organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-{2-[4-(di­methyl­amino)­phen­yl]diazen-1-yl}-1-methyl­pyridinium iodide

aUniversitat de València, Instituto de Reconocimiento Molecular y Desarrollo Tecnológico, Doctor Moliner 50,46100, Burjassot,Valencia, Spain
*Correspondence e-mail: Katherine.Chulvi@uv.es

Edited by R. F. Baggio, Comisión Nacional de Energía Atómica, Argentina (Received 25 November 2015; accepted 9 December 2015; online 19 December 2015)

The mol­ecular geometry of the ionic title compound, C14H17N4+·I or DAZOP+·I, is essentially featureless. Regarding the crystal structure, in addition to the obvious cation–anion Coulombic inter­actions, the packing is mostly directed by non-covalent inter­actions involving both ring systems, as well as the iodide anion. It consists of cationic mol­ecules aligned along [101] and disposed in an anti­parallel fashion while linked into π-bonded dimeric entities by a stacking contact involving symmetry-related phenyl rings, with a centroid–centroid distance of 3.468 (3) Å and a slippage of 0.951 Å. The dimers are, in addition, sustained by a number of C—H⋯I and I⋯π (I⋯centroid = 3.876 Å) inter­actions involving the anion. Finally, inter­dimeric contacts are of the C—H⋯I and C—H⋯π types.

1. Related literature

For the synthesis of precursors, see: Li et al. (1995[Li, H., Huang, C., Zhou, Y., Zhao, X., Xia, X., Li, T. & Bai, J. (1995). J. Mater. Chem. 5, 1871-1878.]). For spectroscopic properties of the title compound, see: Gonbeau et al. (1999[Gonbeau, D., Coradin, T. & Clément, R. (1999). J. Phys. Chem. B, 103, 3545-3551.]). For general infomation on non-linear optical materials, see: Coradin et al. (1997[Coradin, T., Nakatani, K., Ledoux, I., Zyss, J. & Clément, R. (1997). J. Mater. Chem. 7, 853-854.]); Mestechkin (2001[Mestechkin, M. M. (2001). Opt. Commun. 198, 199-206.]); Nunzi et al. (2008[Nunzi, F., Fantacci, S., DeAngelis, F., Sgamellotti, A., Cariati, E., Ugo, R. & Macchi, P. (2008). J. Phys. Chem. C, 112, 1213-1226.]). For general infomation on new photonic materials, see: Yu et al. (2013[Yu, J., Cui, Y., Xu, H., Yang, Y., Wang, Z., Chen, B. & Qian, G. (2013). Nature, 4, 2719, 1-7.]). For related structures, see: Cristian et al. (2004[Cristian, L., Sasaki, I., Lacroix, P. G., Donnadieu, B., Asselberghs, I., Clays, K. & Razus, A. C. (2004). Chem. Mater. 16, 3543-3551.]); Evans et al. (2001[Evans, J. S. O., Bénard, S., Yu, P. & Clément, R. (2001). Chem. Mater. 13, 3813-3816.]); Xu et al. (2012[Xu, L., Chen, H., Sun, X., Gu, P., Ge, J., Li, N., Xu, Q. & Lu, J. (2012). Polyhedron, 35, 7-14.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C14H17N4+·I

  • Mr = 368.21

  • Monoclinic, P 21 /c

  • a = 18.0508 (14) Å

  • b = 7.2790 (5) Å

  • c = 11.3760 (9) Å

  • β = 98.929 (7)°

  • V = 1476.60 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.16 mm−1

  • T = 296 K

  • 0.14 × 0.08 × 0.03 mm

2.2. Data collection

  • Agilent Xcalibur Sapphire3 Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2009[Agilent (2009). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.908, Tmax = 1.000

  • 5694 measured reflections

  • 2591 independent reflections

  • 1642 reflections with I > 2σ(I)

  • Rint = 0.048

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.065

  • S = 0.78

  • 2591 reflections

  • 175 parameters

  • 132 restraints

  • H-atom parameters constrained

  • Δρmax = 1.00 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C12–C16/N17 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯I1i 0.96 3.09 4.042 (6) 173
C2—H2A⋯I1i 0.96 3.15 4.102 (5) 169
C15—H15A⋯I1ii 0.93 2.99 3.907 (5) 171
C7—H7ACg2iii 0.93 2.71 3.505 (5) 143
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2009[Agilent (2009). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO); data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Chemical context top

Over the years, the spectroscopic properties of 4-[2-(4-di­methyl­amino­phenyl)­azo]-1-methyl­pyridinium iodide ([DAZOP+][I-]) have been widely studied (Gonbeau et al., 1999). This dye with donor-acceptor character, belongs to the group of the so-called non-linear optical chromophores (NLO-phore) that are able to form J-type aggregates (Coradin et al., 1997; Mestechkin, 2001; Nunzi et al., 2008). The crystal structures of this kind of NLO dyes are a topic of inter­est in this context and also for studies related to the solvatochromic properties of these dyes in hydrogen-bond-donor (HBD) and hydrogen-bond-acceptor (HBA) solvents. Very recently, new 3D materials based on organic metalorganic frameworks (MOFs) with the capability to encapsulate dyes have been developed. All of these progress are aimed to the new photonic materials and devices design (Yu et al., 2013).

Structural commentary top

The title ionic compound [ DAZOP+][I-] (I) crystallizes in the monoclinic S.G. P21/c, and presents one single molecule in the asymmetric unit. The molecular geometry, presented in Fig. 1, is essentially featureless.

Supra­molecular features top

In addition to the obvious cation-anion coulombian inter­actions, the crystal packing is mostly directed by non covalent inter­actions involving the ring systems Cg1 ( C4->C9) and Cg2 (C12->C16,N17, as well as the Iodine anion.

It consists of cationic molecules aligned along the [101] direction and disposed in an anti­parallel fashion while linked into π bonded dimeric entities (Fig. 1) by a stacking contact involving Cg2 and Cg2i [(i) : 1-x,1-y,2-z)]), with d(Cg···Cg) = 3.468 (3)Å and a slippage of 0.951Å. The dimer is in addition sustained by a number of inter­actions involving I1, viz (a) I···Cg1i, with d(I···Cg)= 3.876Å, (b) C1—H1A···I1i, with d(H···I) = 3.09 Å, <C—H···I> = 173°, (c) C2—H2A···I1i, with d(H···I) = 3.15 Å, <C—H···I> = 169°. The remaining non-covalent inter­actions serve to link these dimers with each other, either directly, viz., through a C7—H7···Cg2iii [(iii) : 1-x,1/2+y,3/2-z] contact, with d(H···Cg) = 2.71 Å, <C—H···Cg> = 143° or mediated by the external iodine (viz., C15—H15 ..I1ii [(ii) : x,3/2-y,-1/2+z], d(H···I): 2.99Å; <C—H···I> = 171°).

Database survey top

There are in the literature a lot of crystal structures derived from DAZOP but none with iodine as counter ion. The most similar to (I) is the one with CSD code (Allen, 2002) HANKUD (Cristian et al., 2004) which was solved using powder data and contains a molecule of hexa­fluoro­phosphate as counter ion. Thus although the molecules are practically the same, the differences between both structures are significant, mainly due to the absence of ππ inter­actions in HANKUD. Some similar structures of (DAZOP+) coordinated with metalorganic ions can be found in the CSD, viz., IFAHAY (J. S. O. Evans et al., 2001), RARTEL, RARTIP, RARTOV, (Xu et al., 2012), etc.

Synthesis and crystallization top

Benzenamine, N,N-di­methyl-4- (4-pyridinylazo)- was obtained as described in the literature (Li et al., 1995). It was then dissolved in aceto­nitrile and stirred while an excess of methyl iodide was added dropwise. The resultant mixture was refluxed for 3 h. After that, the orange precipitated obtained was further purified by column chromatography (1:4, methanol/ethyl acetate) with a yield of 59%. Single crystals were obtained by slow evaporation from a methanol solution using a Petri dish.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1

Related literature top

For the synthesis of precursors, see: Li et al. (1995). For spectroscopic properties of the title compound, see: Gonbeau et al. (1999). For general infomation on non-linear optical materials, see: Coradin et al. (1997); Mestechkin (2001); Nunzi et al. (2008). For general infomation on new photonic materials, see: Yu et al. (2013). For related structures, see: Cristian et al. (2004); Evans et al. (2001); Xu et al. (2012).

Structure description top

Over the years, the spectroscopic properties of 4-[2-(4-di­methyl­amino­phenyl)­azo]-1-methyl­pyridinium iodide ([DAZOP+][I-]) have been widely studied (Gonbeau et al., 1999). This dye with donor-acceptor character, belongs to the group of the so-called non-linear optical chromophores (NLO-phore) that are able to form J-type aggregates (Coradin et al., 1997; Mestechkin, 2001; Nunzi et al., 2008). The crystal structures of this kind of NLO dyes are a topic of inter­est in this context and also for studies related to the solvatochromic properties of these dyes in hydrogen-bond-donor (HBD) and hydrogen-bond-acceptor (HBA) solvents. Very recently, new 3D materials based on organic metalorganic frameworks (MOFs) with the capability to encapsulate dyes have been developed. All of these progress are aimed to the new photonic materials and devices design (Yu et al., 2013).

The title ionic compound [ DAZOP+][I-] (I) crystallizes in the monoclinic S.G. P21/c, and presents one single molecule in the asymmetric unit. The molecular geometry, presented in Fig. 1, is essentially featureless.

In addition to the obvious cation-anion coulombian inter­actions, the crystal packing is mostly directed by non covalent inter­actions involving the ring systems Cg1 ( C4->C9) and Cg2 (C12->C16,N17, as well as the Iodine anion.

It consists of cationic molecules aligned along the [101] direction and disposed in an anti­parallel fashion while linked into π bonded dimeric entities (Fig. 1) by a stacking contact involving Cg2 and Cg2i [(i) : 1-x,1-y,2-z)]), with d(Cg···Cg) = 3.468 (3)Å and a slippage of 0.951Å. The dimer is in addition sustained by a number of inter­actions involving I1, viz (a) I···Cg1i, with d(I···Cg)= 3.876Å, (b) C1—H1A···I1i, with d(H···I) = 3.09 Å, <C—H···I> = 173°, (c) C2—H2A···I1i, with d(H···I) = 3.15 Å, <C—H···I> = 169°. The remaining non-covalent inter­actions serve to link these dimers with each other, either directly, viz., through a C7—H7···Cg2iii [(iii) : 1-x,1/2+y,3/2-z] contact, with d(H···Cg) = 2.71 Å, <C—H···Cg> = 143° or mediated by the external iodine (viz., C15—H15 ..I1ii [(ii) : x,3/2-y,-1/2+z], d(H···I): 2.99Å; <C—H···I> = 171°).

There are in the literature a lot of crystal structures derived from DAZOP but none with iodine as counter ion. The most similar to (I) is the one with CSD code (Allen, 2002) HANKUD (Cristian et al., 2004) which was solved using powder data and contains a molecule of hexa­fluoro­phosphate as counter ion. Thus although the molecules are practically the same, the differences between both structures are significant, mainly due to the absence of ππ inter­actions in HANKUD. Some similar structures of (DAZOP+) coordinated with metalorganic ions can be found in the CSD, viz., IFAHAY (J. S. O. Evans et al., 2001), RARTEL, RARTIP, RARTOV, (Xu et al., 2012), etc.

For the synthesis of precursors, see: Li et al. (1995). For spectroscopic properties of the title compound, see: Gonbeau et al. (1999). For general infomation on non-linear optical materials, see: Coradin et al. (1997); Mestechkin (2001); Nunzi et al. (2008). For general infomation on new photonic materials, see: Yu et al. (2013). For related structures, see: Cristian et al. (2004); Evans et al. (2001); Xu et al. (2012).

Synthesis and crystallization top

Benzenamine, N,N-di­methyl-4- (4-pyridinylazo)- was obtained as described in the literature (Li et al., 1995). It was then dissolved in aceto­nitrile and stirred while an excess of methyl iodide was added dropwise. The resultant mixture was refluxed for 3 h. After that, the orange precipitated obtained was further purified by column chromatography (1:4, methanol/ethyl acetate) with a yield of 59%. Single crystals were obtained by slow evaporation from a methanol solution using a Petri dish.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 1

Computing details top

Data collection: CrysAlis PRO (Agilent, 2009); cell refinement: CrysAlis PRO (Agilent, 2009); data reduction: CrysAlis PRO (Agilent, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I),showing the atom-labelling scheme as well as the dimer formation. Displacement ellipsoids drawn at the 50% probability level. Symmetry codes: (i): 1 - x, 1 - y, 2 - z.
4-{2-[4-(Dimethylamino)phenyl]diazen-1-yl}-1-methylpyridinium iodide top
Crystal data top
C14H17N4+·IF(000) = 728
Mr = 368.21Dx = 1.656 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 18.0508 (14) ÅCell parameters from 2009 reflections
b = 7.2790 (5) Åθ = 2.3–29.8°
c = 11.3760 (9) ŵ = 2.16 mm1
β = 98.929 (7)°T = 296 K
V = 1476.60 (19) Å3Plate, orange
Z = 40.14 × 0.08 × 0.03 mm
Data collection top
Agilent Xcalibur Sapphire3 Gemini
diffractometer
2591 independent reflections
Radiation source: Enhance (Mo) X-ray Source1642 reflections with I > 2σ(I)
Detector resolution: 16.0267 pixels mm-1Rint = 0.048
ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2009)
h = 2117
Tmin = 0.908, Tmax = 1.000k = 68
5694 measured reflectionsl = 1310
Refinement top
Refinement on F2132 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.065 w = 1/[σ2(Fo2) + (0.0256P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.78(Δ/σ)max = 0.001
2591 reflectionsΔρmax = 1.00 e Å3
175 parametersΔρmin = 0.51 e Å3
Crystal data top
C14H17N4+·IV = 1476.60 (19) Å3
Mr = 368.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.0508 (14) ŵ = 2.16 mm1
b = 7.2790 (5) ÅT = 296 K
c = 11.3760 (9) Å0.14 × 0.08 × 0.03 mm
β = 98.929 (7)°
Data collection top
Agilent Xcalibur Sapphire3 Gemini
diffractometer
2591 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2009)
1642 reflections with I > 2σ(I)
Tmin = 0.908, Tmax = 1.000Rint = 0.048
5694 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035132 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 0.78Δρmax = 1.00 e Å3
2591 reflectionsΔρmin = 0.51 e Å3
175 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7113 (3)0.4360 (7)0.9607 (5)0.0253 (13)
H1A0.75740.41851.01400.038*
H1B0.69800.56390.95850.038*
H1C0.71730.39600.88240.038*
C20.6716 (3)0.2294 (6)1.1152 (5)0.0200 (13)
H2A0.72440.24171.14320.030*
H2B0.65930.10181.10300.030*
H2C0.64390.27961.17320.030*
N30.6522 (2)0.3295 (6)1.0020 (4)0.0184 (9)
C40.5810 (3)0.3369 (6)0.9457 (4)0.0129 (9)
C50.5610 (3)0.4377 (6)0.8383 (4)0.0152 (9)
H5A0.59780.50080.80580.018*
C60.5211 (3)0.2442 (6)0.9920 (5)0.0141 (10)
H6A0.53160.17821.06270.017*
C70.4886 (3)0.4430 (6)0.7824 (4)0.0155 (10)
H7A0.47730.51050.71250.019*
C80.4502 (3)0.2522 (6)0.9340 (5)0.0152 (10)
H8A0.41270.19080.96600.018*
C90.4305 (3)0.3502 (6)0.8265 (4)0.0131 (9)
N100.3607 (2)0.3636 (5)0.7569 (4)0.0180 (9)
N110.3082 (2)0.2693 (5)0.7907 (4)0.0215 (9)
C120.2413 (3)0.2902 (7)0.7100 (4)0.0198 (10)
C130.2268 (3)0.4246 (7)0.6216 (5)0.0219 (11)
H13A0.26250.51450.61500.026*
C140.1827 (3)0.1655 (7)0.7185 (5)0.0220 (11)
H14A0.18800.07990.77990.026*
C150.1614 (3)0.4251 (7)0.5455 (5)0.0211 (11)
H15A0.15270.51670.48810.025*
C160.1185 (3)0.1683 (7)0.6385 (5)0.0226 (10)
H16A0.08130.08190.64410.027*
N170.1081 (2)0.2955 (6)0.5508 (4)0.0184 (8)
C180.0410 (3)0.2872 (7)0.4591 (5)0.0260 (13)
H18A0.03470.40240.41780.039*
H18B0.00230.26290.49610.039*
H18C0.04690.19080.40370.039*
I10.10101 (2)0.68987 (5)0.81084 (3)0.02305 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0259 (19)0.028 (3)0.022 (3)0.0084 (19)0.004 (2)0.003 (2)
C20.018 (3)0.021 (3)0.0204 (17)0.001 (2)0.0039 (14)0.0044 (16)
N30.0204 (12)0.016 (2)0.0187 (16)0.0011 (11)0.0036 (10)0.0014 (15)
C40.0196 (12)0.009 (2)0.0116 (15)0.0006 (11)0.0060 (10)0.0040 (14)
C50.0206 (11)0.013 (2)0.0132 (15)0.0011 (13)0.0063 (11)0.0014 (15)
C60.0208 (13)0.010 (2)0.0125 (18)0.0006 (11)0.0069 (10)0.0044 (15)
C70.0208 (11)0.012 (2)0.015 (2)0.0010 (12)0.0056 (10)0.0012 (17)
C80.0212 (13)0.009 (2)0.0159 (15)0.0013 (13)0.0056 (12)0.0028 (14)
C90.0213 (11)0.005 (2)0.0140 (15)0.0020 (11)0.0076 (11)0.0056 (13)
N100.0219 (11)0.017 (2)0.0161 (17)0.0021 (11)0.0066 (10)0.0039 (14)
N110.0231 (11)0.022 (2)0.0211 (18)0.0007 (11)0.0073 (11)0.0010 (14)
C120.0221 (12)0.0215 (19)0.0178 (17)0.0026 (12)0.0092 (12)0.0038 (15)
C130.0215 (18)0.024 (2)0.0211 (19)0.0008 (14)0.0074 (14)0.0008 (16)
C140.0211 (13)0.023 (2)0.023 (2)0.0027 (14)0.0053 (13)0.0022 (16)
C150.0223 (16)0.019 (2)0.023 (2)0.0016 (13)0.0062 (13)0.0021 (16)
C160.0214 (16)0.024 (2)0.0232 (18)0.0021 (14)0.0048 (14)0.0031 (16)
N170.0208 (15)0.0174 (17)0.0178 (17)0.0030 (13)0.0056 (12)0.0027 (13)
C180.0255 (18)0.027 (3)0.024 (2)0.0005 (19)0.0002 (16)0.001 (2)
I10.0222 (2)0.0228 (2)0.0241 (2)0.0007 (2)0.00320 (14)0.0028 (2)
Geometric parameters (Å, º) top
C1—N31.454 (6)C8—H8A0.9300
C1—H1A0.9600C9—N101.383 (6)
C1—H1B0.9600N10—N111.277 (5)
C1—H1C0.9600N11—C121.408 (6)
C2—N31.474 (6)C12—C131.398 (7)
C2—H2A0.9600C12—C141.408 (7)
C2—H2B0.9600C13—C151.351 (7)
C2—H2C0.9600C13—H13A0.9300
N3—C41.344 (6)C14—C161.358 (7)
C4—C51.423 (7)C14—H14A0.9300
C4—C61.442 (6)C15—N171.355 (6)
C5—C71.361 (6)C15—H15A0.9300
C5—H5A0.9300C16—N171.352 (6)
C6—C81.348 (7)C16—H16A0.9300
C6—H6A0.9300N17—C181.471 (6)
C7—C91.405 (6)C18—H18A0.9600
C7—H7A0.9300C18—H18B0.9600
C8—C91.413 (7)C18—H18C0.9600
N3—C1—H1A109.5N10—C9—C7115.2 (4)
N3—C1—H1B109.5N10—C9—C8128.0 (5)
H1A—C1—H1B109.5C7—C9—C8116.8 (5)
N3—C1—H1C109.5N11—N10—C9116.2 (4)
H1A—C1—H1C109.5N10—N11—C12110.4 (4)
H1B—C1—H1C109.5C13—C12—N11126.2 (5)
N3—C2—H2A109.5C13—C12—C14116.2 (5)
N3—C2—H2B109.5N11—C12—C14117.6 (5)
H2A—C2—H2B109.5C15—C13—C12120.6 (5)
N3—C2—H2C109.5C15—C13—H13A119.7
H2A—C2—H2C109.5C12—C13—H13A119.7
H2B—C2—H2C109.5C16—C14—C12121.1 (5)
C4—N3—C1121.2 (4)C16—C14—H14A119.5
C4—N3—C2121.1 (4)C12—C14—H14A119.5
C1—N3—C2117.3 (4)C13—C15—N17121.7 (5)
N3—C4—C5121.8 (4)C13—C15—H15A119.1
N3—C4—C6121.5 (4)N17—C15—H15A119.1
C5—C4—C6116.7 (5)N17—C16—C14120.7 (5)
C7—C5—C4120.9 (5)N17—C16—H16A119.6
C7—C5—H5A119.6C14—C16—H16A119.6
C4—C5—H5A119.6C16—N17—C15119.4 (5)
C8—C6—C4120.7 (5)C16—N17—C18120.0 (4)
C8—C6—H6A119.7C15—N17—C18120.6 (4)
C4—C6—H6A119.7N17—C18—H18A109.5
C5—C7—C9122.4 (5)N17—C18—H18B109.5
C5—C7—H7A118.8H18A—C18—H18B109.5
C9—C7—H7A118.8N17—C18—H18C109.5
C6—C8—C9122.5 (5)H18A—C18—H18C109.5
C6—C8—H8A118.7H18B—C18—H18C109.5
C9—C8—H8A118.7
C1—N3—C4—C54.8 (7)C8—C9—N10—N113.6 (7)
C2—N3—C4—C5178.0 (4)C9—N10—N11—C12177.8 (4)
C1—N3—C4—C6174.6 (4)N10—N11—C12—C1314.3 (7)
C2—N3—C4—C61.4 (7)N10—N11—C12—C14166.1 (4)
N3—C4—C5—C7179.8 (4)N11—C12—C13—C15176.8 (5)
C6—C4—C5—C70.8 (7)C14—C12—C13—C153.6 (7)
N3—C4—C6—C8179.6 (4)C13—C12—C14—C165.2 (7)
C5—C4—C6—C81.0 (7)N11—C12—C14—C16175.2 (5)
C4—C5—C7—C90.3 (7)C12—C13—C15—N170.8 (8)
C4—C6—C8—C90.1 (7)C12—C14—C16—N172.3 (8)
C5—C7—C9—N10177.6 (4)C14—C16—N17—C152.2 (7)
C5—C7—C9—C81.1 (7)C14—C16—N17—C18174.9 (5)
C6—C8—C9—N10177.6 (4)C13—C15—N17—C163.9 (7)
C6—C8—C9—C70.9 (7)C13—C15—N17—C18173.3 (5)
C7—C9—N10—N11175.0 (4)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C12–C16/N17 ring.
D—H···AD—HH···AD···AD—H···A
C1—H1A···I1i0.963.094.042 (6)173
C2—H2A···I1i0.963.154.102 (5)169
C15—H15A···I1ii0.932.993.907 (5)171
C7—H7A···Cg2iii0.932.713.505 (5)143
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+3/2, z1/2; (iii) x+1, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C12–C16/N17 ring.
D—H···AD—HH···AD···AD—H···A
C1—H1A···I1i0.963.094.042 (6)173
C2—H2A···I1i0.963.154.102 (5)169
C15—H15A···I1ii0.932.993.907 (5)171
C7—H7A···Cg2iii0.932.713.505 (5)143
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+3/2, z1/2; (iii) x+1, y+1/2, z+3/2.
 

References

First citationAgilent (2009). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationCoradin, T., Nakatani, K., Ledoux, I., Zyss, J. & Clément, R. (1997). J. Mater. Chem. 7, 853–854.  CrossRef CAS Web of Science Google Scholar
First citationCristian, L., Sasaki, I., Lacroix, P. G., Donnadieu, B., Asselberghs, I., Clays, K. & Razus, A. C. (2004). Chem. Mater. 16, 3543–3551.  Web of Science CSD CrossRef CAS Google Scholar
First citationEvans, J. S. O., Bénard, S., Yu, P. & Clément, R. (2001). Chem. Mater. 13, 3813–3816.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGonbeau, D., Coradin, T. & Clément, R. (1999). J. Phys. Chem. B, 103, 3545–3551.  Web of Science CrossRef CAS Google Scholar
First citationLi, H., Huang, C., Zhou, Y., Zhao, X., Xia, X., Li, T. & Bai, J. (1995). J. Mater. Chem. 5, 1871–1878.  CrossRef CAS Web of Science Google Scholar
First citationMestechkin, M. M. (2001). Opt. Commun. 198, 199–206.  Web of Science CrossRef CAS Google Scholar
First citationNunzi, F., Fantacci, S., DeAngelis, F., Sgamellotti, A., Cariati, E., Ugo, R. & Macchi, P. (2008). J. Phys. Chem. C, 112, 1213–1226.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationXu, L., Chen, H., Sun, X., Gu, P., Ge, J., Li, N., Xu, Q. & Lu, J. (2012). Polyhedron, 35, 7–14.  Web of Science CSD CrossRef CAS Google Scholar
First citationYu, J., Cui, Y., Xu, H., Yang, Y., Wang, Z., Chen, B. & Qian, G. (2013). Nature, 4, 2719, 1–7.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds