organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-amino-3-cyano-4-(4-meth­­oxy­phen­yl)-4H-1-benzo­thieno[3,2-b]pyran

aLaboratoire de Chimie Organique, Faculté des Sciences Dhar el Mahraz, Université Sidi Mohammed Ben Abdellah, BP 1796 Atlas, 30000 Fès, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V de Rabat, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: m.bakhouch@yahoo.fr

Edited by H. Ishida, Okayama University, Japan (Received 1 December 2015; accepted 6 December 2015; online 12 December 2015)

The three fused five- and six-membered rings in the title compound, C19H14N2O2S, are virtually coplanar, with the maximum deviation from the mean plane being 0.060 (1) Å. This benzothieno[3,2-b]pyran ring system is nearly perpendic­ular to the plane of the 4-meth­oxy­phenyl ring, forming a dihedral angle of 83.65 (5)°. In the crystal, mol­ecules are linked by pairs of N—H⋯N hydrogen bonds into inversion dimers. The dimeric units are further connected by an N—H⋯O hydrogen bond into a tape running along the b axis. The tapes are linked together by C—H⋯N and ππ inter­actions [centroid–centroid distance = 3.7743 (8) Å], forming a three-dimensional network.

1. Related literature

For biological properties of 2-amino-4-aryl-4H-pyran derivatives, see: Panda et al. (1997[Panda, D., Singh, J. P. & Wilson, L. (1997). J. Biol. Chem. 272, 7681-7687.]); Mungra et al. (2011[Mungra, D. C., Patel, M. P., Rajani, D. P. & Patel, R. G. (2011). Eur. J. Med. Chem. 46, 4192-4200.]). For the reactivity of (Z)-2-aryl­idenebenzo[b]thio­phen-3(2H)-ones (thio­aurones), see: Boughaleb et al. (2010[Boughaleb, A., Al houari, G., Bennani, B., Daoudi, M., Garrigues, B., Kerbal, A. & El Yazidi, M. (2010). J. Soc. Chim. Tunis. 12, 109-115.], 2011[Boughaleb, A., Akhazzane, M., Alhouari, G., Bennani, B., Daoudi, M., Garrigues, B., Kerbal, A. & El Yazidi, M. (2011). J. Soc. Chim. Tunis. 13, 117-122.]); Bakhouch et al. (2015[Bakhouch, M., Al Houari, G., Daoudi, M., Kerbal, A. & El Yazidi, M. (2015). Med. J. Chem. 4, 9-17.]). For a related structure, see: Bakhouch et al. (2014[Bakhouch, M., Al Houari, G., El Yazidi, M., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o587.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C19H14N2O2S

  • Mr = 334.38

  • Triclinic, [P \overline 1]

  • a = 6.0469 (3) Å

  • b = 10.8135 (5) Å

  • c = 13.3260 (6) Å

  • α = 109.943 (2)°

  • β = 93.226 (2)°

  • γ = 95.439 (2)°

  • V = 811.76 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 296 K

  • 0.40 × 0.37 × 0.24 mm

2.2. Data collection

  • Bruker X8 APEX diffractometer

  • 33610 measured reflections

  • 4563 independent reflections

  • 3683 reflections with I > 2σ(I)

  • Rint = 0.030

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.123

  • S = 1.02

  • 4563 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N2i 0.86 2.18 3.0060 (17) 160
N1—H1B⋯O2ii 0.86 2.19 3.0158 (16) 162
C18—H18⋯N2iii 0.93 2.49 3.3997 (17) 165
Symmetry codes: (i) -x, -y, -z; (ii) x, y-1, z; (iii) x+1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Substituted 2-amino-4-aryl-4H-pyran derivatives are an important class of heterocyclic compounds, which frequently exhibit a wide range of biological properties viz. antiproliferative and antitubercular activities (Panda et al., 1997; Mungra et al., 2011). Thus, in view of the large spectrum of application of these compounds and in continuation of ongoing research focused on the reactivity of the (Z)-2-arylidenebenzo[b]thiophen-3(2H)-ones (thioaurones) (Boughaleb et al., 2010, 2011; Bakhouch et al., 2015), we describe herein the behavior of ethyl cyanoacetate with (Z)-2-(4-methoxybenzylidene)benzo[b]thiophen-3(2H)-one (Bakhouch et al., 2014). Initially the condensation furnish the Michael adducts, which undergoes intramolecular cyclization to afford imino-pyran. The subsequent tautomeric transformation gives rise to 2-amino-3-cyano-4-(4-methoxyphenyl)-4H-1-benzothieno[3,2-b]pyran.

The title molecule is formed by a benzothieno[3,2-b]pyran system linked to the 4-methoxyphenyl ring as shown in Fig. 1. The three fused rings are almost coplanar with a maximum deviation from the mean plane being 0.060 (1) Å at C9. The dihedral angle between the benzothieno[3,2-b]pyran ring system and the mean plane of the 4-methoxyphenyl ring is 83.65( 5)°. In the crystal, molecules are linked by pairs of N—H···N hydrogen bonds into centrosymmetric dimeric units, which are further connected by N—H···O interactions to build tapes along the b axis (Table 1). The tapes are linked together by C—H···N and ππ interactions [centroid-centroid distance = 3.7743 (8) Å] to form a three-dimensional network as shown in Fig. 2.

Related literature top

For biological properties of 2-amino-4-aryl-4H-pyran derivatives, see: Panda et al. (1997); Mungra et al. (2011). For the reactivity of (Z)-2-arylidenebenzo[b]thiophen-3(2H)-ones (thioaurones), see: Boughaleb et al. (2010, 2011); Bakhouch et al. (2015). For a related structure, see: Bakhouch et al. (2014).

Experimental top

In a 100 mL flask equipped with a condenser was dissolved 4 mmol of (Z)-2-(4-methoxybenzylidene)-1-benzo[b]thiophen-3(2H)-one and 5 mmol of malononitrile in 30 mL of ethanol. Then, 1 mL of piperidine was added, and the reaction mixture was refluxed for 6 h. Thin layer chromatography revealed the formation of a single product. The organic phase was evaporated under reduce pressure. The resulting residue was recrystallized from ethanol (yield 77%; m.p. 515 K). Single crystals of the title compound suitable for X-ray diffraction were obtained from slow evaporation of an ethanol solution.

Refinement top

H atoms were located in a difference map and treated as riding with C—H = 0.96, 0.98 and 0.93 Å for methyl, methine and aromatic, respectively, and N—H = 0.86 Å. The Uiso(H) values were set at 1.2Ueq(C, N) for methine, aromatic and N—H or 1.5Ueq(C) for methyl. The reflection (0 0 1) affected by the beamstop was removed during refinement.

Structure description top

Substituted 2-amino-4-aryl-4H-pyran derivatives are an important class of heterocyclic compounds, which frequently exhibit a wide range of biological properties viz. antiproliferative and antitubercular activities (Panda et al., 1997; Mungra et al., 2011). Thus, in view of the large spectrum of application of these compounds and in continuation of ongoing research focused on the reactivity of the (Z)-2-arylidenebenzo[b]thiophen-3(2H)-ones (thioaurones) (Boughaleb et al., 2010, 2011; Bakhouch et al., 2015), we describe herein the behavior of ethyl cyanoacetate with (Z)-2-(4-methoxybenzylidene)benzo[b]thiophen-3(2H)-one (Bakhouch et al., 2014). Initially the condensation furnish the Michael adducts, which undergoes intramolecular cyclization to afford imino-pyran. The subsequent tautomeric transformation gives rise to 2-amino-3-cyano-4-(4-methoxyphenyl)-4H-1-benzothieno[3,2-b]pyran.

The title molecule is formed by a benzothieno[3,2-b]pyran system linked to the 4-methoxyphenyl ring as shown in Fig. 1. The three fused rings are almost coplanar with a maximum deviation from the mean plane being 0.060 (1) Å at C9. The dihedral angle between the benzothieno[3,2-b]pyran ring system and the mean plane of the 4-methoxyphenyl ring is 83.65( 5)°. In the crystal, molecules are linked by pairs of N—H···N hydrogen bonds into centrosymmetric dimeric units, which are further connected by N—H···O interactions to build tapes along the b axis (Table 1). The tapes are linked together by C—H···N and ππ interactions [centroid-centroid distance = 3.7743 (8) Å] to form a three-dimensional network as shown in Fig. 2.

For biological properties of 2-amino-4-aryl-4H-pyran derivatives, see: Panda et al. (1997); Mungra et al. (2011). For the reactivity of (Z)-2-arylidenebenzo[b]thiophen-3(2H)-ones (thioaurones), see: Boughaleb et al. (2010, 2011); Bakhouch et al. (2015). For a related structure, see: Bakhouch et al. (2014).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2] Fig. 2. A packing diagram of the title compound showing molecules linked by hydrogen bonds (dashed blue lines) and a ππ interaction (dashed green line).
2-Amino-3-cyano-4-(4-methoxyphenyl)-4H-1-benzothieno[3,2-b]pyran top
Crystal data top
C19H14N2O2SF(000) = 348
Mr = 334.38Dx = 1.368 Mg m3
Triclinic, P1Melting point: 515 K
a = 6.0469 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.8135 (5) ÅCell parameters from 4563 reflections
c = 13.3260 (6) Åθ = 2.1–29.6°
α = 109.943 (2)°µ = 0.21 mm1
β = 93.226 (2)°T = 296 K
γ = 95.439 (2)°Block, colourless
V = 811.76 (7) Å30.40 × 0.37 × 0.24 mm
Z = 2
Data collection top
Bruker X8 APEX
diffractometer
3683 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
Graphite monochromatorθmax = 29.6°, θmin = 2.1°
φ and ω scansh = 88
33610 measured reflectionsk = 1515
4563 independent reflectionsl = 1818
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.0643P)2 + 0.197P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
4563 reflectionsΔρmax = 0.30 e Å3
217 parametersΔρmin = 0.26 e Å3
Crystal data top
C19H14N2O2Sγ = 95.439 (2)°
Mr = 334.38V = 811.76 (7) Å3
Triclinic, P1Z = 2
a = 6.0469 (3) ÅMo Kα radiation
b = 10.8135 (5) ŵ = 0.21 mm1
c = 13.3260 (6) ÅT = 296 K
α = 109.943 (2)°0.40 × 0.37 × 0.24 mm
β = 93.226 (2)°
Data collection top
Bruker X8 APEX
diffractometer
3683 reflections with I > 2σ(I)
33610 measured reflectionsRint = 0.030
4563 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.02Δρmax = 0.30 e Å3
4563 reflectionsΔρmin = 0.26 e Å3
217 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9654 (2)0.25649 (14)0.46217 (11)0.0435 (3)
C21.1515 (3)0.27892 (17)0.53633 (13)0.0560 (4)
H21.18700.36000.59170.067*
C31.2798 (3)0.17813 (19)0.52500 (15)0.0630 (5)
H31.40410.19140.57350.076*
C41.2285 (3)0.05642 (19)0.44279 (15)0.0592 (4)
H41.32030.00960.43650.071*
C51.0432 (2)0.03195 (16)0.37019 (12)0.0481 (3)
H51.00820.05010.31590.058*
C60.9100 (2)0.13312 (13)0.38033 (10)0.0387 (3)
C70.7137 (2)0.13537 (12)0.31555 (10)0.0361 (3)
C80.6294 (2)0.25117 (12)0.34268 (10)0.0368 (3)
C90.4291 (2)0.27703 (12)0.28465 (10)0.0354 (2)
H90.31470.30140.33470.042*
C100.3425 (2)0.14569 (12)0.19663 (10)0.0351 (2)
C110.4390 (2)0.03198 (12)0.17479 (10)0.0376 (3)
C120.1396 (2)0.14023 (12)0.13670 (10)0.0389 (3)
C130.4803 (2)0.38855 (11)0.24049 (9)0.0347 (2)
C140.3445 (2)0.48861 (13)0.25600 (11)0.0425 (3)
H140.21990.48780.29370.051*
C150.3923 (3)0.58966 (14)0.21602 (13)0.0483 (3)
H150.30010.65630.22720.058*
C160.5767 (2)0.59197 (13)0.15942 (11)0.0435 (3)
C170.7125 (3)0.49179 (15)0.14233 (13)0.0496 (3)
H170.83620.49190.10400.060*
C180.6619 (2)0.39158 (14)0.18300 (12)0.0463 (3)
H180.75310.32440.17120.056*
C190.8083 (4)0.7080 (2)0.0723 (2)0.0811 (6)
H19A0.81280.78530.05220.122*
H19B0.93780.71550.12010.122*
H19C0.80650.63070.00940.122*
N10.3666 (2)0.08499 (12)0.09804 (11)0.0568 (4)
H1A0.24770.09320.05670.068*
H1B0.43920.15180.09020.068*
N20.0263 (2)0.13768 (13)0.08954 (11)0.0548 (3)
O10.62572 (16)0.02236 (9)0.23233 (8)0.0432 (2)
O20.6139 (2)0.69683 (11)0.12427 (11)0.0626 (3)
S10.78335 (7)0.36908 (4)0.45395 (3)0.04948 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0426 (7)0.0494 (7)0.0399 (6)0.0059 (5)0.0089 (5)0.0224 (6)
C20.0547 (9)0.0610 (9)0.0499 (8)0.0129 (7)0.0208 (7)0.0254 (7)
C30.0489 (9)0.0776 (11)0.0678 (10)0.0069 (8)0.0239 (8)0.0405 (9)
C40.0463 (8)0.0718 (11)0.0686 (10)0.0073 (7)0.0116 (7)0.0387 (9)
C50.0443 (7)0.0536 (8)0.0508 (8)0.0039 (6)0.0070 (6)0.0263 (6)
C60.0351 (6)0.0469 (7)0.0384 (6)0.0032 (5)0.0055 (5)0.0238 (5)
C70.0352 (6)0.0383 (6)0.0349 (6)0.0018 (5)0.0060 (5)0.0159 (5)
C80.0381 (6)0.0372 (6)0.0333 (5)0.0011 (5)0.0055 (5)0.0129 (5)
C90.0353 (6)0.0352 (6)0.0342 (6)0.0051 (4)0.0008 (4)0.0106 (5)
C100.0335 (6)0.0351 (6)0.0358 (6)0.0025 (4)0.0042 (4)0.0127 (5)
C110.0367 (6)0.0351 (6)0.0403 (6)0.0013 (5)0.0084 (5)0.0148 (5)
C120.0393 (6)0.0357 (6)0.0385 (6)0.0094 (5)0.0026 (5)0.0087 (5)
C130.0365 (6)0.0308 (5)0.0341 (6)0.0070 (4)0.0023 (4)0.0080 (4)
C140.0394 (6)0.0439 (7)0.0437 (7)0.0148 (5)0.0046 (5)0.0121 (5)
C150.0497 (8)0.0405 (7)0.0572 (8)0.0210 (6)0.0018 (6)0.0166 (6)
C160.0502 (7)0.0343 (6)0.0475 (7)0.0082 (5)0.0039 (6)0.0165 (5)
C170.0496 (8)0.0461 (7)0.0617 (9)0.0162 (6)0.0167 (7)0.0252 (7)
C180.0472 (7)0.0388 (6)0.0604 (8)0.0204 (6)0.0147 (6)0.0215 (6)
C190.0820 (14)0.0726 (12)0.1117 (17)0.0095 (10)0.0202 (13)0.0596 (13)
N10.0588 (8)0.0342 (6)0.0648 (8)0.0082 (5)0.0296 (6)0.0061 (5)
N20.0480 (7)0.0517 (7)0.0530 (7)0.0193 (5)0.0130 (5)0.0027 (6)
O10.0421 (5)0.0351 (4)0.0482 (5)0.0055 (4)0.0155 (4)0.0119 (4)
O20.0705 (8)0.0488 (6)0.0832 (8)0.0155 (5)0.0089 (6)0.0395 (6)
S10.0563 (2)0.04306 (19)0.04101 (19)0.00067 (15)0.01393 (15)0.00898 (14)
Geometric parameters (Å, º) top
C1—C21.4007 (19)C11—N11.3416 (16)
C1—C61.4011 (19)C11—O11.3612 (14)
C1—S11.7427 (15)C12—N21.1462 (17)
C2—C31.369 (3)C13—C181.3779 (19)
C2—H20.9300C13—C141.3867 (17)
C3—C41.389 (3)C14—C151.384 (2)
C3—H30.9300C14—H140.9300
C4—C51.382 (2)C15—C161.384 (2)
C4—H40.9300C15—H150.9300
C5—C61.394 (2)C16—O21.3717 (16)
C5—H50.9300C16—C171.3858 (19)
C6—C71.4349 (16)C17—C181.385 (2)
C7—C81.3385 (18)C17—H170.9300
C7—O11.3755 (14)C18—H180.9300
C8—C91.4997 (17)C19—O21.414 (2)
C8—S11.7382 (12)C19—H19A0.9600
C9—C101.5233 (16)C19—H19B0.9600
C9—C131.5265 (17)C19—H19C0.9600
C9—H90.9800N1—H1A0.8600
C10—C111.3594 (17)N1—H1B0.8600
C10—C121.4110 (16)
C2—C1—C6120.66 (14)N1—C11—O1110.43 (11)
C2—C1—S1127.61 (13)C10—C11—O1122.91 (11)
C6—C1—S1111.71 (10)N2—C12—C10178.75 (15)
C3—C2—C1118.14 (15)C18—C13—C14118.18 (12)
C3—C2—H2120.9C18—C13—C9120.75 (11)
C1—C2—H2120.9C14—C13—C9121.07 (12)
C2—C3—C4121.54 (14)C15—C14—C13120.76 (13)
C2—C3—H3119.2C15—C14—H14119.6
C4—C3—H3119.2C13—C14—H14119.6
C5—C4—C3121.02 (16)C16—C15—C14120.31 (12)
C5—C4—H4119.5C16—C15—H15119.8
C3—C4—H4119.5C14—C15—H15119.8
C4—C5—C6118.42 (15)O2—C16—C15116.47 (12)
C4—C5—H5120.8O2—C16—C17124.00 (14)
C6—C5—H5120.8C15—C16—C17119.52 (13)
C5—C6—C1120.21 (12)C18—C17—C16119.31 (13)
C5—C6—C7129.87 (13)C18—C17—H17120.3
C1—C6—C7109.91 (12)C16—C17—H17120.3
C8—C7—O1124.87 (11)C13—C18—C17121.91 (12)
C8—C7—C6115.62 (11)C13—C18—H18119.0
O1—C7—C6119.51 (11)C17—C18—H18119.0
C7—C8—C9124.73 (11)O2—C19—H19A109.5
C7—C8—S1111.22 (9)O2—C19—H19B109.5
C9—C8—S1124.05 (9)H19A—C19—H19B109.5
C8—C9—C10105.99 (10)O2—C19—H19C109.5
C8—C9—C13113.02 (10)H19A—C19—H19C109.5
C10—C9—C13112.31 (10)H19B—C19—H19C109.5
C8—C9—H9108.5C11—N1—H1A120.0
C10—C9—H9108.5C11—N1—H1B120.0
C13—C9—H9108.5H1A—N1—H1B120.0
C11—C10—C12117.49 (11)C11—O1—C7116.13 (10)
C11—C10—C9125.31 (11)C16—O2—C19118.42 (13)
C12—C10—C9117.12 (10)C8—S1—C191.51 (6)
N1—C11—C10126.65 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.862.183.0060 (17)160
N1—H1B···O2ii0.862.193.0158 (16)162
C18—H18···N2iii0.932.493.3997 (17)165
Symmetry codes: (i) x, y, z; (ii) x, y1, z; (iii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.862.183.0060 (17)160
N1—H1B···O2ii0.862.193.0158 (16)162
C18—H18···N2iii0.932.493.3997 (17)165
Symmetry codes: (i) x, y, z; (ii) x, y1, z; (iii) x+1, y, z.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationBakhouch, M., Al Houari, G., Daoudi, M., Kerbal, A. & El Yazidi, M. (2015). Med. J. Chem. 4, 9–17.  Google Scholar
First citationBakhouch, M., Al Houari, G., El Yazidi, M., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o587.  CSD CrossRef IUCr Journals Google Scholar
First citationBoughaleb, A., Akhazzane, M., Alhouari, G., Bennani, B., Daoudi, M., Garrigues, B., Kerbal, A. & El Yazidi, M. (2011). J. Soc. Chim. Tunis. 13, 117–122.  CAS Google Scholar
First citationBoughaleb, A., Al houari, G., Bennani, B., Daoudi, M., Garrigues, B., Kerbal, A. & El Yazidi, M. (2010). J. Soc. Chim. Tunis. 12, 109–115.  CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMungra, D. C., Patel, M. P., Rajani, D. P. & Patel, R. G. (2011). Eur. J. Med. Chem. 46, 4192–4200.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPanda, D., Singh, J. P. & Wilson, L. (1997). J. Biol. Chem. 272, 7681–7687.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds