organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 3-(di­ethyl­amino)­phenol

aDepartment of Chemistry and Biochemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA, and bDepartment of Science & Math, Massasoit Community College, 1 Massasoit Boulevard, Brockton, MA 02302, USA
*Correspondence e-mail: dmanke@umassd.edu

Edited by K. Fejfarova, Institute of Macromolecular Chemistry, AS CR, v.v.i, Czech Republic (Received 15 December 2015; accepted 16 December 2015; online 24 December 2015)

The title compound, C10H15NO, has two mol­ecules in the asymmetric unit. Each mol­ecule has a near-planar C8NO unit excluding H atoms and the terminal methyl groups on the di­ethyl­amino groups, with mean deviations from planarity of 0.036 and 0.063 Å. In the crystal, hydrogen bonding leads to four-membered O—H⋯O—H⋯O—H·· rings. No ππ inter­actions were observed in the structure.

1. Related literature

For the structure of 3-amino­phenol, see: Allen et al. (1997[Allen, F. H., Hoy, V. J., Howard, J. A. K., Thalladi, V. R., Desiraju, G. R., Wilson, C. C. & McIntyre, G. J. (1997). J. Am. Chem. Soc. 119, 3477-3480.]). For the structure of similar 3-amino­phenols, see: Xu et al. (2004[Xu, L., Guo, G.-C., Liu, B., Fu, M.-L. & Huang, J.-S. (2004). Acta Cryst. E60, o1060-o1062.]); Suchetan et al. (2014[Suchetan, P. A., Naveen, S., Lokanath, N. K. & Sreenivasa, S. (2014). Acta Cryst. E70, o927.]). For background, see: McDonald et al. (2015[McDonald, K. J., Desikan, V., Golen, J. A. & Manke, D. R. (2015). Acta Cryst. E71, o406.]); Mills-Robles et al. (2015[Mills-Robles, H. A., Desikan, V., Golen, J. A. & Manke, D. R. (2015). Acta Cryst. E71, o1019.]); Nguyen et al. (2015[Nguyen, D. M., Desikan, V., Golen, J. A. & Manke, D. R. (2015). Acta Cryst. E71, o533.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C10H15NO

  • Mr = 165.23

  • Orthorhombic, P b c a

  • a = 14.5166 (17) Å

  • b = 15.9102 (18) Å

  • c = 16.0527 (18) Å

  • V = 3707.6 (7) Å3

  • Z = 16

  • Cu Kα radiation

  • μ = 0.60 mm−1

  • T = 120 K

  • 0.25 × 0.2 × 0.1 mm

2.2. Data collection

  • Bruker D8 Venture CMOS diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.679, Tmax = 0.753

  • 21122 measured reflections

  • 3398 independent reflections

  • 2633 reflections with I > 2σ(I)

  • Rint = 0.090

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.107

  • S = 1.02

  • 3398 reflections

  • 228 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O1A 0.86 (1) 1.92 (1) 2.7445 (16) 160 (2)
O1A—H1A⋯O1i 0.86 (1) 1.91 (1) 2.7599 (16) 170 (2)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2014[Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Herein we report the structure of 3-(di­ethyl­amino)­phenol as part of a continuing collaboration between UMass Darmouth and Massasoit Community College to examine the solid state structure of aromatic alcohols (McDonald et al., 2015; Mills-Robles et al., 2015; Nguyen et al., 2015). Hydrogen bonding in the title compound leads to four-membered O1–H1···O1A–H1A···O1–H1·· rings. The molecules with the greatest structural similarity whose solid state structure have been reported all demonstrate hydrogen bonding with different acceptors. The parent 3-amino­phenol (Allen et al., 1997) and 3-(1H-1,2,4-triazol-4-yl)phenol (Xu et al., 2004) both instead demonstrate O–H···N hydrogen bonding. The structure of N-(3-hy­droxy­phenyl)­succinimide possesses O–H···O inter­actions with carbonyl oxygen atoms (Suchetan et al., 2014) rather than phenol only inter­actions.

The molecular structure of the title compound has two molecules in the asymmetric unit. Each molecule has a near planar C8NO unit excluding hydrogens and the terminal methyls on the di­ethyl­amino groups (C8, C10 and C8A, C10A). This unit for the molecule containing O1 has a mean deviations from planarity of 0.036 Å and the C8NO unit for molecule containing O1A has a mean deviation from planarity of 0.063 Å. No π-π inter­actions were observed in the structure. The packing for the title compound indicating hydrogen bonding is shown in Figure 2.

Experimental top

Crystals suitable for X-ray diffraction studies were selected from a commercial sample (Aldrich).

Refinement top

All non-hydrogen atoms were refined anisotropically (XL) by full matrix least squares on F2. Hydrogen atoms H1 and H1A were found from a Fourier difference map, and refined with a fixed distance of 0.86 (0.01) Å and isotropic displacement parameters of 1.50 times Ueq of the parent O atoms. The remaining hydrogen atoms were placed in calculated positions and then refined with a riding model with C–H lengths of 0.95 Å (sp2) and 0.98 Å (sp3) with isotropic displacement parameters set to 1.20 (sp2) and 1.50 (sp3) times Ueq of the parent C atom.

Related literature top

For the structure of 3-aminophenol, see: Allen et al. (1997). For the structure of similar 3-aminophenols, see: Xu et al. (2004); Suchetan et al. (2014). For background, see: McDonald et al. (2015); Mills-Robles et al. (2015); Nguyen et al. (2015).

Structure description top

Herein we report the structure of 3-(di­ethyl­amino)­phenol as part of a continuing collaboration between UMass Darmouth and Massasoit Community College to examine the solid state structure of aromatic alcohols (McDonald et al., 2015; Mills-Robles et al., 2015; Nguyen et al., 2015). Hydrogen bonding in the title compound leads to four-membered O1–H1···O1A–H1A···O1–H1·· rings. The molecules with the greatest structural similarity whose solid state structure have been reported all demonstrate hydrogen bonding with different acceptors. The parent 3-amino­phenol (Allen et al., 1997) and 3-(1H-1,2,4-triazol-4-yl)phenol (Xu et al., 2004) both instead demonstrate O–H···N hydrogen bonding. The structure of N-(3-hy­droxy­phenyl)­succinimide possesses O–H···O inter­actions with carbonyl oxygen atoms (Suchetan et al., 2014) rather than phenol only inter­actions.

The molecular structure of the title compound has two molecules in the asymmetric unit. Each molecule has a near planar C8NO unit excluding hydrogens and the terminal methyls on the di­ethyl­amino groups (C8, C10 and C8A, C10A). This unit for the molecule containing O1 has a mean deviations from planarity of 0.036 Å and the C8NO unit for molecule containing O1A has a mean deviation from planarity of 0.063 Å. No π-π inter­actions were observed in the structure. The packing for the title compound indicating hydrogen bonding is shown in Figure 2.

Crystals suitable for X-ray diffraction studies were selected from a commercial sample (Aldrich).

For the structure of 3-aminophenol, see: Allen et al. (1997). For the structure of similar 3-aminophenols, see: Xu et al. (2004); Suchetan et al. (2014). For background, see: McDonald et al. (2015); Mills-Robles et al. (2015); Nguyen et al. (2015).

Refinement details top

All non-hydrogen atoms were refined anisotropically (XL) by full matrix least squares on F2. Hydrogen atoms H1 and H1A were found from a Fourier difference map, and refined with a fixed distance of 0.86 (0.01) Å and isotropic displacement parameters of 1.50 times Ueq of the parent O atoms. The remaining hydrogen atoms were placed in calculated positions and then refined with a riding model with C–H lengths of 0.95 Å (sp2) and 0.98 Å (sp3) with isotropic displacement parameters set to 1.20 (sp2) and 1.50 (sp3) times Ueq of the parent C atom.

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
3-(Diethylamino)phenol top
Crystal data top
C10H15NOF(000) = 1440
Mr = 165.23Dx = 1.184 Mg m3
Orthorhombic, PbcaCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ac 2abCell parameters from 8014 reflections
a = 14.5166 (17) Åθ = 5.0–68.1°
b = 15.9102 (18) ŵ = 0.60 mm1
c = 16.0527 (18) ÅT = 120 K
V = 3707.6 (7) Å3SHARD, colourless
Z = 160.25 × 0.2 × 0.1 mm
Data collection top
Bruker D8 Venture CMOS
diffractometer
3398 independent reflections
Radiation source: Cu2633 reflections with I > 2σ(I)
HELIOS MX monochromatorRint = 0.090
φ and ω scansθmax = 68.4°, θmin = 5.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 1717
Tmin = 0.679, Tmax = 0.753k = 1819
21122 measured reflectionsl = 1119
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0402P)2 + 1.2567P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.107(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.19 e Å3
3398 reflectionsΔρmin = 0.20 e Å3
228 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.0024 (2)
Crystal data top
C10H15NOV = 3707.6 (7) Å3
Mr = 165.23Z = 16
Orthorhombic, PbcaCu Kα radiation
a = 14.5166 (17) ŵ = 0.60 mm1
b = 15.9102 (18) ÅT = 120 K
c = 16.0527 (18) Å0.25 × 0.2 × 0.1 mm
Data collection top
Bruker D8 Venture CMOS
diffractometer
3398 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
2633 reflections with I > 2σ(I)
Tmin = 0.679, Tmax = 0.753Rint = 0.090
21122 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0422 restraints
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.19 e Å3
3398 reflectionsΔρmin = 0.20 e Å3
228 parameters
Special details top

Experimental. Absorption correction: SADABS-2014/4 (Bruker,2014/4) was used for absorption correction. wR2(int) was 0.1095 before and 0.0838 after correction. The Ratio of minimum to maximum transmission is 0.9012. The λ/2 correction factor is 0.00150.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.53496 (8)0.52600 (7)0.61994 (7)0.0255 (3)
H10.5319 (14)0.5635 (10)0.5812 (10)0.038*
N10.82785 (10)0.66193 (9)0.66954 (9)0.0271 (3)
C10.61885 (11)0.53018 (10)0.66024 (10)0.0209 (3)
C20.68001 (11)0.59514 (10)0.64446 (10)0.0211 (3)
H20.66390.63790.60580.025*
C30.76619 (12)0.59821 (9)0.68541 (10)0.0214 (4)
C40.78585 (12)0.53347 (10)0.74327 (10)0.0234 (4)
H40.84230.53420.77320.028*
C50.72339 (12)0.46927 (10)0.75652 (10)0.0249 (4)
H50.73850.42600.79500.030*
C60.63954 (12)0.46591 (10)0.71552 (10)0.0250 (4)
H60.59760.42110.72490.030*
C70.92033 (12)0.66198 (11)0.70474 (11)0.0281 (4)
H7A0.96310.68840.66440.034*
H7B0.94050.60310.71300.034*
C80.92687 (14)0.70839 (12)0.78718 (12)0.0367 (5)
H8A0.99100.70890.80610.055*
H8B0.88850.68000.82870.055*
H8C0.90530.76630.77990.055*
C90.80758 (12)0.72813 (10)0.60980 (11)0.0275 (4)
H9A0.84600.77780.62300.033*
H9B0.74220.74480.61590.033*
C100.82475 (13)0.70291 (11)0.52001 (11)0.0323 (4)
H10A0.81670.75200.48380.048*
H10B0.78090.65900.50380.048*
H10C0.88770.68140.51440.048*
O1A0.50614 (8)0.61366 (7)0.47501 (7)0.0254 (3)
N1A0.63804 (10)0.88712 (8)0.50028 (8)0.0238 (3)
C1A0.55769 (11)0.67627 (9)0.43824 (10)0.0196 (3)
H1A0.4968 (13)0.5730 (9)0.4404 (10)0.029*
C2A0.57128 (10)0.74811 (9)0.48544 (9)0.0186 (3)
H2A0.54580.75170.53980.022*
C3A0.62260 (11)0.81588 (9)0.45334 (9)0.0188 (3)
C4A0.65707 (11)0.80848 (10)0.37146 (10)0.0214 (4)
H4A0.69050.85360.34730.026*
C5A0.64237 (11)0.73569 (10)0.32641 (10)0.0234 (4)
H5A0.66690.73170.27170.028*
C6A0.59298 (11)0.66813 (10)0.35830 (10)0.0228 (4)
H6A0.58370.61840.32660.027*
C7A0.68674 (12)0.95955 (10)0.46599 (11)0.0249 (4)
H7AA0.66781.01050.49690.030*
H7AB0.66810.96710.40710.030*
C8A0.79083 (12)0.95156 (11)0.47007 (11)0.0303 (4)
H8AA0.81921.00410.45120.045*
H8AB0.81090.90530.43400.045*
H8AC0.80960.94010.52760.045*
C9A0.61651 (12)0.89193 (10)0.58880 (10)0.0248 (4)
H9AA0.66640.92300.61750.030*
H9AB0.61500.83430.61200.030*
C10A0.52551 (13)0.93469 (12)0.60712 (12)0.0358 (5)
H10D0.51790.94050.66750.054*
H10E0.47500.90080.58460.054*
H10F0.52480.99040.58120.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0246 (7)0.0244 (6)0.0276 (6)0.0063 (5)0.0026 (5)0.0020 (5)
N10.0210 (8)0.0279 (7)0.0323 (8)0.0061 (6)0.0042 (6)0.0053 (6)
C10.0211 (8)0.0223 (7)0.0194 (8)0.0007 (6)0.0019 (6)0.0043 (6)
C20.0241 (9)0.0198 (7)0.0195 (8)0.0003 (6)0.0016 (6)0.0001 (6)
C30.0219 (9)0.0206 (8)0.0216 (8)0.0001 (6)0.0037 (6)0.0036 (6)
C40.0244 (9)0.0252 (8)0.0207 (8)0.0035 (7)0.0003 (6)0.0032 (7)
C50.0321 (10)0.0226 (8)0.0201 (8)0.0048 (7)0.0047 (7)0.0007 (6)
C60.0301 (10)0.0202 (8)0.0246 (8)0.0022 (7)0.0063 (7)0.0005 (7)
C70.0199 (9)0.0336 (9)0.0309 (9)0.0044 (7)0.0002 (7)0.0002 (7)
C80.0406 (12)0.0394 (10)0.0300 (10)0.0106 (9)0.0043 (8)0.0004 (8)
C90.0240 (9)0.0203 (8)0.0381 (10)0.0041 (7)0.0009 (7)0.0027 (7)
C100.0258 (10)0.0330 (9)0.0379 (10)0.0002 (8)0.0024 (8)0.0072 (8)
O1A0.0278 (7)0.0209 (6)0.0274 (6)0.0078 (5)0.0013 (5)0.0007 (5)
N1A0.0287 (8)0.0206 (7)0.0222 (7)0.0052 (6)0.0038 (6)0.0041 (5)
C1A0.0147 (8)0.0192 (7)0.0249 (8)0.0013 (6)0.0026 (6)0.0033 (6)
C2A0.0155 (8)0.0218 (8)0.0185 (8)0.0015 (6)0.0001 (6)0.0004 (6)
C3A0.0160 (8)0.0192 (7)0.0211 (8)0.0004 (6)0.0022 (6)0.0006 (6)
C4A0.0192 (9)0.0227 (8)0.0223 (8)0.0026 (6)0.0002 (6)0.0015 (6)
C5A0.0218 (9)0.0294 (8)0.0190 (8)0.0006 (7)0.0017 (6)0.0020 (7)
C6A0.0222 (9)0.0220 (8)0.0243 (8)0.0010 (6)0.0034 (7)0.0055 (6)
C7A0.0263 (9)0.0163 (7)0.0319 (9)0.0037 (7)0.0029 (7)0.0027 (6)
C8A0.0281 (10)0.0327 (9)0.0302 (9)0.0079 (7)0.0018 (7)0.0062 (7)
C9A0.0271 (10)0.0269 (8)0.0202 (8)0.0015 (7)0.0025 (7)0.0050 (6)
C10A0.0320 (11)0.0408 (10)0.0348 (10)0.0041 (9)0.0066 (8)0.0080 (8)
Geometric parameters (Å, º) top
O1—H10.863 (9)O1A—C1A1.3786 (19)
O1—C11.381 (2)O1A—H1A0.863 (9)
N1—C31.376 (2)N1A—C3A1.379 (2)
N1—C71.457 (2)N1A—C7A1.460 (2)
N1—C91.455 (2)N1A—C9A1.457 (2)
C1—C21.386 (2)C1A—C2A1.385 (2)
C1—C61.387 (2)C1A—C6A1.388 (2)
C2—H20.9500C2A—H2A0.9500
C2—C31.414 (2)C2A—C3A1.408 (2)
C3—C41.416 (2)C3A—C4A1.411 (2)
C4—H40.9500C4A—H4A0.9500
C4—C51.382 (2)C4A—C5A1.382 (2)
C5—H50.9500C5A—H5A0.9500
C5—C61.385 (2)C5A—C6A1.390 (2)
C6—H60.9500C6A—H6A0.9500
C7—H7A0.9900C7A—H7AA0.9900
C7—H7B0.9900C7A—H7AB0.9900
C7—C81.518 (2)C7A—C8A1.518 (2)
C8—H8A0.9800C8A—H8AA0.9800
C8—H8B0.9800C8A—H8AB0.9800
C8—H8C0.9800C8A—H8AC0.9800
C9—H9A0.9900C9A—H9AA0.9900
C9—H9B0.9900C9A—H9AB0.9900
C9—C101.517 (3)C9A—C10A1.515 (2)
C10—H10A0.9800C10A—H10D0.9800
C10—H10B0.9800C10A—H10E0.9800
C10—H10C0.9800C10A—H10F0.9800
C1—O1—H1110.5 (14)C1A—O1A—H1A110.6 (13)
C3—N1—C7121.88 (14)C3A—N1A—C7A121.42 (13)
C3—N1—C9121.59 (14)C3A—N1A—C9A122.76 (13)
C9—N1—C7116.22 (14)C9A—N1A—C7A115.48 (13)
O1—C1—C2121.02 (14)O1A—C1A—C2A116.05 (14)
O1—C1—C6117.09 (14)O1A—C1A—C6A121.93 (14)
C2—C1—C6121.88 (15)C2A—C1A—C6A122.02 (14)
C1—C2—H2119.7C1A—C2A—H2A119.8
C1—C2—C3120.50 (15)C1A—C2A—C3A120.46 (14)
C3—C2—H2119.7C3A—C2A—H2A119.8
N1—C3—C2120.99 (14)N1A—C3A—C2A121.02 (14)
N1—C3—C4121.75 (15)N1A—C3A—C4A121.31 (14)
C2—C3—C4117.26 (15)C2A—C3A—C4A117.67 (14)
C3—C4—H4119.8C3A—C4A—H4A119.9
C5—C4—C3120.41 (16)C5A—C4A—C3A120.17 (15)
C5—C4—H4119.8C5A—C4A—H4A119.9
C4—C5—H5118.9C4A—C5A—H5A118.8
C4—C5—C6122.14 (16)C4A—C5A—C6A122.35 (15)
C6—C5—H5118.9C6A—C5A—H5A118.8
C1—C6—H6121.1C1A—C6A—C5A117.31 (14)
C5—C6—C1117.77 (15)C1A—C6A—H6A121.3
C5—C6—H6121.1C5A—C6A—H6A121.3
N1—C7—H7A108.9N1A—C7A—H7AA108.9
N1—C7—H7B108.9N1A—C7A—H7AB108.9
N1—C7—C8113.32 (15)N1A—C7A—C8A113.57 (14)
H7A—C7—H7B107.7H7AA—C7A—H7AB107.7
C8—C7—H7A108.9C8A—C7A—H7AA108.9
C8—C7—H7B108.9C8A—C7A—H7AB108.9
C7—C8—H8A109.5C7A—C8A—H8AA109.5
C7—C8—H8B109.5C7A—C8A—H8AB109.5
C7—C8—H8C109.5C7A—C8A—H8AC109.5
H8A—C8—H8B109.5H8AA—C8A—H8AB109.5
H8A—C8—H8C109.5H8AA—C8A—H8AC109.5
H8B—C8—H8C109.5H8AB—C8A—H8AC109.5
N1—C9—H9A108.8N1A—C9A—H9AA108.9
N1—C9—H9B108.8N1A—C9A—H9AB108.9
N1—C9—C10113.69 (14)N1A—C9A—C10A113.58 (15)
H9A—C9—H9B107.7H9AA—C9A—H9AB107.7
C10—C9—H9A108.8C10A—C9A—H9AA108.9
C10—C9—H9B108.8C10A—C9A—H9AB108.9
C9—C10—H10A109.5C9A—C10A—H10D109.5
C9—C10—H10B109.5C9A—C10A—H10E109.5
C9—C10—H10C109.5C9A—C10A—H10F109.5
H10A—C10—H10B109.5H10D—C10A—H10E109.5
H10A—C10—H10C109.5H10D—C10A—H10F109.5
H10B—C10—H10C109.5H10E—C10A—H10F109.5
O1—C1—C2—C3179.26 (14)O1A—C1A—C2A—C3A179.69 (14)
O1—C1—C6—C5179.92 (14)O1A—C1A—C6A—C5A178.67 (14)
N1—C3—C4—C5178.55 (15)N1A—C3A—C4A—C5A178.57 (15)
C1—C2—C3—N1179.29 (15)C1A—C2A—C3A—N1A178.81 (15)
C1—C2—C3—C41.0 (2)C1A—C2A—C3A—C4A1.6 (2)
C2—C1—C6—C51.4 (2)C2A—C1A—C6A—C5A0.6 (2)
C2—C3—C4—C51.7 (2)C2A—C3A—C4A—C5A1.8 (2)
C3—N1—C7—C892.09 (19)C3A—N1A—C7A—C8A83.25 (19)
C3—N1—C9—C1081.0 (2)C3A—N1A—C9A—C10A98.73 (19)
C3—C4—C5—C61.0 (2)C3A—C4A—C5A—C6A0.9 (2)
C4—C5—C6—C10.6 (2)C4A—C5A—C6A—C1A0.3 (2)
C6—C1—C2—C30.6 (2)C6A—C1A—C2A—C3A0.4 (2)
C7—N1—C3—C2173.91 (15)C7A—N1A—C3A—C2A176.56 (15)
C7—N1—C3—C46.4 (2)C7A—N1A—C3A—C4A3.0 (2)
C7—N1—C9—C1092.77 (18)C7A—N1A—C9A—C10A87.86 (18)
C9—N1—C3—C20.5 (2)C9A—N1A—C3A—C2A10.4 (2)
C9—N1—C3—C4179.73 (15)C9A—N1A—C3A—C4A169.98 (15)
C9—N1—C7—C894.20 (18)C9A—N1A—C7A—C8A90.25 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1A0.86 (1)1.92 (1)2.7445 (16)160 (2)
O1A—H1A···O1i0.86 (1)1.91 (1)2.7599 (16)170 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1A0.863 (9)1.919 (12)2.7445 (16)160 (2)
O1A—H1A···O1i0.863 (9)1.906 (10)2.7599 (16)169.9 (19)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

We greatly acknowledge support from the National Science Foundation (CHE-1429086).

References

First citationAllen, F. H., Hoy, V. J., Howard, J. A. K., Thalladi, V. R., Desiraju, G. R., Wilson, C. C. & McIntyre, G. J. (1997). J. Am. Chem. Soc. 119, 3477–3480.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcDonald, K. J., Desikan, V., Golen, J. A. & Manke, D. R. (2015). Acta Cryst. E71, o406.  CSD CrossRef IUCr Journals Google Scholar
First citationMills-Robles, H. A., Desikan, V., Golen, J. A. & Manke, D. R. (2015). Acta Cryst. E71, o1019.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNguyen, D. M., Desikan, V., Golen, J. A. & Manke, D. R. (2015). Acta Cryst. E71, o533.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSuchetan, P. A., Naveen, S., Lokanath, N. K. & Sreenivasa, S. (2014). Acta Cryst. E70, o927.  CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, L., Guo, G.-C., Liu, B., Fu, M.-L. & Huang, J.-S. (2004). Acta Cryst. E60, o1060–o1062.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds