organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of methyl (2R,3S)-3-[(tert-butyl­sulfin­yl)amino]-2-fluoro-3-phenyl­propano­ate

aDepartment of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai, People's Republic of China
*Correspondence e-mail: ya.li@sues.edu.cn

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 3 December 2015; accepted 9 December 2015; online 16 December 2015)

The title compound, C14H20FNO3S, contains two chiral carbon centres and the absolute configuration has been confirmed as (2R,3S). In the crystal, adjacent mol­ecules are linked by weak C—H⋯O hydrogen bonds, generating zigzag chains along the a-axis direction.

1. Related literature

For the use of of fluorinated β-amino acids in organic synthesis, see: Marsh (2014[Marsh, E. N. G. (2014). Acc. Chem. Res. 47, 2878-2886.]); Niemz & Tirrell (2001[Niemz, A. & Tirrell, D. A. (2001). J. Am. Chem. Soc. 123, 7407-7413.]); Chiu et al. (2006[Chiu, H. P., Suzuki, Y., Gullickson, D., Ahmad, R., Kokona, B., Fairman, R. & Cheng, R. P. (2006). J. Am. Chem. Soc. 128, 15556-15557.]). For their synthesis, see: Shang et al. (2015[Shang, H., Li, Y., Li, X. & Ren, X. (2015). J. Org. Chem. 80, 8739-8747.]); Yoshinari et al. (2011[Yoshinari, T., Gessier, F., Noti, C., Beck, A. K. & Seebach, D. (2011). Helv. Chim. Acta, 94, 1908-1942.]); Duggan et al. (2010[Duggan, P. J., Johnston, M. & March, T. L. (2010). J. Org. Chem. 75, 7365-7372.]); Peddie & Abell (2012[Peddie, V. & Abell, A. D. (2012). Helv. Chim. Acta, 95, 2460-2473.]); Jing et al. (2011[Jing, Z.-T., Huang, Y.-G. & Qing, F.-L. (2011). Chin. Chem. Lett. 22, 919-922.]); Pan et al. (2010[Pan, Y., Zhao, Y., Ma, T., Yang, Y., Liu, H., Jiang, Z. & Tan, C.-H. (2010). Chem. Eur. J. 16, 779-782.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C14H20FNO3S

  • Mr = 301.37

  • Orthorhombic, P 21 21 21

  • a = 9.1809 (14) Å

  • b = 9.2384 (15) Å

  • c = 18.577 (3) Å

  • V = 1575.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 296 K

  • 0.13 × 0.11 × 0.07 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.972, Tmax = 0.985

  • 8176 measured reflections

  • 2773 independent reflections

  • 2542 reflections with I > 2σ(I)

  • Rint = 0.022

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.088

  • S = 1.04

  • 2773 reflections

  • 186 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.29 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])

  • Absolute structure parameter: 0.05 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14B⋯O3i 0.96 2.79 3.045 (4) 135
Symmetry code: (i) x-1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL.

Supporting information


Synthesis and crystallization top

LiHMDS (1.5 ml, 1.0 mol/l in THF) was added to a solution of methyl fluoro­acetate (138 mg, 1.5 mmol), (Rs)—N-benzyl­idene- 2-methyl­propane-2-sulfinamide (209 mg, 1.0 mmol), N,N,N',N'-tetra­methyl-ethane-1,2-di­amine (0.3 ml), and THF (3 ml) at 203 K. The reaction mixture was stirred for 30 min, then saturated NH4Cl—H2O (5 ml) was added, and the quenched reaction mixture was extracted with ethyl acetate (3 × 20 ml). The combined organic layers were dried over anhydrous Na2SO4. The obtained compound was recrystallized from ethyl acetate/hexane (1:2) to give colorless crystals.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. All the H atoms were placed at calculated positions and treated as riding atoms: N—H = 0.86 Å, C—H = 0.93-0.96 Å with Uiso(H) = 1.5Ueq(C-methyl and 1.2Ueq(N,C) for other H atoms.

Related literature top

For the use of of fluorinated β-amino acids in organic synthesis, see: Marsh (2014); Niemz & Tirrell (2001); Chiu et al. (2006). For their synthesis, see: Shang et al. (2015); Yoshinari et al. (2011); Duggan et al. (2010); Peddie & Abell (2012); Jing et al. (2011); Pan et al. (2010).

Structure description top

For the use of of fluorinated β-amino acids in organic synthesis, see: Marsh (2014); Niemz & Tirrell (2001); Chiu et al. (2006). For their synthesis, see: Shang et al. (2015); Yoshinari et al. (2011); Duggan et al. (2010); Peddie & Abell (2012); Jing et al. (2011); Pan et al. (2010).

Synthesis and crystallization top

LiHMDS (1.5 ml, 1.0 mol/l in THF) was added to a solution of methyl fluoro­acetate (138 mg, 1.5 mmol), (Rs)—N-benzyl­idene- 2-methyl­propane-2-sulfinamide (209 mg, 1.0 mmol), N,N,N',N'-tetra­methyl-ethane-1,2-di­amine (0.3 ml), and THF (3 ml) at 203 K. The reaction mixture was stirred for 30 min, then saturated NH4Cl—H2O (5 ml) was added, and the quenched reaction mixture was extracted with ethyl acetate (3 × 20 ml). The combined organic layers were dried over anhydrous Na2SO4. The obtained compound was recrystallized from ethyl acetate/hexane (1:2) to give colorless crystals.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. All the H atoms were placed at calculated positions and treated as riding atoms: N—H = 0.86 Å, C—H = 0.93-0.96 Å with Uiso(H) = 1.5Ueq(C-methyl and 1.2Ueq(N,C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, with atom labeling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial view along the c axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1).
Methyl (2R,3S)-3-[(tert-butylsulfinyl)amino]-2-fluoro-3-phenylpropanoate top
Crystal data top
C14H20FNO3SF(000) = 640
Mr = 301.37Dx = 1.270 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3418 reflections
a = 9.1809 (14) Åθ = 2.2–25.5°
b = 9.2384 (15) ŵ = 0.22 mm1
c = 18.577 (3) ÅT = 296 K
V = 1575.7 (4) Å3Block, colorless
Z = 40.13 × 0.11 × 0.07 mm
Data collection top
Bruker APEXII CCD
diffractometer
2773 independent reflections
Radiation source: fine-focus sealed tube2542 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
φ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 710
Tmin = 0.972, Tmax = 0.985k = 1111
8176 measured reflectionsl = 2221
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0505P)2 + 0.1714P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.088(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.27 e Å3
2773 reflectionsΔρmin = 0.29 e Å3
186 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0117 (16)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), ???? Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.05 (8)
Crystal data top
C14H20FNO3SV = 1575.7 (4) Å3
Mr = 301.37Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.1809 (14) ŵ = 0.22 mm1
b = 9.2384 (15) ÅT = 296 K
c = 18.577 (3) Å0.13 × 0.11 × 0.07 mm
Data collection top
Bruker APEXII CCD
diffractometer
2773 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2542 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.985Rint = 0.022
8176 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.088Δρmax = 0.27 e Å3
S = 1.04Δρmin = 0.29 e Å3
2773 reflectionsAbsolute structure: Flack (1983), ???? Friedel pairs
186 parametersAbsolute structure parameter: 0.05 (8)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.45246 (5)0.13512 (6)1.04644 (3)0.04566 (16)
C10.4525 (2)0.0513 (2)0.86771 (10)0.0454 (5)
C20.4258 (3)0.1407 (3)0.80959 (13)0.0645 (7)
H20.34120.19600.80850.077*
C30.5233 (3)0.1489 (4)0.75313 (14)0.0799 (8)
H30.50320.20890.71420.096*
C40.6486 (3)0.0701 (4)0.75394 (14)0.0790 (9)
H40.71340.07550.71560.095*
C50.6780 (3)0.0166 (3)0.81134 (15)0.0763 (8)
H50.76400.06980.81240.092*
C60.5812 (3)0.0262 (3)0.86807 (13)0.0614 (6)
H60.60290.08550.90700.074*
C70.3370 (2)0.0338 (2)0.92539 (10)0.0412 (4)
H70.28370.12540.92880.049*
C80.2285 (2)0.0833 (2)0.90203 (11)0.0485 (5)
H80.18340.05360.85660.058*
C90.1100 (2)0.1116 (2)0.95639 (13)0.0467 (5)
C100.3929 (3)0.0729 (3)1.13521 (12)0.0606 (6)
C110.4604 (4)0.1814 (4)1.18744 (15)0.0919 (10)
H11A0.42550.16261.23520.138*
H11B0.43370.27781.17340.138*
H11C0.56460.17201.18650.138*
C120.4469 (5)0.0790 (3)1.15008 (15)0.1004 (11)
H12A0.54810.08581.13760.151*
H12B0.39200.14681.12180.151*
H12C0.43470.10081.20020.151*
C130.2279 (3)0.0833 (4)1.13551 (16)0.0914 (10)
H13A0.18800.01021.10450.137*
H13B0.19890.17721.11860.137*
H13C0.19240.06921.18360.137*
C140.1016 (3)0.0130 (4)1.00859 (19)0.0961 (11)
H14A0.14450.10761.00520.144*
H14B0.17330.05890.99690.144*
H14C0.06700.00261.05670.144*
F10.30213 (17)0.21153 (14)0.89103 (8)0.0696 (4)
N10.38966 (18)0.00242 (17)0.99719 (8)0.0410 (4)
H10.38840.08971.01330.049*
O10.02014 (16)0.00250 (18)0.95826 (11)0.0748 (5)
O20.10015 (19)0.21952 (17)0.99189 (10)0.0648 (5)
O30.61290 (18)0.1341 (2)1.04867 (11)0.0792 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0395 (3)0.0456 (3)0.0519 (3)0.0028 (2)0.0025 (2)0.0062 (2)
C10.0440 (11)0.0485 (11)0.0438 (11)0.0090 (10)0.0010 (10)0.0042 (9)
C20.0517 (14)0.0817 (17)0.0600 (14)0.0088 (13)0.0025 (11)0.0254 (13)
C30.0740 (19)0.111 (2)0.0545 (14)0.0187 (18)0.0034 (13)0.0315 (15)
C40.0731 (19)0.101 (2)0.0632 (17)0.0250 (17)0.0232 (15)0.0080 (16)
C50.0572 (15)0.0885 (19)0.0832 (18)0.0025 (15)0.0285 (13)0.0076 (16)
C60.0578 (14)0.0670 (14)0.0595 (14)0.0055 (12)0.0115 (11)0.0130 (12)
C70.0402 (10)0.0416 (10)0.0418 (10)0.0018 (8)0.0021 (8)0.0043 (9)
C80.0455 (12)0.0540 (12)0.0458 (11)0.0051 (10)0.0000 (9)0.0011 (10)
C90.0369 (10)0.0445 (11)0.0588 (12)0.0058 (8)0.0021 (10)0.0024 (11)
C100.0636 (15)0.0741 (16)0.0440 (12)0.0009 (13)0.0036 (11)0.0078 (11)
C110.094 (2)0.121 (2)0.0608 (16)0.006 (2)0.0073 (16)0.0322 (16)
C120.152 (3)0.089 (2)0.0602 (16)0.007 (2)0.020 (2)0.0179 (15)
C130.0664 (18)0.133 (3)0.0744 (18)0.0155 (18)0.0280 (15)0.0240 (18)
C140.0490 (15)0.0811 (18)0.158 (3)0.0062 (14)0.0448 (19)0.019 (2)
F10.0689 (9)0.0569 (8)0.0828 (10)0.0086 (7)0.0215 (7)0.0240 (7)
N10.0477 (10)0.0368 (8)0.0385 (8)0.0010 (7)0.0006 (7)0.0035 (7)
O10.0440 (9)0.0610 (10)0.1193 (15)0.0081 (8)0.0214 (10)0.0283 (10)
O20.0621 (10)0.0489 (9)0.0835 (12)0.0020 (7)0.0163 (9)0.0133 (9)
O30.0401 (8)0.0993 (14)0.0981 (13)0.0126 (9)0.0054 (9)0.0301 (12)
Geometric parameters (Å, º) top
S1—O31.4737 (17)C8—H80.9800
S1—N11.6685 (17)C9—O21.199 (2)
S1—C101.830 (2)C9—O11.303 (3)
C1—C21.381 (3)C10—C121.513 (4)
C1—C61.381 (3)C10—C131.518 (4)
C1—C71.516 (3)C10—C111.527 (4)
C2—C31.381 (4)C11—H11A0.9600
C2—H20.9300C11—H11B0.9600
C3—C41.361 (4)C11—H11C0.9600
C3—H30.9300C12—H12A0.9600
C4—C51.361 (4)C12—H12B0.9600
C4—H40.9300C12—H12C0.9600
C5—C61.382 (3)C13—H13A0.9600
C5—H50.9300C13—H13B0.9600
C6—H60.9300C13—H13C0.9600
C7—N11.458 (2)C14—O11.460 (3)
C7—C81.533 (3)C14—H14A0.9600
C7—H70.9800C14—H14B0.9600
C8—F11.379 (3)C14—H14C0.9600
C8—C91.507 (3)N1—H10.8600
O3—S1—N1110.87 (10)O1—C9—C8109.95 (18)
O3—S1—C10105.74 (12)C12—C10—C13112.7 (3)
N1—S1—C1098.71 (10)C12—C10—C11111.1 (2)
C2—C1—C6117.7 (2)C13—C10—C11111.2 (2)
C2—C1—C7119.5 (2)C12—C10—S1111.0 (2)
C6—C1—C7122.66 (17)C13—C10—S1106.35 (19)
C1—C2—C3120.8 (3)C11—C10—S1104.17 (19)
C1—C2—H2119.6C10—C11—H11A109.5
C3—C2—H2119.6C10—C11—H11B109.5
C4—C3—C2120.6 (3)H11A—C11—H11B109.5
C4—C3—H3119.7C10—C11—H11C109.5
C2—C3—H3119.7H11A—C11—H11C109.5
C3—C4—C5119.4 (2)H11B—C11—H11C109.5
C3—C4—H4120.3C10—C12—H12A109.5
C5—C4—H4120.3C10—C12—H12B109.5
C4—C5—C6120.5 (3)H12A—C12—H12B109.5
C4—C5—H5119.8C10—C12—H12C109.5
C6—C5—H5119.8H12A—C12—H12C109.5
C1—C6—C5120.9 (2)H12B—C12—H12C109.5
C1—C6—H6119.5C10—C13—H13A109.5
C5—C6—H6119.5C10—C13—H13B109.5
N1—C7—C1116.05 (17)H13A—C13—H13B109.5
N1—C7—C8108.22 (16)C10—C13—H13C109.5
C1—C7—C8109.24 (16)H13A—C13—H13C109.5
N1—C7—H7107.7H13B—C13—H13C109.5
C1—C7—H7107.7O1—C14—H14A109.5
C8—C7—H7107.7O1—C14—H14B109.5
F1—C8—C9107.71 (16)H14A—C14—H14B109.5
F1—C8—C7109.26 (18)O1—C14—H14C109.5
C9—C8—C7113.67 (17)H14A—C14—H14C109.5
F1—C8—H8108.7H14B—C14—H14C109.5
C9—C8—H8108.7C7—N1—S1116.21 (12)
C7—C8—H8108.7C7—N1—H1121.9
O2—C9—O1125.5 (2)S1—N1—H1121.9
O2—C9—C8124.6 (2)C9—O1—C14116.76 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14B···O3i0.962.793.045 (4)135
Symmetry code: (i) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14B···O3i0.962.793.045 (4)135
Symmetry code: (i) x1, y, z.
 

Acknowledgements

Financial support by the Innovation Program of Shanghai University Students (cs1504006) is gratefully acknowledged.

References

First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChiu, H. P., Suzuki, Y., Gullickson, D., Ahmad, R., Kokona, B., Fairman, R. & Cheng, R. P. (2006). J. Am. Chem. Soc. 128, 15556–15557.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDuggan, P. J., Johnston, M. & March, T. L. (2010). J. Org. Chem. 75, 7365–7372.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJing, Z.-T., Huang, Y.-G. & Qing, F.-L. (2011). Chin. Chem. Lett. 22, 919–922.  Web of Science CSD CrossRef CAS Google Scholar
First citationMarsh, E. N. G. (2014). Acc. Chem. Res. 47, 2878–2886.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNiemz, A. & Tirrell, D. A. (2001). J. Am. Chem. Soc. 123, 7407–7413.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPan, Y., Zhao, Y., Ma, T., Yang, Y., Liu, H., Jiang, Z. & Tan, C.-H. (2010). Chem. Eur. J. 16, 779–782.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPeddie, V. & Abell, A. D. (2012). Helv. Chim. Acta, 95, 2460–2473.  Web of Science CrossRef CAS Google Scholar
First citationShang, H., Li, Y., Li, X. & Ren, X. (2015). J. Org. Chem. 80, 8739–8747.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYoshinari, T., Gessier, F., Noti, C., Beck, A. K. & Seebach, D. (2011). Helv. Chim. Acta, 94, 1908–1942.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds