metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­(1,3-di­meth­­oxy­imidazolin-2-yl­­idene)silver(I) hexa­fluorido­phosphate, N-heterocyclic carbene (NHC) complex

aUniversity of Innsbruck, Faculty of Chemistry and Pharmacy, Innrain 80, 6020 Innsbruck, Austria, and bUniversity of Innsbruck, Institute of Mineralogy and Petrography, Innrain 52, 6020 Innsbruck, Austria
*Correspondence e-mail: gerhard.laus@uibk.ac.at

Edited by O. Büyükgüngör, Ondokuz Mayıs University, Turkey (Received 20 November 2015; accepted 1 December 2015; online 9 December 2015)

The title salt, [Ag(C5H8N2O2)2]PF6, was obtained by deprotonation and metalation of 1,3-di­meth­oxy­imidazolium hexa­fluorido­phosphate using silver(I) oxide in methanol. The C—Ag—C angle in the cation is 178.1 (2)°, and the N—C—N angles are 101.1 (4) and 100.5 (4)°. The meth­oxy groups adopt an anti conformation. In the crystal, anions (A) are sandwiched between cations (C) in a layered arrangement {CAC}n stacked along [001]. Within a CAC layer, the hexafluoridophosphate anions accept several C—H⋯F hydrogen bonds from the cationic complex.

1. Related literature

For synthesis of 1,3-di­meth­oxy­imidazolium hexa­fluorido­phosphate, see: Laus et al. (2007[Laus, G., Schwärzler, A., Schuster, P., Bentivoglio, G., Hummel, M., Wurst, K., Kahlenberg, V., Lörting, T., Schütz, J., Peringer, P., Bonn, G., Nauer, G. & Schottenberger, H. (2007). Z. Naturforsch. Teil B, 62, 295-308.]). For related structures, see: Laus et al. (2008[Laus, G., Schwärzler, A., Bentivoglio, G., Hummel, M., Kahlenberg, V., Wurst, K., Kristeva, E., Schütz, J., Kopacka, H., Kreutz, C., Bonn, G., Andriyko, Y., Nauer, G. & Schottenberger, H. (2008). Z. Naturforsch. Teil B, 63, 447-464.], 2010[Laus, G., Wurst, K., Kahlenberg, V., Kopacka, H., Kreutz, C. & Schottenberger, H. (2010). Z. Naturforsch. Teil B, 65, 776-782.]). For background to N-heterocyclic carbene (NHC)–silver complexes, see: Garrison & Youngs (2005[Garrison, J. C. & Youngs, W. J. (2005). Chem. Rev. 105, 3978-4008.]); Lin et al. (2009[Lin, J. C. Y., Huang, R. T. W., Lee, C. S., Bhattacharyya, A., Hwang, W. S. & Lin, I. J. B. (2009). Chem. Rev. 109, 3561-3598.]); Lin & Vasam (2007[Lin, I. J. B. & Vasam, C. S. (2007). Coord. Chem. Rev. 251, 642-670.]); Wang & Lin (1998[Wang, H. M. J. & Lin, I. J. B. (1998). Organometallics, 17, 972-975.]). For the nature of C—H⋯F inter­actions, see: D'Oria & Novoa (2008[D'Oria, E. & Novoa, J. J. (2008). CrystEngComm, 10, 423-436.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Ag(C5H8N2O2)2]PF6

  • Mr = 509.11

  • Triclinic, [P \overline 1]

  • a = 7.5254 (7) Å

  • b = 11.7221 (12) Å

  • c = 11.8697 (12) Å

  • α = 109.481 (9)°

  • β = 100.698 (8)°

  • γ = 100.052 (8)°

  • V = 937.84 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.24 mm−1

  • T = 243 K

  • 0.25 × 0.12 × 0.05 mm

2.2. Data collection

  • Agilent Xcalibur (Ruby, Gemini ultra) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Santa Clara, California, USA.]) Tmin = 0.770, Tmax = 1

  • 5767 measured reflections

  • 3398 independent reflections

  • 2814 reflections with I > 2σ(I)

  • Rint = 0.031

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.109

  • S = 1.02

  • 3398 reflections

  • 222 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.75 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯F1 0.97 2.57 3.193 (8) 122
C8—H8⋯F2i 0.94 2.46 3.382 (5) 165
C10—H10B⋯F1ii 0.97 2.54 3.334 (9) 140
C9—H9C⋯F6iii 0.97 2.58 3.516 (6) 163
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y+1, -z+2; (iii) -x+1, -y+1, -z+3.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Santa Clara, California, USA.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

N-Heterocyclic carbene (NHC)–silver complexes are valuable precursors for transmetalation to other metal NHC systems (Garrison & Youngs, 2005; Lin et al., 2009; Lin & Vasam, 2007; Wang & Lin, 1998). In the crystal structure of the title compound, the central carbene–metal bonds C1—Ag and C6—Ag are 2.073 (4) and 2.070 (4) Å long, respectively, and deviate only slightly from linearity with an angle of 178.1 (2)°. The N—C—N 'carbene angles' are 101.0 (4)° and 100.4 (4)°, significantly smaller than the mean value of 104.5° in bis(NHC)–Ag complexes from the CSD (1002 values from 344 entries), but in line with related N-alkyloxy-substituted compounds (reference codes: DOJNIA and YUWZOG), where the angles range from 100.9° to 102.0° (Laus et al., 2008 and 2010). The dihedral angle between the imidazole rings is 3.0 (3)°. The methoxy groups adopt anti conformation. The molecular structure is shown in Figure 1. The unit cell contains two ion pairs (Figure 2). The weakly coordinating hexafluorophosphate ion accepts several C—H···F hydrogen bonds (D'Oria & Novoa, 2008) from the cationic complex (Figure 3). The hydrogen bond geometries are summarised in Table 1.

Related literature top

For synthesis of 1,3-dimethoxyimidazolium hexafluoridophosphate, see: Laus et al. (2007). For related structures, see: Laus et al. (2008, 2010). For background to N-heterocyclic carbene (NHC)–silver complexes, see: Garrison & Youngs (2005); Lin et al. (2009); Lin & Vasam (2007); Wang & Lin (1998). For the nature of C—H···F interactions, see: D'Oria & Novoa (2008).

Experimental top

A suspension of 1,3-dimethoxyimidazolium hexafluorophosphate (1.0 g, 3.6 mmol) (Laus et al., 2007) and Ag2O (0.40 g, 1.7 mmol) in MeOH (20 ml) was stirred at room temperature for 18 h (Figure 4), until the dark Ag2O was consumed. The desired product was filtered off (the filtrate contained the soluble AgPF6), washed with MeOH and Et2O and recrystallised from hot MeOH to yield colourless crystals (0.55 g, 62%). The PXRD (Cu Kα radiation) of the bulk material was identical to the one calculated from the single-crystal diffraction data (Figure 5).

Melting point: 164–166 °C. 1H NMR (DMSO-d6, 300 MHz): δ 4.16 (s, 12H), 7.91 (s, 4H) ppm 13C NMR (DMSO-d6, 75 MHz): δ 68.1 (4C), 116.6 (4C), 165.7 (2C) ppm IR (neat): ν 3172 (w), 3155 (w), 2951 (w), 1460 (w), 1440 (w), 1027 (m), 957 (m), 822 (s), 705 (m), 555 (s) cm-1.

Refinement top

Carbon-bound H atoms were placed in calculated positions and refined riding on their respective carbon atom. Methyl hydrogens were fitted to the experimental electron density by allowing them to rotate around the C—C bond with a fixed angle (AFIX 137). Isotropic displacement parameters were constrained with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms. The F atoms of the PF6 ions were restrained with a distance of P—F = 1.57 Å.

Structure description top

N-Heterocyclic carbene (NHC)–silver complexes are valuable precursors for transmetalation to other metal NHC systems (Garrison & Youngs, 2005; Lin et al., 2009; Lin & Vasam, 2007; Wang & Lin, 1998). In the crystal structure of the title compound, the central carbene–metal bonds C1—Ag and C6—Ag are 2.073 (4) and 2.070 (4) Å long, respectively, and deviate only slightly from linearity with an angle of 178.1 (2)°. The N—C—N 'carbene angles' are 101.0 (4)° and 100.4 (4)°, significantly smaller than the mean value of 104.5° in bis(NHC)–Ag complexes from the CSD (1002 values from 344 entries), but in line with related N-alkyloxy-substituted compounds (reference codes: DOJNIA and YUWZOG), where the angles range from 100.9° to 102.0° (Laus et al., 2008 and 2010). The dihedral angle between the imidazole rings is 3.0 (3)°. The methoxy groups adopt anti conformation. The molecular structure is shown in Figure 1. The unit cell contains two ion pairs (Figure 2). The weakly coordinating hexafluorophosphate ion accepts several C—H···F hydrogen bonds (D'Oria & Novoa, 2008) from the cationic complex (Figure 3). The hydrogen bond geometries are summarised in Table 1.

For synthesis of 1,3-dimethoxyimidazolium hexafluoridophosphate, see: Laus et al. (2007). For related structures, see: Laus et al. (2008, 2010). For background to N-heterocyclic carbene (NHC)–silver complexes, see: Garrison & Youngs (2005); Lin et al. (2009); Lin & Vasam (2007); Wang & Lin (1998). For the nature of C—H···F interactions, see: D'Oria & Novoa (2008).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms. The hexafluoridophosphate ion is not shown.
[Figure 2] Fig. 2. Unit cell of the title compound.
[Figure 3] Fig. 3. Interionic contacts in the crystal structure of the title compound. Symmetry codes: (i) x, 1 + y, z; (ii) 1 - x, 1 - y, 2 - z; (iii) 1 - x, 1 - y, 3 - z.
[Figure 4] Fig. 4. Reaction scheme.
[Figure 5] Fig. 5. Observed and calculated powder X-ray diffraction data.
Bis(1,3-dimethoxyimidazolin-2-ylidene)silver(I) hexafluoridophosphate top
Crystal data top
[Ag(C5H8N2O2)2]PF6Z = 2
Mr = 509.11F(000) = 504
Triclinic, P1Dx = 1.803 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5254 (7) ÅCell parameters from 2189 reflections
b = 11.7221 (12) Åθ = 3.1–28.5°
c = 11.8697 (12) ŵ = 1.24 mm1
α = 109.481 (9)°T = 243 K
β = 100.698 (8)°Prismatic fragment, colourless
γ = 100.052 (8)°0.25 × 0.12 × 0.05 mm
V = 937.84 (17) Å3
Data collection top
Agilent Xcalibur (Ruby, Gemini ultra)
diffractometer
3398 independent reflections
Graphite monochromator2814 reflections with I > 2σ(I)
Detector resolution: 10.3575 pixels mm-1Rint = 0.031
ω scansθmax = 25.4°, θmin = 3.2°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
h = 97
Tmin = 0.770, Tmax = 1k = 1214
5767 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0489P)2 + 1.0584P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3398 reflectionsΔρmax = 0.75 e Å3
222 parametersΔρmin = 0.60 e Å3
6 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0166 (15)
Crystal data top
[Ag(C5H8N2O2)2]PF6γ = 100.052 (8)°
Mr = 509.11V = 937.84 (17) Å3
Triclinic, P1Z = 2
a = 7.5254 (7) ÅMo Kα radiation
b = 11.7221 (12) ŵ = 1.24 mm1
c = 11.8697 (12) ÅT = 243 K
α = 109.481 (9)°0.25 × 0.12 × 0.05 mm
β = 100.698 (8)°
Data collection top
Agilent Xcalibur (Ruby, Gemini ultra)
diffractometer
3398 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
2814 reflections with I > 2σ(I)
Tmin = 0.770, Tmax = 1Rint = 0.031
5767 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0446 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.02Δρmax = 0.75 e Å3
3398 reflectionsΔρmin = 0.60 e Å3
222 parameters
Special details top

Experimental. Absorption correction: CrysAlisPro, Agilent Technologies, Version 1.171.36.20 (release 27-06-2012 CrysAlis171 .NET) (compiled Jul 11 2012,15:38:31) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag0.23186 (5)0.43947 (3)0.95741 (3)0.04281 (18)
P0.5262 (2)0.18543 (11)1.32827 (11)0.0552 (4)
F10.5321 (7)0.2674 (3)1.2468 (3)0.0968 (10)
F60.5226 (8)0.3018 (3)1.4400 (3)0.1157 (13)
F30.7426 (5)0.2188 (6)1.3712 (6)0.1502 (16)
F20.5166 (7)0.1034 (3)1.4097 (3)0.0968 (10)
F50.5222 (8)0.0672 (3)1.2160 (3)0.1157 (13)
F40.3055 (5)0.1529 (6)1.2871 (6)0.1502 (16)
O40.3885 (5)0.7554 (3)1.0537 (4)0.0560 (9)
O30.1139 (5)0.4969 (3)1.2341 (3)0.0528 (9)
O20.0715 (5)0.1240 (3)0.8695 (4)0.0611 (10)
C10.2102 (6)0.2811 (4)0.8048 (4)0.0403 (10)
O10.3470 (5)0.3732 (4)0.6798 (3)0.0605 (10)
N30.2052 (5)0.6009 (3)1.2185 (3)0.0389 (8)
N20.1483 (6)0.1604 (4)0.7865 (4)0.0471 (10)
N40.3151 (5)0.7149 (3)1.1359 (3)0.0395 (9)
N10.2605 (6)0.2710 (4)0.7000 (4)0.0463 (9)
C60.2497 (6)0.5939 (4)1.1125 (4)0.0377 (10)
C100.2488 (9)0.7857 (6)0.9781 (6)0.0709 (17)
H10A0.14410.71260.93370.106*
H10B0.3010.8120.91920.106*
H10C0.20620.8531.02980.106*
C70.2416 (7)0.7202 (4)1.3035 (4)0.0450 (11)
H70.22080.74471.38280.054*
C80.3132 (7)0.7948 (4)1.2498 (5)0.0488 (12)
H80.35330.88271.28310.059*
C50.2106 (9)0.1109 (7)0.9606 (7)0.0790 (19)
H5A0.27460.05060.92010.118*
H5B0.15160.08211.01570.118*
H5C0.30010.19121.0080.118*
C40.2153 (9)0.4083 (6)0.6024 (6)0.0729 (17)
H4A0.14720.33550.52840.109*
H4B0.28140.4720.5790.109*
H4C0.12820.4410.64710.109*
C30.1572 (9)0.0797 (5)0.6757 (5)0.0642 (15)
H30.11880.00810.6450.077*
C90.2456 (9)0.4396 (5)1.2843 (6)0.0704 (17)
H9A0.32590.41721.22970.106*
H9B0.17860.36491.29170.106*
H9C0.32120.49811.36540.106*
C20.2309 (8)0.1495 (5)0.6192 (5)0.0630 (15)
H20.25690.1220.54150.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag0.0481 (3)0.0401 (2)0.0376 (2)0.01478 (16)0.01134 (16)0.00972 (16)
P0.0909 (12)0.0415 (7)0.0372 (7)0.0268 (7)0.0195 (7)0.0134 (6)
F10.174 (3)0.0702 (16)0.0679 (16)0.0446 (18)0.0437 (18)0.0397 (14)
F60.229 (4)0.0686 (16)0.0589 (16)0.061 (2)0.055 (2)0.0154 (13)
F30.090 (3)0.167 (4)0.202 (5)0.026 (2)0.026 (3)0.090 (4)
F20.174 (3)0.0702 (16)0.0679 (16)0.0446 (18)0.0437 (18)0.0397 (14)
F50.229 (4)0.0686 (16)0.0589 (16)0.061 (2)0.055 (2)0.0154 (13)
F40.090 (3)0.167 (4)0.202 (5)0.026 (2)0.026 (3)0.090 (4)
O40.049 (2)0.062 (2)0.073 (2)0.0183 (17)0.0291 (19)0.037 (2)
O30.054 (2)0.0500 (19)0.063 (2)0.0109 (16)0.0186 (18)0.0318 (17)
O20.045 (2)0.063 (2)0.079 (3)0.0088 (17)0.019 (2)0.033 (2)
C10.035 (2)0.044 (3)0.038 (3)0.013 (2)0.007 (2)0.011 (2)
O10.052 (2)0.072 (2)0.062 (2)0.0127 (19)0.0166 (19)0.032 (2)
N30.042 (2)0.0373 (19)0.035 (2)0.0112 (16)0.0067 (17)0.0127 (16)
N20.041 (2)0.045 (2)0.053 (2)0.0128 (18)0.0122 (19)0.0145 (19)
N40.032 (2)0.044 (2)0.045 (2)0.0132 (17)0.0110 (17)0.0175 (18)
N10.044 (2)0.051 (2)0.041 (2)0.0170 (19)0.0116 (19)0.0103 (18)
C60.030 (2)0.038 (2)0.041 (3)0.0091 (18)0.0049 (19)0.0122 (19)
C100.073 (4)0.092 (4)0.079 (4)0.030 (4)0.035 (3)0.059 (4)
C70.048 (3)0.046 (3)0.039 (3)0.021 (2)0.010 (2)0.011 (2)
C80.046 (3)0.037 (2)0.053 (3)0.011 (2)0.004 (2)0.008 (2)
C50.071 (4)0.099 (5)0.104 (5)0.029 (4)0.039 (4)0.072 (4)
C40.072 (4)0.091 (4)0.082 (4)0.030 (4)0.028 (4)0.055 (4)
C30.068 (4)0.044 (3)0.063 (4)0.018 (3)0.012 (3)0.001 (3)
C90.092 (5)0.057 (3)0.071 (4)0.022 (3)0.012 (3)0.038 (3)
C20.062 (4)0.067 (4)0.047 (3)0.025 (3)0.012 (3)0.003 (3)
Geometric parameters (Å, º) top
Ag—C62.070 (4)N4—C61.332 (6)
Ag—C12.073 (4)N4—C81.368 (6)
P—F31.550 (4)N1—C21.377 (6)
P—F51.561 (3)C10—H10A0.97
P—F61.562 (3)C10—H10B0.97
P—F11.574 (3)C10—H10C0.97
P—F21.576 (3)C7—C81.340 (7)
P—F41.580 (4)C7—H70.94
O4—N41.379 (5)C8—H80.94
O4—C101.424 (7)C5—H5A0.97
O3—N31.378 (5)C5—H5B0.97
O3—C91.438 (6)C5—H5C0.97
O2—N21.376 (5)C4—H4A0.97
O2—C51.426 (7)C4—H4B0.97
C1—N21.339 (6)C4—H4C0.97
C1—N11.341 (6)C3—C21.331 (8)
O1—N11.375 (5)C3—H30.94
O1—C41.433 (7)C9—H9A0.97
N3—C61.342 (6)C9—H9B0.97
N3—C71.368 (6)C9—H9C0.97
N2—C31.362 (7)C2—H20.94
C6—Ag—C1178.13 (17)N3—C6—Ag130.3 (3)
F3—P—F591.4 (3)O4—C10—H10A109.5
F3—P—F690.6 (4)O4—C10—H10B109.5
F5—P—F6177.9 (3)H10A—C10—H10B109.5
F3—P—F191.7 (3)O4—C10—H10C109.5
F5—P—F191.0 (2)H10A—C10—H10C109.5
F6—P—F189.5 (2)H10B—C10—H10C109.5
F3—P—F289.3 (3)C8—C7—N3105.5 (4)
F5—P—F289.2 (2)C8—C7—H7127.2
F6—P—F290.2 (2)N3—C7—H7127.2
F1—P—F2179.0 (3)C7—C8—N4104.8 (4)
F3—P—F4178.9 (4)C7—C8—H8127.6
F5—P—F489.6 (3)N4—C8—H8127.6
F6—P—F488.4 (3)O2—C5—H5A109.5
F1—P—F488.8 (3)O2—C5—H5B109.5
F2—P—F490.3 (3)H5A—C5—H5B109.5
N4—O4—C10110.1 (4)O2—C5—H5C109.5
N3—O3—C9110.8 (4)H5A—C5—H5C109.5
N2—O2—C5111.5 (4)H5B—C5—H5C109.5
N2—C1—N1101.0 (4)O1—C4—H4A109.5
N2—C1—Ag129.2 (3)O1—C4—H4B109.5
N1—C1—Ag129.8 (3)H4A—C4—H4B109.5
N1—O1—C4110.7 (4)O1—C4—H4C109.5
C6—N3—C7114.2 (4)H4A—C4—H4C109.5
C6—N3—O3122.1 (4)H4B—C4—H4C109.5
C7—N3—O3123.4 (4)C2—C3—N2106.6 (5)
C1—N2—C3113.7 (4)C2—C3—H3126.7
C1—N2—O2122.1 (4)N2—C3—H3126.7
C3—N2—O2124.1 (4)O3—C9—H9A109.5
C6—N4—C8115.0 (4)O3—C9—H9B109.5
C6—N4—O4122.1 (4)H9A—C9—H9B109.5
C8—N4—O4122.8 (4)O3—C9—H9C109.5
C1—N1—O1122.5 (4)H9A—C9—H9C109.5
C1—N1—C2114.1 (5)H9B—C9—H9C109.5
O1—N1—C2123.2 (4)C3—C2—N1104.6 (5)
N4—C6—N3100.5 (4)C3—C2—H2127.7
N4—C6—Ag129.2 (3)N1—C2—H2127.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···F10.972.573.193 (8)122
C8—H8···F2i0.942.463.382 (5)165
C10—H10B···F1ii0.972.543.334 (9)140
C9—H9C···F6iii0.972.583.516 (6)163
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+2; (iii) x+1, y+1, z+3.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···F10.972.573.193 (8)122
C8—H8···F2i0.942.463.382 (5)165
C10—H10B···F1ii0.972.543.334 (9)140
C9—H9C···F6iii0.972.583.516 (6)163
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+2; (iii) x+1, y+1, z+3.
 

Acknowledgements

We are grateful to R. Salchner for technical assistance.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Santa Clara, California, USA.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationD'Oria, E. & Novoa, J. J. (2008). CrystEngComm, 10, 423–436.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGarrison, J. C. & Youngs, W. J. (2005). Chem. Rev. 105, 3978–4008.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLaus, G., Schwärzler, A., Bentivoglio, G., Hummel, M., Kahlenberg, V., Wurst, K., Kristeva, E., Schütz, J., Kopacka, H., Kreutz, C., Bonn, G., Andriyko, Y., Nauer, G. & Schottenberger, H. (2008). Z. Naturforsch. Teil B, 63, 447–464.  CAS Google Scholar
First citationLaus, G., Schwärzler, A., Schuster, P., Bentivoglio, G., Hummel, M., Wurst, K., Kahlenberg, V., Lörting, T., Schütz, J., Peringer, P., Bonn, G., Nauer, G. & Schottenberger, H. (2007). Z. Naturforsch. Teil B, 62, 295–308.  CAS Google Scholar
First citationLaus, G., Wurst, K., Kahlenberg, V., Kopacka, H., Kreutz, C. & Schottenberger, H. (2010). Z. Naturforsch. Teil B, 65, 776–782.  CAS Google Scholar
First citationLin, J. C. Y., Huang, R. T. W., Lee, C. S., Bhattacharyya, A., Hwang, W. S. & Lin, I. J. B. (2009). Chem. Rev. 109, 3561–3598.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLin, I. J. B. & Vasam, C. S. (2007). Coord. Chem. Rev. 251, 642–670.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, H. M. J. & Lin, I. J. B. (1998). Organometallics, 17, 972–975.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds