organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-bromo-3-di­methyl­amino-N,N,N′,N′,4-penta­methyl-4-(tri­methyl­sil­yl­oxy)pent-2-eneamidinium bromide

aFakultät Chemie/Organische Chemie, Hochschule Aalen, Beethovenstrasse 1, D-73430 Aalen, Germany
*Correspondence e-mail: willi.kantlehner@hs-aalen.de

Edited by K. Fejfarova, Institute of Macromolecular Chemistry, AS CR, v.v.i, Czech Republic (Received 30 November 2015; accepted 11 December 2015; online 16 December 2015)

The reaction of the ortho­amide 1,1,1-tris­(di­methyl­amino)-4-methyl-4-(tri­methyl­sil­yloxy)pent-2-yne with bromine in benzene, yields the title salt, C15H33BrN3OSi+·Br. The C—N bond lengths in the amidinium unit are 1.319 (6) and 1.333 (6) Å, indicating double-bond character, pointing towards charge delocalization within the NCN plane. The C—Br bond length of 1.926 (5) Å is characteristic for a C—Br single bond. Additionally, there is a bromine–bromine inter­action [3.229 (3) Å] present involving the anion and cation. In the crystal, weak C—H⋯Br inter­actions between the methyl H atoms of the cation and the bromide ions are present.

1. Related literature

For the nature of halogen–halogen inter­actions in crystals, see: Desiraju & Parthasarathy (1989[Desiraju, G. R. & Parthasarathy, R. (1989). J. Am. Chem. Soc. 111, 8725-8726.]). For the synthesis of alkynyl ortho­amides and propiolamidinium salts, see: Weingärtner et al. (2011[Weingärtner, W., Kantlehner, W. & Maas, G. (2011). Synthesis, 2011, 265-272.]). For the synthesis of vinyl­ogous guanidinium iodides and bromides, see: Kantlehner et al. (2012a[Kantlehner, W., Stieglitz, R., Kress, R., Frey, W. & Tiritiris, I. (2012a). Synthesis, 44, 3090-3094.]). For the crystal structure of 3-phenyl-N,N,N′,N′′-tetra­methyl-1-ethyne-1-carboximidamidium bromide, see: Tiritiris & Kantlehner (2012b[Tiritiris, I. & Kantlehner, W. (2012b). Acta Cryst. E68, o1812.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C15H33BrN3OSi+·Br

  • Mr = 459.33

  • Orthorhombic, P b c a

  • a = 13.3524 (5) Å

  • b = 11.3802 (3) Å

  • c = 27.4261 (14) Å

  • V = 4167.5 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.95 mm−1

  • T = 100 K

  • 0.45 × 0.30 × 0.15 mm

2.2. Data collection

  • Bruker Kappa APEXII DUO diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.285, Tmax = 0.530

  • 32287 measured reflections

  • 5164 independent reflections

  • 3394 reflections with I > 2σ(I)

  • Rint = 0.095

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.099

  • S = 1.17

  • 5164 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 1.10 e Å−3

  • Δρmin = −1.88 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3C⋯Br1i 0.98 2.81 3.742 (3) 159
C14—H14B⋯Br1ii 0.98 2.87 3.790 (3) 156
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z]; (ii) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL2014.

Supporting information


Comment top

Orthoamide derivatives of alkynecarboxylic acids are prepared from N,N,N',N',N'',N''- hexaalkylguanidinium chlorides and terminal alkynes. Their conversion into propiolamidinium chlorides by reaction with benzoyl chloride and into propiolamidinium triflates by reaction with triethylsilyl trifluoromethanesulfonate is well known in literature (Weingärtner et al., 2011). Alkyne orthoamides are transformed by elemental iodine or bromine to vinylogous guanidinium iodides or bromides (Kantlehner et al., 2012a). Phenyl substituted alkyne orthoamides like 3,3,3-Tris(dimethylamino)-1-phenyl- prop-1-yne (Weingärtner et al., 2011) behave differently, it reacts with bromine to give 3-Phenyl-N,N,N',N''- tetramethyl-1-ethyne-1-carboximidamidium bromide (Tiritiris & Kantlehner, 2012b). According to the structure analysis of the title compound, the C–N bond lengths in the amidinium unit are 1.319 (6) and 1.333 (6) Å, indicating double bond character. The positive charge in the cation is distributed between both dimethylamino groups. The bromine atom Br2 and the 3-dimethylamino group are in cis position due to sterical reasons (Fig. 1). The angle between the planes N1/C5/N2 and C10/C7/N3 is 85.1 (1)°. Other prominent bond parameters in the cation are: C6–Br2 = 1.926 (5) Å and C6–C7 = 1.327 (7) Å, characteristic for a C–Br single and C–C double bond, respectively. Additionally, an bromine-bromine interaction [d(Br···Br) = 3.229 (3) Å] between the anion and cation has been determined, which is shorter than the sum of their van der Waals radii (Desiraju & Parthasarathy, 1989). Week C–H···Br interactions between the hydrogen atoms of –N(CH3)2 and –SiCH3 groups and the bromide ions are present (Fig. 2), ranging from 2.81 to 2.87 Å (Tab. 1). Typical values of Br···Br, C···Br and H···Br interactions in bromohydrocarbon crystals were considered by Desiraju and Parthasarathy having less than 3.72, 3.61 and 3.06 Å, respectively (Desiraju & Parthasarathy, 1989).

Related literature top

For the nature of halogen–halogen interactions in crystals, see: Desiraju & Parthasarathy (1989). For the synthesis of alkynyl orthoamides and propiolamidinium salts, see: Weingärtner et al. (2011). For synthesis of vinylogous guanidinium iodides and bromides, see: Kantlehner et al. (2012a). For the crystal structure of 3-phenyl-N,N,N',N''-tetramethyl-1-ethyne-1-carboximidamidium bromide, see: Tiritiris & Kantlehner (2012b).

Experimental top

To (2.10 g, 7.0 mmol) 4-methyl-4-trimethylsilyloxy-1,1,1- tris(dimethylamino)pent-2-yne in 50 ml benzene was added dropwise under ice/water cooling, elemental bromine (1.12 g, 7.0 mmol) in benzene. After stirring for two hours at room temperature, a yellow precipitate was collected by filtration. The title compound crystallized from a saturated acetonitrile solution after several days at 273 K, forming yellow single crystals. Yield: 2.77 g (80%).

Refinement top

The hydrogen atoms of the methyl groups were allowed to rotate with a fixed angle around the C–N, C–C and C–Si bonds to best fit the experimental electron density, with Uiso(H) set to 1.5 Ueq(C) and d(C—H) = 0.98 Å.

Structure description top

Orthoamide derivatives of alkynecarboxylic acids are prepared from N,N,N',N',N'',N''- hexaalkylguanidinium chlorides and terminal alkynes. Their conversion into propiolamidinium chlorides by reaction with benzoyl chloride and into propiolamidinium triflates by reaction with triethylsilyl trifluoromethanesulfonate is well known in literature (Weingärtner et al., 2011). Alkyne orthoamides are transformed by elemental iodine or bromine to vinylogous guanidinium iodides or bromides (Kantlehner et al., 2012a). Phenyl substituted alkyne orthoamides like 3,3,3-Tris(dimethylamino)-1-phenyl- prop-1-yne (Weingärtner et al., 2011) behave differently, it reacts with bromine to give 3-Phenyl-N,N,N',N''- tetramethyl-1-ethyne-1-carboximidamidium bromide (Tiritiris & Kantlehner, 2012b). According to the structure analysis of the title compound, the C–N bond lengths in the amidinium unit are 1.319 (6) and 1.333 (6) Å, indicating double bond character. The positive charge in the cation is distributed between both dimethylamino groups. The bromine atom Br2 and the 3-dimethylamino group are in cis position due to sterical reasons (Fig. 1). The angle between the planes N1/C5/N2 and C10/C7/N3 is 85.1 (1)°. Other prominent bond parameters in the cation are: C6–Br2 = 1.926 (5) Å and C6–C7 = 1.327 (7) Å, characteristic for a C–Br single and C–C double bond, respectively. Additionally, an bromine-bromine interaction [d(Br···Br) = 3.229 (3) Å] between the anion and cation has been determined, which is shorter than the sum of their van der Waals radii (Desiraju & Parthasarathy, 1989). Week C–H···Br interactions between the hydrogen atoms of –N(CH3)2 and –SiCH3 groups and the bromide ions are present (Fig. 2), ranging from 2.81 to 2.87 Å (Tab. 1). Typical values of Br···Br, C···Br and H···Br interactions in bromohydrocarbon crystals were considered by Desiraju and Parthasarathy having less than 3.72, 3.61 and 3.06 Å, respectively (Desiraju & Parthasarathy, 1989).

For the nature of halogen–halogen interactions in crystals, see: Desiraju & Parthasarathy (1989). For the synthesis of alkynyl orthoamides and propiolamidinium salts, see: Weingärtner et al. (2011). For synthesis of vinylogous guanidinium iodides and bromides, see: Kantlehner et al. (2012a). For the crystal structure of 3-phenyl-N,N,N',N''-tetramethyl-1-ethyne-1-carboximidamidium bromide, see: Tiritiris & Kantlehner (2012b).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with displacement ellipsoids at the 50% probability level. All hydrogen atoms were omitted for the sake of clarity. The Br···Br interaction is indicated by a black dashed line.
[Figure 2] Fig. 2. C—H···Br interactions (black dashed lines) between the hydrogen atoms of the methyl groups and the bromide ions. Br···Br interactions are also indicated by black dashed lines.
2-Bromo-3-dimethylamino-N,N,N',N',4-pentamethyl-4-(trimethylsilyloxy)pent-2-eneamidinium bromide top
Crystal data top
C15H33BrN3OSi+·BrDx = 1.464 Mg m3
Mr = 459.33Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 32287 reflections
a = 13.3524 (5) Åθ = 1.5–28.3°
b = 11.3802 (3) ŵ = 3.95 mm1
c = 27.4261 (14) ÅT = 100 K
V = 4167.5 (3) Å3Block, yellow
Z = 80.45 × 0.30 × 0.15 mm
F(000) = 1888
Data collection top
Bruker Kappa APEXII DUO
diffractometer
5164 independent reflections
Radiation source: fine-focus sealed tube3394 reflections with I > 2σ(I)
Triumph monochromatorRint = 0.095
φ scans, and ω scansθmax = 28.3°, θmin = 1.5°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1710
Tmin = 0.285, Tmax = 0.530k = 1515
32287 measured reflectionsl = 3636
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + 19.9082P]
where P = (Fo2 + 2Fc2)/3
5164 reflections(Δ/σ)max < 0.001
210 parametersΔρmax = 1.10 e Å3
0 restraintsΔρmin = 1.88 e Å3
Crystal data top
C15H33BrN3OSi+·BrV = 4167.5 (3) Å3
Mr = 459.33Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 13.3524 (5) ŵ = 3.95 mm1
b = 11.3802 (3) ÅT = 100 K
c = 27.4261 (14) Å0.45 × 0.30 × 0.15 mm
Data collection top
Bruker Kappa APEXII DUO
diffractometer
5164 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
3394 reflections with I > 2σ(I)
Tmin = 0.285, Tmax = 0.530Rint = 0.095
32287 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + 19.9082P]
where P = (Fo2 + 2Fc2)/3
5164 reflectionsΔρmax = 1.10 e Å3
210 parametersΔρmin = 1.88 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.54519 (4)0.73694 (4)0.13843 (2)0.01487 (12)
Br20.45103 (4)0.23306 (5)0.24383 (2)0.01507 (12)
N10.5406 (3)0.3518 (3)0.13946 (16)0.0147 (9)
C10.4511 (4)0.4276 (4)0.1374 (2)0.0213 (12)
H1A0.39380.38160.12580.032*
H1B0.46330.49300.11490.032*
H1C0.43670.45850.17000.032*
C20.6368 (4)0.4157 (5)0.1374 (2)0.0226 (13)
H2A0.68790.37140.15530.034*
H2B0.62870.49350.15210.034*
H2C0.65760.42440.10330.034*
N20.6052 (3)0.1612 (4)0.14393 (15)0.0125 (9)
C30.6869 (4)0.1740 (5)0.1081 (2)0.0183 (12)
H3A0.67110.23850.08570.027*
H3B0.69420.10080.08960.027*
H3C0.74960.19140.12520.027*
C40.6060 (4)0.0462 (5)0.1683 (2)0.0194 (12)
H4A0.55450.04480.19380.029*
H4B0.67190.03280.18310.029*
H4C0.59220.01570.14440.029*
C50.5318 (3)0.2392 (4)0.15005 (16)0.0109 (10)
C60.4400 (4)0.1967 (4)0.17545 (17)0.0113 (10)
C70.3621 (3)0.1384 (4)0.15758 (18)0.0090 (10)
N30.2856 (3)0.0847 (4)0.18667 (15)0.0135 (10)
C80.2094 (4)0.1616 (5)0.2075 (2)0.0202 (13)
H8A0.23640.20050.23650.030*
H8B0.15060.11490.21660.030*
H8C0.19000.22090.18340.030*
C90.3192 (4)0.0079 (5)0.2199 (2)0.0206 (13)
H9A0.37100.05510.20390.031*
H9B0.26230.05830.22840.031*
H9C0.34660.02770.24960.031*
C100.3455 (4)0.1153 (4)0.10276 (18)0.0087 (10)
C110.3601 (4)0.0161 (4)0.09338 (19)0.0145 (11)
H11A0.34260.03410.05950.022*
H11B0.31680.06120.11540.022*
H11C0.43020.03720.09930.022*
C120.2409 (3)0.1539 (4)0.08853 (18)0.0112 (10)
H12A0.23340.23830.09470.017*
H12B0.19160.11030.10780.017*
H12C0.23010.13810.05380.017*
O10.4196 (2)0.1804 (3)0.07547 (12)0.0096 (7)
Si10.41809 (10)0.21877 (12)0.01674 (5)0.0103 (3)
C130.3405 (4)0.3517 (5)0.0054 (2)0.0169 (12)
H13A0.26980.33320.01130.025*
H13B0.34910.37720.02850.025*
H13C0.36160.41490.02740.025*
C140.3757 (4)0.0988 (5)0.02454 (19)0.0170 (12)
H14A0.41820.02950.01980.025*
H14B0.38040.12510.05850.025*
H14C0.30600.07850.01700.025*
C150.5486 (4)0.2599 (5)0.00131 (18)0.0196 (11)
H15A0.56870.32830.02070.029*
H15B0.55290.27910.03350.029*
H15C0.59340.19390.00860.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0172 (2)0.0146 (3)0.0128 (3)0.0002 (2)0.0014 (2)0.0024 (2)
Br20.0157 (2)0.0198 (3)0.0097 (2)0.0007 (2)0.0020 (2)0.0043 (2)
N10.010 (2)0.015 (2)0.019 (2)0.0006 (18)0.003 (2)0.0009 (18)
C10.017 (3)0.014 (3)0.033 (3)0.006 (2)0.003 (3)0.002 (2)
C20.013 (3)0.018 (3)0.036 (4)0.009 (2)0.004 (3)0.003 (3)
N20.009 (2)0.013 (2)0.015 (2)0.0023 (16)0.0033 (18)0.0027 (18)
C30.011 (3)0.024 (3)0.020 (3)0.002 (2)0.002 (2)0.009 (3)
C40.017 (3)0.014 (3)0.027 (3)0.005 (2)0.002 (2)0.003 (2)
C50.011 (2)0.013 (2)0.009 (2)0.002 (2)0.0038 (18)0.0037 (19)
C60.017 (3)0.012 (2)0.005 (2)0.001 (2)0.002 (2)0.0028 (19)
C70.009 (2)0.008 (2)0.011 (3)0.0018 (18)0.000 (2)0.0007 (19)
N30.011 (2)0.017 (2)0.013 (2)0.0023 (17)0.0040 (17)0.0027 (18)
C80.014 (3)0.029 (3)0.017 (3)0.001 (2)0.008 (2)0.004 (2)
C90.026 (3)0.017 (3)0.019 (3)0.001 (2)0.005 (2)0.005 (2)
C100.011 (2)0.004 (2)0.011 (3)0.0030 (18)0.002 (2)0.000 (2)
C110.018 (3)0.013 (3)0.013 (3)0.001 (2)0.001 (2)0.004 (2)
C120.009 (2)0.013 (3)0.012 (3)0.0002 (19)0.000 (2)0.001 (2)
O10.0090 (16)0.0135 (18)0.0064 (17)0.0018 (13)0.0008 (14)0.0002 (14)
Si10.0086 (6)0.0130 (7)0.0091 (7)0.0004 (5)0.0014 (5)0.0002 (6)
C130.016 (3)0.018 (3)0.016 (3)0.001 (2)0.002 (2)0.005 (2)
C140.020 (3)0.022 (3)0.010 (3)0.001 (2)0.001 (2)0.000 (2)
C150.015 (2)0.028 (3)0.016 (3)0.004 (3)0.002 (2)0.003 (2)
Geometric parameters (Å, º) top
Br2—C61.926 (5)C8—H8C0.9800
N1—C51.319 (6)C9—H9A0.9800
N1—C11.475 (6)C9—H9B0.9800
N1—C21.476 (6)C9—H9C0.9800
C1—H1A0.9800C10—O11.445 (6)
C1—H1B0.9800C10—C121.515 (7)
C1—H1C0.9800C10—C111.530 (6)
C2—H2A0.9800C11—H11A0.9800
C2—H2B0.9800C11—H11B0.9800
C2—H2C0.9800C11—H11C0.9800
N2—C51.333 (6)C12—H12A0.9800
N2—C41.470 (6)C12—H12B0.9800
N2—C31.475 (6)C12—H12C0.9800
C3—H3A0.9800O1—Si11.669 (3)
C3—H3B0.9800Si1—C151.854 (5)
C3—H3C0.9800Si1—C131.860 (5)
C4—H4A0.9800Si1—C141.862 (5)
C4—H4B0.9800C13—H13A0.9800
C4—H4C0.9800C13—H13B0.9800
C5—C61.491 (7)C13—H13C0.9800
C6—C71.327 (7)C14—H14A0.9800
C7—N31.433 (6)C14—H14B0.9800
C7—C101.542 (7)C14—H14C0.9800
N3—C81.458 (6)C15—H15A0.9800
N3—C91.464 (6)C15—H15B0.9800
C8—H8A0.9800C15—H15C0.9800
C8—H8B0.9800
C5—N1—C1120.3 (4)N3—C9—H9B109.5
C5—N1—C2124.4 (4)H9A—C9—H9B109.5
C1—N1—C2114.6 (4)N3—C9—H9C109.5
N1—C1—H1A109.5H9A—C9—H9C109.5
N1—C1—H1B109.5H9B—C9—H9C109.5
H1A—C1—H1B109.5O1—C10—C12110.4 (4)
N1—C1—H1C109.5O1—C10—C11109.1 (4)
H1A—C1—H1C109.5C12—C10—C11110.9 (4)
H1B—C1—H1C109.5O1—C10—C7108.6 (4)
N1—C2—H2A109.5C12—C10—C7109.5 (4)
N1—C2—H2B109.5C11—C10—C7108.2 (4)
H2A—C2—H2B109.5C10—C11—H11A109.5
N1—C2—H2C109.5C10—C11—H11B109.5
H2A—C2—H2C109.5H11A—C11—H11B109.5
H2B—C2—H2C109.5C10—C11—H11C109.5
C5—N2—C4122.8 (4)H11A—C11—H11C109.5
C5—N2—C3124.1 (4)H11B—C11—H11C109.5
C4—N2—C3112.7 (4)C10—C12—H12A109.5
N2—C3—H3A109.5C10—C12—H12B109.5
N2—C3—H3B109.5H12A—C12—H12B109.5
H3A—C3—H3B109.5C10—C12—H12C109.5
N2—C3—H3C109.5H12A—C12—H12C109.5
H3A—C3—H3C109.5H12B—C12—H12C109.5
H3B—C3—H3C109.5C10—O1—Si1128.7 (3)
N2—C4—H4A109.5O1—Si1—C15106.0 (2)
N2—C4—H4B109.5O1—Si1—C13112.4 (2)
H4A—C4—H4B109.5C15—Si1—C13106.3 (2)
N2—C4—H4C109.5O1—Si1—C14113.5 (2)
H4A—C4—H4C109.5C15—Si1—C14109.4 (2)
H4B—C4—H4C109.5C13—Si1—C14109.0 (2)
N1—C5—N2123.6 (4)Si1—C13—H13A109.5
N1—C5—C6119.4 (4)Si1—C13—H13B109.5
N2—C5—C6116.6 (4)H13A—C13—H13B109.5
C7—C6—C5129.3 (4)Si1—C13—H13C109.5
C7—C6—Br2121.8 (4)H13A—C13—H13C109.5
C5—C6—Br2108.8 (3)H13B—C13—H13C109.5
C6—C7—N3124.5 (5)Si1—C14—H14A109.5
C6—C7—C10123.9 (4)Si1—C14—H14B109.5
N3—C7—C10111.6 (4)H14A—C14—H14B109.5
C7—N3—C8117.4 (4)Si1—C14—H14C109.5
C7—N3—C9115.8 (4)H14A—C14—H14C109.5
C8—N3—C9113.7 (4)H14B—C14—H14C109.5
N3—C8—H8A109.5Si1—C15—H15A109.5
N3—C8—H8B109.5Si1—C15—H15B109.5
H8A—C8—H8B109.5H15A—C15—H15B109.5
N3—C8—H8C109.5Si1—C15—H15C109.5
H8A—C8—H8C109.5H15A—C15—H15C109.5
H8B—C8—H8C109.5H15B—C15—H15C109.5
N3—C9—H9A109.5
C1—N1—C5—N2167.2 (5)C6—C7—N3—C877.4 (6)
C2—N1—C5—N223.8 (8)C10—C7—N3—C8105.1 (5)
C1—N1—C5—C620.1 (7)C6—C7—N3—C961.4 (6)
C2—N1—C5—C6148.9 (5)C10—C7—N3—C9116.1 (5)
C4—N2—C5—N1161.7 (5)C6—C7—C10—O17.7 (6)
C3—N2—C5—N125.9 (7)N3—C7—C10—O1174.8 (4)
C4—N2—C5—C611.3 (7)C6—C7—C10—C12128.4 (5)
C3—N2—C5—C6161.1 (4)N3—C7—C10—C1254.1 (5)
N1—C5—C6—C7104.0 (6)C6—C7—C10—C11110.6 (5)
N2—C5—C6—C782.7 (6)N3—C7—C10—C1166.9 (5)
N1—C5—C6—Br278.9 (5)C12—C10—O1—Si140.7 (5)
N2—C5—C6—Br294.4 (4)C11—C10—O1—Si181.4 (5)
C5—C6—C7—N3169.1 (5)C7—C10—O1—Si1160.9 (3)
Br2—C6—C7—N37.7 (7)C10—O1—Si1—C15163.6 (4)
C5—C6—C7—C108.1 (8)C10—O1—Si1—C1380.7 (4)
Br2—C6—C7—C10175.1 (3)C10—O1—Si1—C1443.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3C···Br1i0.982.813.742 (3)159
C14—H14B···Br1ii0.982.873.790 (3)156
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3C···Br1i0.982.813.742 (3)159
C14—H14B···Br1ii0.982.873.790 (3)156
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x+1, y+1, z.
 

Acknowledgements

The authors thank Dr W. Frey (Institut für Organische Chemie, Universität Stuttgart) for measuring the diffraction data.

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. & Parthasarathy, R. (1989). J. Am. Chem. Soc. 111, 8725–8726.  CrossRef CAS Web of Science Google Scholar
First citationKantlehner, W., Stieglitz, R., Kress, R., Frey, W. & Tiritiris, I. (2012a). Synthesis, 44, 3090–3094.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTiritiris, I. & Kantlehner, W. (2012b). Acta Cryst. E68, o1812.  CSD CrossRef IUCr Journals Google Scholar
First citationWeingärtner, W., Kantlehner, W. & Maas, G. (2011). Synthesis, 2011, 265–272.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds