tamilselvi & Mu­thiah, 2011; McHugh & Erxleben, 2011; Stanley et al., 2003). A variety of metal complexes of neutral N6-benzyl/furfuryladenines have been reported (Jennifer et al., 2014), while structures of copper complexes of N6-furfuryladeninium (Umadevi et al., 2002) and N6-benzyl­adeninium (Balasubramanian et al., 1996) are also known.

Synthesis and crystallization top

To a hot methanol solution of N6-benzolyadenine (60 mg), a few drops of nitric acid were added. The resulting solution was warmed over a water bath for half an hour and then kept at room temperature for crystallization. After a week colourless prismatic crystals of (I) were obtained.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. Hydrogen atoms were readily located in difference Fourier maps and were subsequently treated as riding atoms in geometrically idealized positions, with C—H = 0.93 and N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C, N).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SIR97 (Altomare, 1999); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009), Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines represent hydrogen bonds.
[Figure 2] Fig. 2. A view of two supramolecular ribbons of (I). (a) A view of adeninium–benzoyl interactions via N—H···O and C—H···N hydrogen bonding, forming a supramolecular ribbon. (b) A view of adeninum cations bridged by one of the oxygen atoms of the nitrate anion via N9—H9···O3 and N7—H7···O3 hydrogen bonds (purple dashed lines), generating a second type of ribbon motif. The phenyl groups and H atoms not involved in hydrogen bonding have been omitted for clarity. The symmetry codes are as given in Table 1.
[Figure 3] Fig. 3. A view of ππ stacking interactions in (I). Cg1 is the centroid of the imidazole ring, Cg2 that of the pyrimidine ring, Cg3 that of the phenyl ring. Dashed lines indicate stacking interactions. Symmetry codes: (i) 1 − x, −y, −1/2 + z; (ii) 1/2 + x, 1/2 − y, z.
[Figure 4] Fig. 4. Overall packing in (I) viewed along the a-axis direction. Hydrogen bonds are drawn as light-blue dashed lines.
N6-benzoyladeninium nitrate top
Crystal data top
C12H10N5O+·NO3Dx = 1.536 Mg m3
Mr = 302.26Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 1553 reflections
a = 12.7949 (10) Åθ = 3.7–27.6°
b = 10.5639 (9) ŵ = 0.12 mm1
c = 9.6676 (6) ÅT = 293 K
V = 1306.71 (17) Å3Prism, colorless
Z = 40.33 × 0.30 × 0.20 mm
F(000) = 624
Data collection top
Agilent SuperNova, Dual, Cu at zero, Atlas
diffractometer
2080 reflections with I > 2σ(I)
Detector resolution: 10.4933 pixels mm-1Rint = 0.021
ω scansθmax = 27.5°, θmin = 2.9°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
h = 1611
Tmin = 0.791, Tmax = 1.000k = 139
4891 measured reflectionsl = 1212
2559 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0412P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.097(Δ/σ)max < 0.001
S = 1.10Δρmax = 0.19 e Å3
2559 reflectionsΔρmin = 0.14 e Å3
200 parametersExtinction correction: SHELXL2014/7 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0092 (16)
Crystal data top
C12H10N5O+·NO3V = 1306.71 (17) Å3
Mr = 302.26Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 12.7949 (10) ŵ = 0.12 mm1
b = 10.5639 (9) ÅT = 293 K
c = 9.6676 (6) Å0.33 × 0.30 × 0.20 mm
Data collection top
Agilent SuperNova, Dual, Cu at zero, Atlas
diffractometer
2559 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
2080 reflections with I > 2σ(I)
Tmin = 0.791, Tmax = 1.000Rint = 0.021
4891 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0401 restraint
wR(F2) = 0.097H-atom parameters constrained
S = 1.10Δρmax = 0.19 e Å3
2559 reflectionsΔρmin = 0.14 e Å3
200 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.7324 (2)0.0197 (2)0.8356 (3)0.0543 (7)
N30.8848 (2)0.0766 (2)0.7035 (3)0.0546 (7)
N60.56197 (18)0.0580 (2)0.7771 (2)0.0458 (6)
H60.54870.04790.86370.055*
N70.67166 (18)0.1685 (2)0.5004 (2)0.0437 (6)
H70.60700.17980.47950.052*
N90.84001 (19)0.1733 (2)0.4852 (2)0.0467 (6)
H90.90160.18740.45320.056*
O10.48787 (16)0.0648 (2)0.5649 (2)0.0540 (6)
C20.8360 (3)0.0298 (3)0.8128 (4)0.0591 (9)
H20.87890.00000.88330.071*
C40.8168 (2)0.1171 (2)0.6093 (3)0.0425 (7)
C50.7080 (2)0.1128 (2)0.6197 (3)0.0379 (6)
C60.6665 (2)0.0629 (2)0.7404 (3)0.0420 (7)
C80.7516 (2)0.2016 (3)0.4239 (3)0.0478 (7)
H80.74630.24000.33760.057*
C100.4770 (2)0.0675 (2)0.6908 (3)0.0405 (6)
C110.3735 (2)0.0836 (2)0.7561 (3)0.0406 (6)
C120.3614 (2)0.1411 (3)0.8840 (3)0.0471 (7)
H120.41970.16450.93540.056*
C130.2615 (3)0.1635 (3)0.9351 (3)0.0559 (8)
H130.25320.20351.02010.067*
C140.1755 (3)0.1272 (3)0.8610 (4)0.0580 (8)
H140.10900.14200.89630.070*
C150.1868 (3)0.0689 (3)0.7344 (4)0.0581 (9)
H150.12800.04370.68480.070*
C160.2852 (2)0.0480 (3)0.6814 (3)0.0483 (7)
H160.29280.01000.59520.058*
N100.5040 (2)0.2616 (3)0.2263 (3)0.0563 (7)
O20.5789 (2)0.2331 (3)0.1545 (3)0.0904 (9)
O30.51791 (16)0.2830 (2)0.3540 (2)0.0660 (7)
O40.4156 (2)0.2712 (3)0.1814 (3)0.0993 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0528 (16)0.0628 (16)0.0473 (14)0.0062 (12)0.0050 (13)0.0127 (14)
N30.0460 (14)0.0608 (14)0.0571 (17)0.0070 (13)0.0043 (15)0.0027 (15)
N60.0458 (13)0.0589 (14)0.0326 (12)0.0001 (11)0.0032 (12)0.0047 (11)
N70.0400 (13)0.0536 (13)0.0375 (13)0.0021 (11)0.0002 (11)0.0048 (11)
N90.0399 (13)0.0549 (13)0.0452 (14)0.0060 (11)0.0022 (12)0.0012 (12)
O10.0503 (12)0.0780 (15)0.0338 (11)0.0144 (11)0.0053 (10)0.0019 (10)
C20.055 (2)0.068 (2)0.054 (2)0.0108 (16)0.0108 (17)0.0123 (17)
C40.0442 (15)0.0420 (13)0.0415 (16)0.0011 (13)0.0011 (14)0.0050 (14)
C50.0403 (14)0.0390 (12)0.0344 (13)0.0004 (12)0.0004 (13)0.0039 (12)
C60.0448 (14)0.0439 (14)0.0375 (15)0.0027 (12)0.0021 (15)0.0002 (13)
C80.0484 (17)0.0536 (15)0.0412 (16)0.0086 (14)0.0019 (14)0.0024 (14)
C100.0430 (15)0.0427 (14)0.0357 (15)0.0027 (12)0.0024 (13)0.0008 (13)
C110.0443 (15)0.0428 (13)0.0347 (13)0.0008 (12)0.0049 (13)0.0066 (12)
C120.0512 (16)0.0514 (15)0.0386 (15)0.0021 (14)0.0031 (15)0.0021 (14)
C130.066 (2)0.0601 (18)0.0417 (17)0.0105 (17)0.0136 (16)0.0033 (16)
C140.0522 (19)0.0625 (18)0.059 (2)0.0077 (16)0.0137 (18)0.0131 (18)
C150.0493 (18)0.0646 (18)0.060 (2)0.0075 (16)0.0022 (18)0.0105 (18)
C160.0494 (18)0.0532 (15)0.0425 (15)0.0033 (14)0.0018 (16)0.0036 (15)
N100.0528 (17)0.0612 (15)0.0549 (16)0.0087 (14)0.0073 (15)0.0001 (13)
O20.0774 (17)0.1083 (19)0.086 (2)0.0132 (16)0.0372 (16)0.0060 (17)
O30.0484 (13)0.1011 (18)0.0485 (13)0.0120 (12)0.0007 (11)0.0072 (14)
O40.0652 (16)0.159 (3)0.0738 (18)0.0326 (19)0.0219 (15)0.0447 (19)
Geometric parameters (Å, º) top
N1—C61.330 (4)C8—H80.9300
N1—C21.347 (4)C10—C111.477 (4)
N3—C21.323 (4)C11—C121.386 (4)
N3—C41.330 (4)C11—C161.393 (4)
N6—C101.374 (4)C12—C131.390 (4)
N6—C61.384 (4)C12—H120.9300
N6—H60.8600C13—C141.367 (5)
N7—C81.309 (3)C13—H130.9300
N7—C51.376 (3)C14—C151.378 (5)
N7—H70.8600C14—H140.9300
N9—C81.312 (4)C15—C161.378 (4)
N9—C41.371 (4)C15—H150.9300
N9—H90.8600C16—H160.9300
O1—C101.226 (3)N10—O41.216 (3)
C2—H20.9300N10—O21.222 (3)
C4—C51.397 (4)N10—O31.268 (4)
C5—C61.386 (4)
C6—N1—C2118.9 (3)N9—C8—H8124.5
C2—N3—C4111.0 (3)O1—C10—N6120.8 (3)
C10—N6—C6127.3 (2)O1—C10—C11121.9 (3)
C10—N6—H6116.4N6—C10—C11117.3 (2)
C6—N6—H6116.4C12—C11—C16119.3 (3)
C8—N7—C5108.9 (2)C12—C11—C10122.2 (3)
C8—N7—H7125.6C16—C11—C10118.3 (3)
C5—N7—H7125.6C11—C12—C13119.6 (3)
C8—N9—C4107.9 (3)C11—C12—H12120.2
C8—N9—H9126.0C13—C12—H12120.2
C4—N9—H9126.0C14—C13—C12120.4 (3)
N3—C2—N1128.6 (3)C14—C13—H13119.8
N3—C2—H2115.7C12—C13—H13119.8
N1—C2—H2115.7C13—C14—C15120.4 (3)
N3—C4—N9126.7 (3)C13—C14—H14119.8
N3—C4—C5126.3 (3)C15—C14—H14119.8
N9—C4—C5107.0 (2)C16—C15—C14119.8 (3)
N7—C5—C6137.6 (3)C16—C15—H15120.1
N7—C5—C4105.2 (2)C14—C15—H15120.1
C6—C5—C4117.1 (3)C15—C16—C11120.4 (3)
N1—C6—N6115.0 (2)C15—C16—H16119.8
N1—C6—C5118.0 (2)C11—C16—H16119.8
N6—C6—C5126.9 (3)O4—N10—O2123.2 (3)
N7—C8—N9110.9 (3)O4—N10—O3117.6 (3)
N7—C8—H8124.5O2—N10—O3119.1 (3)
C4—N3—C2—N10.3 (5)N7—C5—C6—N61.3 (5)
C6—N1—C2—N31.4 (5)C4—C5—C6—N6174.9 (3)
C2—N3—C4—N9178.5 (3)C5—N7—C8—N90.9 (3)
C2—N3—C4—C50.1 (4)C4—N9—C8—N70.5 (3)
C8—N9—C4—N3178.7 (3)C6—N6—C10—O19.9 (4)
C8—N9—C4—C50.1 (3)C6—N6—C10—C11168.8 (2)
C8—N7—C5—C6177.4 (3)O1—C10—C11—C12150.8 (3)
C8—N7—C5—C41.0 (3)N6—C10—C11—C1227.9 (4)
N3—C4—C5—N7178.2 (3)O1—C10—C11—C1624.4 (4)
N9—C4—C5—N70.6 (3)N6—C10—C11—C16156.9 (2)
N3—C4—C5—C60.9 (4)C16—C11—C12—C130.7 (4)
N9—C4—C5—C6178.0 (2)C10—C11—C12—C13174.5 (3)
C2—N1—C6—N6175.0 (3)C11—C12—C13—C141.2 (4)
C2—N1—C6—C52.1 (4)C12—C13—C14—C150.5 (5)
C10—N6—C6—N1163.5 (2)C13—C14—C15—C160.6 (4)
C10—N6—C6—C519.7 (4)C14—C15—C16—C111.1 (4)
N7—C5—C6—N1178.0 (3)C12—C11—C16—C150.4 (4)
C4—C5—C6—N11.9 (4)C10—C11—C16—C15175.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6···O1i0.862.333.135 (3)156
N7—H7···O10.862.122.668 (3)121
N7—H7···O30.861.992.709 (3)140
N9—H9···O3ii0.861.802.646 (3)169
C16—H16···N1iii0.932.553.426 (4)157
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1/2, y+1/2, z; (iii) x+1, y, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6···O1i0.862.333.135 (3)156
N7—H7···O10.862.122.668 (3)121
N7—H7···O30.861.992.709 (3)140
N9—H9···O3ii0.861.802.646 (3)169
C16—H16···N1iii0.932.553.426 (4)157
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1/2, y+1/2, z; (iii) x+1, y, z1/2.

Experimental details

Crystal data
Chemical formulaC12H10N5O+·NO3
Mr302.26
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)293
a, b, c (Å)12.7949 (10), 10.5639 (9), 9.6676 (6)
V3)1306.71 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.33 × 0.30 × 0.20
Data collection
DiffractometerAgilent SuperNova, Dual, Cu at zero, Atlas
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2013)
Tmin, Tmax0.791, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
4891, 2559, 2080
Rint0.021
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.097, 1.10
No. of reflections2559
No. of parameters200
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.14

Computer programs: CrysAlis PRO (Agilent, 2013), SIR97 (Altomare, 1999), SHELXL2014/7 (Sheldrick, 2015), PLATON (Spek, 2009), Mercury (Macrae et al., 2008).

 

Acknowledgements

AK and NJJ thank the UGC–SAP and UGC–BSR India for the award of an RFSMS. PTM is thankful to the UGC, New Delhi, for a UGC–BSR one-time grant to Faculty. FP thanks the Slovenian Research Agency for financial support (P1–0230–0175), as well as the EN–FIST Centre of Excellence, Trg Osvobodilne fronte 13, 1000 Ljubljana, Slovenia, for use of the SuperNova diffractometer.

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.  Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBalasubramani, K., Muthiah, P. T., Rychlewska, U. & Plutecka, A. (2005). Acta Cryst. C61, o586–o588.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBalasubramanian, T., Muthiah, P. T., Ananthasaravanan, & Mazumdar, S. K. (1996). J. Inorg. Biochem. 63, 175–181.  Google Scholar
First citationBo, Y., Cheng, K., Bi, S. & Zhang, S.-S. (2006). Acta Cryst. E62, o4174–o4175.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCherouana, A., Bouchouit, K., Bendjeddou, L. & Benali-Cherif, N. (2003). Acta Cryst. E59, o983–o985.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDesiraju, G. R. (1989). Crystal engineering: the design of organic solids. Amsterdam: Elsevier.  Google Scholar
First citationGarcía-Terán, J. P., Castillo, O., Luque, A., García-Couceiro, U., Román, P. & Lloret, F. (2004). Inorg. Chem. 43, 5761–5770.  Web of Science PubMed Google Scholar
First citationHall, R. H. (1973). Annu. Rev. Plant Physiol. 24, 415–444.  CrossRef CAS Web of Science Google Scholar
First citationJennifer, S. J., Thomas Muthiah, P. & Tamilselvi, D. (2014). Chem. Cent. J. 8, 58.  Web of Science CSD CrossRef PubMed Google Scholar
First citationKarthikeyan, A., Swinton Darious, R., Thomas Muthiah, P. & Perdih, F. (2015). Acta Cryst. C71, 985–990.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMcHugh, C. & Erxleben, A. (2011). Cryst. Growth Des. 11, 5096–5104.  Web of Science CSD CrossRef CAS Google Scholar
First citationMurugesan, S. & Muthiah, P. T. (1997). Acta Cryst. C53, 763–764.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNirmalram, J. S., Tamilselvi, D. & Muthiah, P. T. (2011). J. Chem. Crystallogr. 41, 864–867.  Web of Science CSD CrossRef CAS Google Scholar
First citationPerumalla, S. R. & Sun, C. C. (2014). J. Pharm. Sci. 103, 1126–1132.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRaghunathan, S. & Pattabhi, V. (1981). Acta Cryst. B37, 1670–1673.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRaghunathan, S., Sinha, B. K., Pattabhi, V. & Gabe, E. J. (1983). Acta Cryst. C39, 1545–1547.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSoriano-Garcia, M. & Parthasarathy, R. (1977). Acta Cryst. B33, 2674–2677.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStanley, N., Muthiah, P. T. & Geib, S. J. (2003). Acta Cryst. C59, o27–o29.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationTamilselvi, D. & Muthiah, P. T. (2011). Acta Cryst. C67, o192–o194.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationUmadevi, B., Stanley, N., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2001). Acta Cryst. E57, o881–o883.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationUmadevi, B., Stanley, N., Muthiah, P. T. & Varghese, B. (2002). Indian J. Chem. A41, 737–740.  Google Scholar
First citationXia, M., Ma, K. & Zhu, Y. (2010). J. Chem. Crystallogr. 40, 634–638.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 72| Part 2| February 2016| Pages 140-143
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds