organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of N,N,N′,N′,N′′,N′′-hexa­methyl­guanidinium cyanate 1.5-hydrate

aFakultät Chemie/Organische Chemie, Hochschule Aalen, Beethovenstrasse 1, D-73430 Aalen, Germany
*Correspondence e-mail: willi.kantlehner@hs-aalen.de

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 2 December 2015; accepted 17 December 2015; online 24 December 2015)

The title hydrated salt, C7H18N3+·OCN.1.5H2O, was synthesized starting from N,N,N′,N′,N′′,N′′-hexa­methyl­guanidinium chloride by a twofold anion-exchange reaction. The asymmetric unit contains two cations, two cyanate anions and three water mol­ecules. One cation shows orientational disorder and two sets of N-atom positions were found related by a 60° rotation, with an occupancy ratio of 0.852 (6):0.148 (6). The C—N bond lengths in both guanidin­ium ions range from 1.329 (2) to 1.358 (10) Å, indicating double-bond character, pointing towards charge delocalization within the NCN planes. Strong O—H⋯N hydrogen bonds between the crystal water mol­ecules and the cyanate ions and strong O—H⋯O hydrogen bonds between the water mol­ecules are present, resulting in a two-dimensional hydrogen bonded network running parallel to the (001) plane. The hexa­methyl­guanidinium ions are packed in between the layers built up by water mol­ecules and cyanate ions.

1. Related literature

For the synthesis of hexa­substituted guanidinium salts with different anions, see: Kantlehner et al. (1984[Kantlehner, W., Haug, E., Mergen, W. W., Speh, P., Maier, T., Kapassakalidis, J. J., Bräuner, H.-J. & Hagen, H. (1984). Liebigs Ann. Chem. pp. 108-126.]). For the crystal structure of N,N,N′,N′,N′′,N′′-hexa­methyl­guanidinium chloride, see: Oelkers & Sundermeyer (2011[Oelkers, B. & Sundermeyer, J. (2011). Green Chem. 13, 608-618.]). For the crystal structure of N,N,N′,N′,N′′,N′′-hexa­methyl­guanidinium di­fluoro­tri­methyl­silicate, see: Röschenthaler et al. (2002[Röschenthaler, G.-V., Lork, E., Bissky, G. & Kolomeitsev, A. (2002). Z. Kristallogr. 217, 419-420.]). For the crystal structure of N,N,N′,N′,N′′,N′′-hexa­methyl­guanidinium tetra­phenyl­borate, see: Frey et al. (1998[Frey, W., Vettel, M., Edelmann, K. & Kantlehner, W. (1998). Z. Kristallogr. 213, 77-78.]). For the crystal structure of N,N,N′,N′,N′′,N′′-hexa­methyl­guanidinium fluoride, see: Kolomeitsev et al. (2000[Kolomeitsev, A., Bissky, G., Kirsch, P. & Röschenthaler, G.-V. (2000). J. Fluor. Chem. 103, 159-161.]). For the crystal structure of N,N,N′,N′,N′′,N′′-hexa­methyl­guanidinium hexa­fluoro­silicate hexa­hydrate, see: Zhang et al. (1999[Zhang, X., Bau, R., Sheehy, J. A. & Christe, K. O. (1999). J. Fluor. Chem. 98, 121-126.]). For the crystal structures of [C(NMe2)3][Mn(CO)5] and [C(NMe2)3][Co(CO)4], see: Petz & Weller (1991[Petz, W. & Weller, F. (1991). Z. Naturforsch. Teil B, 46, 297-302.]). For a neutron diffraction studie of deuterated ammonium cyanate, see: MacLean et al. (2003[MacLean, E. J., Harris, K. D. M., Kariuki, B. M., Kitchin, S. J., Tykwinski, R. R., Swainson, I. P. & Dunitz, J. D. (2003). J. Am. Chem. Soc. 125, 14449-14451.]). For the use of intensity quotients and differences in absolute structure refinement, see: Parsons et al. (2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • 2C7H18N3+·2CNO·3H2O

  • Mr = 426.58

  • Monoclinic, C c

  • a = 8.3245 (5) Å

  • b = 22.536 (2) Å

  • c = 13.2580 (12) Å

  • β = 108.092 (7)°

  • V = 2364.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.40 × 0.25 × 0.10 mm

2.2. Data collection

  • Bruker Kappa APEXII DUO diffractometer

  • 19766 measured reflections

  • 5588 independent reflections

  • 5279 reflections with I > 2σ(I)

  • Rint = 0.025

  • Standard reflections: 0

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.089

  • S = 1.02

  • 5588 reflections

  • 328 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H31⋯N2 0.78 (3) 2.00 (3) 2.780 (3) 176 (3)
O3—H32⋯O5i 0.86 (4) 2.00 (4) 2.858 (4) 172 (3)
O4—H42⋯O3ii 0.83 (4) 2.04 (4) 2.852 (4) 164 (3)
O4—H41⋯N1ii 0.84 (3) 2.00 (3) 2.833 (3) 173 (3)
O5—H51⋯O2iii 0.85 (3) 1.92 (3) 2.761 (3) 175 (3)
O5—H52⋯O1iv 0.74 (4) 2.10 (4) 2.840 (4) 177 (3)
Symmetry codes: (i) [x-1, -y, z-{\script{1\over 2}}]; (ii) x+1, y, z; (iii) [x, -y, z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL2014.

Supporting information


Comment top

The reaction of phosgene with N,N,N',N'-tetramethylurea yields N,N,N',N'-tetramethylchloroformamidinium chloride, which can be transformed by a mixture of dimethylamine and triethylamine into a mixture of N,N,N',N',N'',N''-hexamethylguanidinium chloride and triethylamine hydrochloride. Treating the salt mixture with an aqueous sodium hydroxide solution leads after work up to the pure guanidinium chloride. Conversion of the chloride to the tetrafluoroborate salt occurs by heating it with BF3O(C2H5)2 (Kantlehner et al., 1984). A further anion exchange was possible by reacting N,N,N',N',N'',N''-hexamethylguanidinium tetrafluoroborate with potassium cyanate in water. According to the structure analysis of the title compound, the asymmetric unit contains two N,N,N',N',N'',N''-hexamethylguanidinium (HMG+) ions, two cyanate ions and three water molecules (Fig. 1). One cation (cation I) shows an orientational disorder and two sets of N positions were found related by a 60° rotation, with an occupancy ratio of 0.852 (6):0.148 (6). This leads to the characteristic star-shaped appearance of the HMG+ ion (Fig. 2). The second cation (cation II) is not disordered. Searching for known crystal structures in literature of N,N,N',N',N'',N''-hexamethylguanidinium salts [see, for example: chloride salt (Oelkers & Sundermeyer, 2011), difluorotrimethylsilicate salt (Röschenthaler et al., 2002), tetraphenylborate salt (Frey et al., 1998), fluoride salt (Kolomeitsev et al., 2000), hexafluorosilicate hexahydrate salt (Zhang et al., 1999), [Mn(CO)5] and [Co(CO)4] salts (Petz & Weller, 1991)], it is obvious that in all those compounds the HMG+ ions are orientationally disordered too. In the title salt, the C–N bond lengths of both cations are in a range from 1.329 (2) and 1.358 (10) Å, indicating double bond character. The CN3 units are planar and the N–C–N angles are ranging from 118.0 (7)° to 121.8 (7)°. The positive charge is completely delocalized in the CN3 plane. The N–C bond lengths in the non-disordered guanidinium ion (cation II) are in a typical range from 1.453 (3) to 1.475 (2) Å, characteristic for a N–C single bond. In the disordered one (cation I), some N–C bond lengths deviate from their typical values and appear to be slightly longer [d(N–C) = 1.464 (3) - 1.655 (10) Å]. The N–C and C–O bond lengths in both cyanate ions [d(N–C) = 1.165 (3) and 1.172 (3) Å; d(C–O) = 1.213 (3) and 1.230 (3) Å] are in very good agreement with the data determined from a neutron diffraction study of deuterated ammonium cyanate (ND4OCN) at 14 K [d(N–C) = 1.191 (5) Å and d(C–O) =) 1.215 (5) Å (MacLean et al., 2003)]. Strong O–H···N hydrogen bonds between the crystal water molecules and the cyanate ions [d(H···N) = 2.00 (3) Å (Tab. 1)] and strong O–H···O hydrogen bonds between the water molecules are present [d(H···O) = 1.92 (3) - 2.10 (4) Å (Tab. 1)] (Fig. 3), resulting in a two-dimensional hydrogen bonded network parallel to the (0 0 1) plane (Fig. 4). Additionally, C–H···N and C–H···O interactions between the H atoms of the guanidinium –N(CH3)2 groups and the cyanate ions are present [d(H···N) = 2.52 – 2.61 Å; d(H···O) = 2.46 – 2.60 Å]. The hexamethylguanidinium ions are packed in between the layers build up by water molecules and cyanate ions (Fig. 5).

Related literature top

For the synthesis of hexasubstituted guanidinium salts with different anions, see: Kantlehner et al. (1984). For the crystal structure of N,N,N',N',N'',N''-hexamethylguanidinium chloride, see: Oelkers & Sundermeyer (2011). For the crystal structure of N,N,N',N',N'',N''-hexamethylguanidinium difluorotrimethylsilicate, see: Röschenthaler et al. (2002). For the crystal structure of N,N,N',N',N'',N''-hexamethylguanidinium tetraphenylborate, see: Frey et al. (1998). For the crystal structure of N,N,N',N',N'',N''-hexamethylguanidinium fluoride, see: Kolomeitsev et al. (2000). For the crystal structure of N,N,N',N',N'',N''-hexamethylguanidinium hexafluorosilicate hexahydrate, see: Zhang et al. (1999). For the crystal structures of [C(NMe2)3][Mn(CO)5] and [C(NMe2)3][Co(CO)4], see: Petz & Weller (1991). For a neutron diffraction studie of deuterated ammonium cyanate, see: MacLean et al. (2003). For the use of intensity quotients and differences in absolute structure refinement, see: Parsons et al. (2013).

Experimental top

To a solution of 10 g (0.043 mol) N,N,N',N',N'',N''-hexamethylguanidinium tetrafluoroborate in water, 3.51 g (0.043 mol) potassium cyanate in 20 ml water was added. The solution was kept for twelve hours at 273 K and the precipitated potassium tetrafluoroborate was removed by filtration. After removing of the water, the residue was redissolved in acetonitrile and the solution was filtered again to remove the insoluble residue. The title compound crystallized from a saturated acetonitrile solution after several days at 273 K, forming colorless single crystals. Yield: 7.05 g (88%).

Refinement top

The O-bound H atoms of the water molecules were located in a difference Fourier map and were refined freely [O—H = 0.74 (4) - 0.86 (4) Å]. The atoms N6, N7 and N8 of one cation are disordered over two sets of sites (N6A, N7A and N8A; N6B, N7B and N8B) with refined occupancies of 0.862 (6):0.138 (6), 0.852 (6):0.148 (6) and 0.852 (6):0.148 (6). The title compound crystallizes in the non-centrosymmetric space group Cc; however, in the absence of significant anomalous scattering effects, the determined Flack parameter x = 0.2 (3) (Parsons et al., 2013) is essentially meaningless. The hydrogen atoms of the methyl groups were allowed to rotate with a fixed angle around the C–N bonds to best fit the experimental electron density, with Uiso(H) set to 1.5 Ueq(C) and d(C—H) = 0.98 Å.

Structure description top

The reaction of phosgene with N,N,N',N'-tetramethylurea yields N,N,N',N'-tetramethylchloroformamidinium chloride, which can be transformed by a mixture of dimethylamine and triethylamine into a mixture of N,N,N',N',N'',N''-hexamethylguanidinium chloride and triethylamine hydrochloride. Treating the salt mixture with an aqueous sodium hydroxide solution leads after work up to the pure guanidinium chloride. Conversion of the chloride to the tetrafluoroborate salt occurs by heating it with BF3O(C2H5)2 (Kantlehner et al., 1984). A further anion exchange was possible by reacting N,N,N',N',N'',N''-hexamethylguanidinium tetrafluoroborate with potassium cyanate in water. According to the structure analysis of the title compound, the asymmetric unit contains two N,N,N',N',N'',N''-hexamethylguanidinium (HMG+) ions, two cyanate ions and three water molecules (Fig. 1). One cation (cation I) shows an orientational disorder and two sets of N positions were found related by a 60° rotation, with an occupancy ratio of 0.852 (6):0.148 (6). This leads to the characteristic star-shaped appearance of the HMG+ ion (Fig. 2). The second cation (cation II) is not disordered. Searching for known crystal structures in literature of N,N,N',N',N'',N''-hexamethylguanidinium salts [see, for example: chloride salt (Oelkers & Sundermeyer, 2011), difluorotrimethylsilicate salt (Röschenthaler et al., 2002), tetraphenylborate salt (Frey et al., 1998), fluoride salt (Kolomeitsev et al., 2000), hexafluorosilicate hexahydrate salt (Zhang et al., 1999), [Mn(CO)5] and [Co(CO)4] salts (Petz & Weller, 1991)], it is obvious that in all those compounds the HMG+ ions are orientationally disordered too. In the title salt, the C–N bond lengths of both cations are in a range from 1.329 (2) and 1.358 (10) Å, indicating double bond character. The CN3 units are planar and the N–C–N angles are ranging from 118.0 (7)° to 121.8 (7)°. The positive charge is completely delocalized in the CN3 plane. The N–C bond lengths in the non-disordered guanidinium ion (cation II) are in a typical range from 1.453 (3) to 1.475 (2) Å, characteristic for a N–C single bond. In the disordered one (cation I), some N–C bond lengths deviate from their typical values and appear to be slightly longer [d(N–C) = 1.464 (3) - 1.655 (10) Å]. The N–C and C–O bond lengths in both cyanate ions [d(N–C) = 1.165 (3) and 1.172 (3) Å; d(C–O) = 1.213 (3) and 1.230 (3) Å] are in very good agreement with the data determined from a neutron diffraction study of deuterated ammonium cyanate (ND4OCN) at 14 K [d(N–C) = 1.191 (5) Å and d(C–O) =) 1.215 (5) Å (MacLean et al., 2003)]. Strong O–H···N hydrogen bonds between the crystal water molecules and the cyanate ions [d(H···N) = 2.00 (3) Å (Tab. 1)] and strong O–H···O hydrogen bonds between the water molecules are present [d(H···O) = 1.92 (3) - 2.10 (4) Å (Tab. 1)] (Fig. 3), resulting in a two-dimensional hydrogen bonded network parallel to the (0 0 1) plane (Fig. 4). Additionally, C–H···N and C–H···O interactions between the H atoms of the guanidinium –N(CH3)2 groups and the cyanate ions are present [d(H···N) = 2.52 – 2.61 Å; d(H···O) = 2.46 – 2.60 Å]. The hexamethylguanidinium ions are packed in between the layers build up by water molecules and cyanate ions (Fig. 5).

For the synthesis of hexasubstituted guanidinium salts with different anions, see: Kantlehner et al. (1984). For the crystal structure of N,N,N',N',N'',N''-hexamethylguanidinium chloride, see: Oelkers & Sundermeyer (2011). For the crystal structure of N,N,N',N',N'',N''-hexamethylguanidinium difluorotrimethylsilicate, see: Röschenthaler et al. (2002). For the crystal structure of N,N,N',N',N'',N''-hexamethylguanidinium tetraphenylborate, see: Frey et al. (1998). For the crystal structure of N,N,N',N',N'',N''-hexamethylguanidinium fluoride, see: Kolomeitsev et al. (2000). For the crystal structure of N,N,N',N',N'',N''-hexamethylguanidinium hexafluorosilicate hexahydrate, see: Zhang et al. (1999). For the crystal structures of [C(NMe2)3][Mn(CO)5] and [C(NMe2)3][Co(CO)4], see: Petz & Weller (1991). For a neutron diffraction studie of deuterated ammonium cyanate, see: MacLean et al. (2003). For the use of intensity quotients and differences in absolute structure refinement, see: Parsons et al. (2013).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with displacement ellipsoids at the 50% probability level. All hydrogen atoms are omitted for clarity. Only the major component of the disordered cation is shown.
[Figure 2] Fig. 2. The structure of the orientationally disordered cation. The nitrogen atoms are disordered between the opaque and dark positions.
[Figure 3] Fig. 3. O—H···N and O—H···O hydrogen bonds (black dashed lines) between anions and water molecules and between the water molecules (view down the c axis).
[Figure 4] Fig. 4. View down the c axis of the two-dimensional O—H···N and O—H···O hydrogen-bonding network (all hydrogen bonds are indicated by black dashed lines).
[Figure 5] Fig. 5. Packing of the guanidinium ions in between the layers build up by water molecules and cyanate ions (down the a axis).
N,N,N',N',N'',N''-Hexamethylguanidinium cyanate 1.5-hydrate top
Crystal data top
2C7H18N3+·2CNO·3H2OF(000) = 936
Mr = 426.58Dx = 1.199 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 8.3245 (5) ÅCell parameters from 19766 reflections
b = 22.536 (2) Åθ = 1.8–28.4°
c = 13.2580 (12) ŵ = 0.09 mm1
β = 108.092 (7)°T = 100 K
V = 2364.2 (3) Å3Block, colorless
Z = 40.40 × 0.25 × 0.10 mm
Data collection top
Bruker Kappa APEXII DUO
diffractometer
5279 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
Triumph monochromatorθmax = 28.4°, θmin = 1.8°
φ scans, and ω scansh = 1111
19766 measured reflectionsk = 2930
5588 independent reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0493P)2 + 0.9721P]
where P = (Fo2 + 2Fc2)/3
5588 reflections(Δ/σ)max < 0.001
328 parametersΔρmax = 0.40 e Å3
2 restraintsΔρmin = 0.19 e Å3
Crystal data top
2C7H18N3+·2CNO·3H2OV = 2364.2 (3) Å3
Mr = 426.58Z = 4
Monoclinic, CcMo Kα radiation
a = 8.3245 (5) ŵ = 0.09 mm1
b = 22.536 (2) ÅT = 100 K
c = 13.2580 (12) Å0.40 × 0.25 × 0.10 mm
β = 108.092 (7)°
Data collection top
Bruker Kappa APEXII DUO
diffractometer
5279 reflections with I > 2σ(I)
19766 measured reflectionsRint = 0.025
5588 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0342 restraints
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.40 e Å3
5588 reflectionsΔρmin = 0.19 e Å3
328 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.3316 (2)0.36058 (8)0.23689 (17)0.0409 (4)
C10.2204 (3)0.32390 (9)0.22404 (19)0.0269 (4)
N10.1126 (3)0.28850 (9)0.2104 (2)0.0397 (5)
C20.4331 (2)0.02149 (8)0.32420 (15)0.0181 (4)
O20.5548 (2)0.00567 (8)0.38261 (13)0.0316 (4)
N20.3167 (2)0.04653 (9)0.26863 (17)0.0300 (4)
C30.1363 (2)0.09910 (8)0.52739 (14)0.0150 (3)
N30.2570 (2)0.05814 (7)0.54024 (13)0.0194 (3)
N40.0178 (2)0.08430 (7)0.52842 (14)0.0200 (3)
N50.1730 (2)0.15661 (7)0.51504 (14)0.0206 (3)
C40.0955 (3)0.20481 (9)0.55702 (18)0.0258 (4)
H4A0.01560.22620.49820.039*
H4B0.18350.23220.59740.039*
H4C0.03550.18850.60370.039*
C50.2881 (3)0.17368 (10)0.45722 (18)0.0245 (4)
H5A0.38850.19250.50600.037*
H5B0.23160.20170.40080.037*
H5C0.32210.13830.42580.037*
C60.2163 (3)0.00338 (8)0.50317 (16)0.0208 (4)
H6A0.22740.02940.56420.031*
H6B0.29430.01650.46550.031*
H6C0.10010.00520.45510.031*
C70.4348 (2)0.07080 (9)0.59433 (16)0.0198 (4)
H7A0.49830.06860.54330.030*
H7B0.47990.04160.65080.030*
H7C0.44580.11070.62510.030*
C80.0467 (3)0.03409 (10)0.59113 (17)0.0243 (4)
H8A0.09260.00050.54400.036*
H8B0.12740.04580.62790.036*
H8C0.06040.02250.64340.036*
C90.1698 (2)0.11617 (9)0.46464 (17)0.0216 (4)
H9A0.21860.13820.51180.032*
H9B0.25280.08760.42290.032*
H9C0.13910.14390.41670.032*
N6A0.3149 (2)0.16312 (8)0.08657 (15)0.0176 (5)0.862 (6)
N7A0.2872 (2)0.16823 (8)0.09169 (15)0.0176 (5)0.852 (6)
N8A0.5332 (2)0.13023 (8)0.02745 (15)0.0165 (5)0.852 (6)
N6B0.4372 (13)0.1485 (5)0.0765 (8)0.011 (3)0.138 (6)
N7B0.2238 (14)0.1787 (5)0.0095 (9)0.017 (3)0.148 (6)
N8B0.4759 (12)0.1399 (4)0.1027 (7)0.011 (3)0.148 (6)
C100.3786 (2)0.15393 (7)0.00727 (15)0.0140 (3)
C110.1322 (3)0.15698 (9)0.0706 (2)0.0257 (4)
H11A0.07610.14140.00070.038*
H11B0.08460.19590.07840.038*
H11C0.11460.12950.12360.038*
C120.4256 (3)0.18015 (10)0.19285 (17)0.0286 (5)
H12A0.54010.18740.19000.043*
H12B0.42820.14800.24310.043*
H12C0.38180.21630.21600.043*
C130.6009 (2)0.08765 (9)0.11404 (17)0.0218 (4)
H13A0.51380.07830.14710.033*
H13B0.69920.10500.16720.033*
H13C0.63490.05130.08570.033*
C140.6438 (3)0.14659 (10)0.0358 (2)0.0318 (5)
H14A0.58910.17750.08680.048*
H14B0.66430.11160.07400.048*
H14C0.75160.16150.01130.048*
C150.2985 (3)0.13442 (10)0.18353 (16)0.0274 (4)
H15A0.36850.09910.15910.041*
H15B0.34950.15920.22610.041*
H15C0.18490.12230.22680.041*
C160.1731 (3)0.22027 (9)0.1124 (2)0.0296 (5)
H16A0.18230.24040.04530.044*
H16B0.05630.20710.14550.044*
H16C0.20510.24780.16020.044*
O30.0041 (2)0.08290 (7)0.28078 (13)0.0251 (3)
H310.090 (4)0.0710 (12)0.277 (2)0.025 (7)*
H320.055 (4)0.0523 (16)0.285 (3)0.044 (9)*
O40.8891 (2)0.20268 (8)0.24797 (15)0.0327 (4)
H410.962 (4)0.2257 (13)0.237 (2)0.027 (7)*
H420.934 (5)0.1695 (18)0.250 (3)0.054 (10)*
O50.8322 (2)0.02166 (9)0.81332 (15)0.0330 (4)
H510.747 (4)0.0190 (13)0.835 (2)0.031 (7)*
H520.833 (4)0.0529 (16)0.795 (3)0.039 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0293 (9)0.0276 (8)0.0665 (13)0.0008 (7)0.0161 (9)0.0045 (8)
C10.0280 (10)0.0187 (9)0.0352 (12)0.0088 (8)0.0114 (9)0.0042 (8)
N10.0375 (11)0.0197 (9)0.0630 (15)0.0025 (8)0.0172 (11)0.0015 (9)
C20.0195 (9)0.0180 (8)0.0223 (9)0.0058 (7)0.0147 (7)0.0039 (7)
O20.0260 (8)0.0351 (9)0.0356 (9)0.0022 (7)0.0123 (7)0.0047 (7)
N20.0277 (9)0.0340 (10)0.0329 (10)0.0041 (8)0.0162 (8)0.0065 (8)
C30.0180 (8)0.0153 (8)0.0111 (8)0.0003 (6)0.0038 (6)0.0008 (6)
N30.0186 (8)0.0171 (7)0.0222 (8)0.0009 (6)0.0061 (6)0.0008 (6)
N40.0209 (8)0.0191 (8)0.0218 (8)0.0010 (6)0.0090 (6)0.0019 (6)
N50.0226 (8)0.0166 (7)0.0230 (8)0.0009 (6)0.0080 (6)0.0006 (6)
C40.0331 (11)0.0153 (9)0.0274 (10)0.0048 (7)0.0069 (8)0.0030 (8)
C50.0249 (10)0.0244 (10)0.0262 (10)0.0068 (8)0.0108 (8)0.0029 (8)
C60.0278 (10)0.0142 (8)0.0219 (9)0.0022 (7)0.0102 (7)0.0001 (7)
C70.0154 (8)0.0209 (9)0.0218 (9)0.0004 (7)0.0039 (7)0.0006 (7)
C80.0252 (10)0.0275 (10)0.0247 (10)0.0029 (8)0.0142 (8)0.0060 (8)
C90.0178 (9)0.0231 (9)0.0246 (10)0.0021 (7)0.0073 (7)0.0004 (8)
N6A0.0164 (10)0.0201 (9)0.0175 (10)0.0003 (7)0.0068 (7)0.0014 (7)
N7A0.0198 (9)0.0179 (10)0.0149 (9)0.0020 (7)0.0050 (7)0.0007 (7)
N8A0.0145 (9)0.0168 (9)0.0181 (9)0.0002 (7)0.0050 (7)0.0002 (7)
N6B0.013 (5)0.017 (6)0.006 (5)0.001 (4)0.006 (4)0.001 (4)
N7B0.016 (5)0.016 (5)0.024 (6)0.006 (4)0.014 (4)0.005 (4)
N8B0.016 (5)0.012 (5)0.003 (4)0.000 (4)0.003 (3)0.001 (3)
C100.0148 (7)0.0102 (7)0.0163 (8)0.0019 (6)0.0038 (6)0.0013 (6)
C110.0200 (9)0.0248 (10)0.0379 (12)0.0004 (8)0.0173 (9)0.0008 (9)
C120.0421 (13)0.0267 (11)0.0163 (9)0.0055 (9)0.0084 (9)0.0055 (8)
C130.0167 (8)0.0183 (9)0.0267 (10)0.0021 (7)0.0011 (7)0.0037 (8)
C140.0263 (11)0.0293 (11)0.0492 (14)0.0076 (9)0.0251 (10)0.0115 (10)
C150.0394 (12)0.0268 (10)0.0144 (9)0.0007 (9)0.0060 (8)0.0044 (8)
C160.0240 (10)0.0211 (9)0.0356 (12)0.0016 (8)0.0026 (9)0.0095 (9)
O30.0214 (7)0.0235 (7)0.0314 (8)0.0013 (6)0.0097 (6)0.0028 (6)
O40.0283 (8)0.0272 (8)0.0483 (10)0.0062 (7)0.0200 (7)0.0074 (7)
O50.0313 (9)0.0332 (9)0.0414 (10)0.0117 (7)0.0211 (8)0.0132 (8)
Geometric parameters (Å, º) top
O1—C11.213 (3)N8A—C101.341 (3)
C1—N11.172 (3)N8A—C131.468 (3)
C2—N21.165 (3)N8A—C141.472 (3)
C2—O21.230 (3)N6B—C101.350 (10)
C3—N41.329 (2)N6B—C151.558 (10)
C3—N31.336 (2)N6B—C141.635 (11)
C3—N51.353 (2)N7B—C101.358 (10)
N3—C71.459 (2)N7B—C111.566 (11)
N3—C61.475 (2)N7B—C161.600 (11)
N4—C81.468 (3)N8B—C101.311 (9)
N4—C91.472 (3)N8B—C131.548 (10)
N5—C51.453 (3)N8B—C121.655 (10)
N5—C41.459 (3)C11—H11A0.9800
C4—H4A0.9800C11—H11B0.9800
C4—H4B0.9800C11—H11C0.9800
C4—H4C0.9800C12—H12A0.9800
C5—H5A0.9800C12—H12B0.9800
C5—H5B0.9800C12—H12C0.9800
C5—H5C0.9800C13—H13A0.9800
C6—H6A0.9800C13—H13B0.9800
C6—H6B0.9800C13—H13C0.9800
C6—H6C0.9800C14—H14A0.9800
C7—H7A0.9800C14—H14B0.9800
C7—H7B0.9800C14—H14C0.9800
C7—H7C0.9800C15—H15A0.9800
C8—H8A0.9800C15—H15B0.9800
C8—H8B0.9800C15—H15C0.9800
C8—H8C0.9800C16—H16A0.9800
C9—H9A0.9800C16—H16B0.9800
C9—H9B0.9800C16—H16C0.9800
C9—H9C0.9800O3—H310.78 (3)
N6A—C101.333 (3)O3—H320.86 (4)
N6A—C121.475 (3)O4—H410.84 (3)
N6A—C111.475 (3)O4—H420.83 (4)
N7A—C101.336 (3)O5—H510.85 (3)
N7A—C151.464 (3)O5—H520.74 (4)
N7A—C161.480 (3)
N1—C1—O1179.2 (3)C10—N8A—C14121.18 (18)
N2—C2—O2179.1 (2)C13—N8A—C14116.95 (18)
N4—C3—N3121.01 (16)C10—N6B—C15114.4 (7)
N4—C3—N5119.77 (17)C10—N6B—C14110.0 (7)
N3—C3—N5119.21 (17)C15—N6B—C14134.5 (7)
C3—N3—C7122.40 (16)C10—N7B—C11113.4 (7)
C3—N3—C6121.41 (16)C10—N7B—C16111.5 (7)
C7—N3—C6116.15 (16)C11—N7B—C16135.0 (7)
C3—N4—C8121.87 (17)C10—N8B—C13118.2 (7)
C3—N4—C9122.10 (16)C10—N8B—C12110.3 (6)
C8—N4—C9116.01 (16)C13—N8B—C12131.3 (6)
C3—N5—C5121.89 (17)N6A—C10—N7A119.49 (18)
C3—N5—C4121.58 (18)N6A—C10—N8A119.80 (18)
C5—N5—C4116.52 (17)N7A—C10—N8A120.72 (18)
N5—C4—H4A109.5N8B—C10—N6B120.0 (6)
N5—C4—H4B109.5N8B—C10—N7B121.8 (7)
H4A—C4—H4B109.5N6B—C10—N7B118.0 (7)
N5—C4—H4C109.5N6A—C11—H11A109.5
H4A—C4—H4C109.5N6A—C11—H11B109.5
H4B—C4—H4C109.5H11A—C11—H11B109.5
N5—C5—H5A109.5N6A—C11—H11C109.5
N5—C5—H5B109.5H11A—C11—H11C109.5
H5A—C5—H5B109.5H11B—C11—H11C109.5
N5—C5—H5C109.5N6A—C12—H12A109.5
H5A—C5—H5C109.5N6A—C12—H12B109.5
H5B—C5—H5C109.5H12A—C12—H12B109.5
N3—C6—H6A109.5N6A—C12—H12C109.5
N3—C6—H6B109.5H12A—C12—H12C109.5
H6A—C6—H6B109.5H12B—C12—H12C109.5
N3—C6—H6C109.5N8A—C13—H13A109.5
H6A—C6—H6C109.5N8A—C13—H13B109.5
H6B—C6—H6C109.5H13A—C13—H13B109.5
N3—C7—H7A109.5N8A—C13—H13C109.5
N3—C7—H7B109.5H13A—C13—H13C109.5
H7A—C7—H7B109.5H13B—C13—H13C109.5
N3—C7—H7C109.5N8A—C14—H14A109.5
H7A—C7—H7C109.5N8A—C14—H14B109.5
H7B—C7—H7C109.5H14A—C14—H14B109.5
N4—C8—H8A109.5N8A—C14—H14C109.5
N4—C8—H8B109.5H14A—C14—H14C109.5
H8A—C8—H8B109.5H14B—C14—H14C109.5
N4—C8—H8C109.5N7A—C15—H15A109.5
H8A—C8—H8C109.5N7A—C15—H15B109.5
H8B—C8—H8C109.5H15A—C15—H15B109.5
N4—C9—H9A109.5N7A—C15—H15C109.5
N4—C9—H9B109.5H15A—C15—H15C109.5
H9A—C9—H9B109.5H15B—C15—H15C109.5
N4—C9—H9C109.5N7A—C16—H16A109.5
H9A—C9—H9C109.5N7A—C16—H16B109.5
H9B—C9—H9C109.5H16A—C16—H16B109.5
C10—N6A—C12120.70 (18)N7A—C16—H16C109.5
C10—N6A—C11121.16 (18)H16A—C16—H16C109.5
C12—N6A—C11118.14 (19)H16B—C16—H16C109.5
C10—N7A—C15121.83 (18)H31—O3—H32106 (3)
C10—N7A—C16120.70 (19)H41—O4—H42102 (3)
C15—N7A—C16117.45 (18)H51—O5—H52105 (3)
C10—N8A—C13121.86 (18)
N4—C3—N3—C7146.45 (19)C12—N6A—C10—N8A34.3 (3)
N5—C3—N3—C732.4 (3)C11—N6A—C10—N8A146.11 (19)
N4—C3—N3—C631.5 (3)C15—N7A—C10—N6A147.2 (2)
N5—C3—N3—C6149.64 (18)C16—N7A—C10—N6A34.4 (3)
N3—C3—N4—C830.4 (3)C15—N7A—C10—N8A32.5 (3)
N5—C3—N4—C8148.39 (19)C16—N7A—C10—N8A145.9 (2)
N3—C3—N4—C9147.87 (18)C13—N8A—C10—N6A31.7 (3)
N5—C3—N4—C933.3 (3)C14—N8A—C10—N6A147.48 (19)
N4—C3—N5—C5145.34 (19)C13—N8A—C10—N7A148.04 (19)
N3—C3—N5—C535.8 (3)C14—N8A—C10—N7A32.8 (3)
N4—C3—N5—C433.1 (3)C15—N6B—C10—N8B150.1 (7)
N3—C3—N5—C4145.71 (19)C14—N6B—C10—N8B19.7 (10)
C13—N8B—C10—N6B34.6 (10)C15—N6B—C10—N7B35.3 (10)
C12—N8B—C10—N6B150.7 (6)C14—N6B—C10—N7B154.9 (6)
C13—N8B—C10—N7B151.0 (7)C11—N7B—C10—N8B32.9 (10)
C12—N8B—C10—N7B23.7 (9)C16—N7B—C10—N8B150.9 (7)
C12—N6A—C10—N7A146.0 (2)C11—N7B—C10—N6B152.6 (7)
C11—N6A—C10—N7A33.6 (3)C16—N7B—C10—N6B23.6 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H31···N20.78 (3)2.00 (3)2.780 (3)176 (3)
O3—H32···O5i0.86 (4)2.00 (4)2.858 (4)172 (3)
O4—H42···O3ii0.83 (4)2.04 (4)2.852 (4)164 (3)
O4—H41···N1ii0.84 (3)2.00 (3)2.833 (3)173 (3)
O5—H51···O2iii0.85 (3)1.92 (3)2.761 (3)175 (3)
O5—H52···O1iv0.74 (4)2.10 (4)2.840 (4)177 (3)
Symmetry codes: (i) x1, y, z1/2; (ii) x+1, y, z; (iii) x, y, z+1/2; (iv) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H31···N20.78 (3)2.00 (3)2.780 (3)176 (3)
O3—H32···O5i0.86 (4)2.00 (4)2.858 (4)172 (3)
O4—H42···O3ii0.83 (4)2.04 (4)2.852 (4)164 (3)
O4—H41···N1ii0.84 (3)2.00 (3)2.833 (3)173 (3)
O5—H51···O2iii0.85 (3)1.92 (3)2.761 (3)175 (3)
O5—H52···O1iv0.74 (4)2.10 (4)2.840 (4)177 (3)
Symmetry codes: (i) x1, y, z1/2; (ii) x+1, y, z; (iii) x, y, z+1/2; (iv) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank Dr W. Frey (Institut für Organische Chemie, Universität Stuttgart) for measuring the diffraction data.

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFrey, W., Vettel, M., Edelmann, K. & Kantlehner, W. (1998). Z. Kristallogr. 213, 77–78.  CAS Google Scholar
First citationKantlehner, W., Haug, E., Mergen, W. W., Speh, P., Maier, T., Kapassakalidis, J. J., Bräuner, H.-J. & Hagen, H. (1984). Liebigs Ann. Chem. pp. 108–126.  CrossRef Google Scholar
First citationKolomeitsev, A., Bissky, G., Kirsch, P. & Röschenthaler, G.-V. (2000). J. Fluor. Chem. 103, 159–161.  Web of Science CrossRef CAS Google Scholar
First citationMacLean, E. J., Harris, K. D. M., Kariuki, B. M., Kitchin, S. J., Tykwinski, R. R., Swainson, I. P. & Dunitz, J. D. (2003). J. Am. Chem. Soc. 125, 14449–14451.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOelkers, B. & Sundermeyer, J. (2011). Green Chem. 13, 608–618.  Web of Science CSD CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPetz, W. & Weller, F. (1991). Z. Naturforsch. Teil B, 46, 297–302.  CAS Google Scholar
First citationRöschenthaler, G.-V., Lork, E., Bissky, G. & Kolomeitsev, A. (2002). Z. Kristallogr. 217, 419–420.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZhang, X., Bau, R., Sheehy, J. A. & Christe, K. O. (1999). J. Fluor. Chem. 98, 121–126.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds