research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of ethyl 6-(4-methyl­phen­yl)-4-oxo-4H-chromene-2-carboxyl­ate and ethyl 6-(4-fluoro­phen­yl)-4-oxo-4H-chromene-2-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aFP-ENAS-Faculdade de Ciências de Saúde, Escola Superior de Saúde da UFP, Universidade Fernando Pessoa, Rua Carlos da Maia, 296, P-4200-150 Porto, Portugal, bREQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, P-4169-007, Porto, Portugal, cDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen, AB24 3UE, Scotland, and dCIQ/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
*Correspondence e-mail: jnlow111@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 17 November 2015; accepted 28 November 2015; online 1 January 2016)

The crystal structures of two chromone derivatives, viz. ethyl 6-(4-methyl­phen­yl)-4-oxo-4H-chromene-2-carboxyl­ate, C19H16O4, (1), and ethyl 6-(4-fluoro­phen­yl)-4-oxo-4H-chromene-2-carboxyl­ate C18H13FO4, (2), have been determined: (1) crystallizes with two mol­ecules in the asymmetric unit. A comparison of the dihedral angles beween the mean planes of the central chromone core with those of the substituents, an ethyl ester moiety at the 2-position and a para-substituted phenyl ring at the 6-position shows that each mol­ecule differs significantly from the others, even the two independent mol­ecules (a and b) of (1). In all three mol­ecules, the carbonyl groups of the chromone and the carboxyl­ate are trans-related. The supra­molecular structure of (1) involves only weak C—H⋯π inter­actions between H atoms of the substituent phenyl group and the phenyl group, which link mol­ecules into a chain of alternating mol­ecules a and b, and weak ππ stacking inter­actions between the chromone units. The packing in (2) involves C—H⋯O inter­actions, which form a network of two inter­secting ladders involving the carbonyl atom of the carboxyl­ate group as the acceptor for H atoms at the 7-position of the chromone ring and from an ortho-H atom of the exocyclic benzene ring. The carbonyl atom of the chromone acts as an acceptor from a meta-H atom of the exocyclic benzene ring. ππ inter­actions stack the mol­ecules by unit translation along the a axis.

1. Chemical context

Benzo­pyran derivatives represent a large class of natural and synthetic heterocycles that are often linked to a broad array of biological activities, (Gaspar et al., 2014[Gaspar, A., Matos, M. J., Garrido, J., Uriarte, E. & Borges, F. (2014). Chem. Rev. 114, 4960-4992.], 2015[Gaspar, A., Milhazes, N., Santana, L., Uriarte, E., Borges, F. & Matos, M. J. (2015). Curr. Top. Med. Chem. 15, 432-445.]). Within this vast class of compounds, the chromone core has emerged as a privileged structure for drug discovery and development programs (Welsch et al., 2010[Welsch, M. E., Snyder, S. A. & Stockwell, B. R. (2010). Curr. Opin. Chem. Biol. 14, 347-361.]). Chemically, the chromone scaffold is a rigid benzoannelated γ-pyrone ring, which can be modulated by diversity-oriented synthesis, (Gaspar et al., 2015[Gaspar, A., Milhazes, N., Santana, L., Uriarte, E., Borges, F. & Matos, M. J. (2015). Curr. Top. Med. Chem. 15, 432-445.]; Welsch et al., 2010[Welsch, M. E., Snyder, S. A. & Stockwell, B. R. (2010). Curr. Opin. Chem. Biol. 14, 347-361.]; Ko et al., 2006[Ko, S. K., Jang, H. J., Kim, E. & Park, S. B. (2006). Chem. Commun. pp. 2962-2694.]; Nicolaou et al., 2000[Nicolaou, K. C., Pfefferkorn, J. A., Roecker, A. J., Cao, G. Q., Barluenga, S. & Mitchell, H. J. (2000). J. Am. Chem. Soc. 122, 9939-9953.]), exhibiting a diversity of pharmacological properties such as anti-inflammatory, anti­microbial and anti­cancer among others (Gaspar et al., 2015[Gaspar, A., Milhazes, N., Santana, L., Uriarte, E., Borges, F. & Matos, M. J. (2015). Curr. Top. Med. Chem. 15, 432-445.]). The application of chromones as a valid scaffold for the development of therapeutic solutions for aging-related diseases is still an emerging field, even though the data acquired indicate their importance in the development of new drug candidates for targets ascribed with respect to Alzheimer's and Parkinson's diseases, namely as adenosine receptors ligands (Cagide et al., 2015a[Cagide, F., Gaspar, A., Reis, J., Chavarria, D., Vilar, S., Hripcsak, S., Uriarte, E., Kachler, S., Klotz, K. N. & Borges, F. (2015a). RSC Adv. 5, 78572-78585.]) and/or as mono­amino oxidase B inhibitors, (Cagide et al., 2015b[Cagide, F., Silva, T., Reis, J., Gaspar, A., Borges, F., Gomes, L. R. & Low, J. N. (2015b). Chem. Commun. 51, 2832-2835.]).

[Scheme 1]

Within this framework, our project has been focused on the discovery of new chemical entities based on a chromone scaffold. Herein we describe the crystal structures of two new chromone derivatives, viz. ethyl-6-(4-methyl­phen­yl)-4-oxo-4H-chromene-2-carboxyl­ate (1) and ethyl-6-(4-fluoro­phen­yl)-4-oxo-4H-chromene-2-carboxyl­ate (2).

2. Mol­ecular Geometry

Ellipsoid plots of the mol­ecules are given in Figs. 1[link] and 2[link]. Compound (1) crystallizes with two mol­ecules (a and b) in the asymmetric unit.

[Figure 1]
Figure 1
A view of the asymmetric unit of (1), with displacement ellipsoids drawn at the 70% probability level.
[Figure 2]
Figure 2
A view of the asymmetric unit of (2), with displacement ellipsoids drawn at the 70% probability level.

The mol­ecules consist of a central chromone core with an ethyl­ester substituent at the 2-position and a p-substituted phenyl group at the 6-position of the chromone ring system. Those constitutive fragments are essentially planar, therefore the major contribution to the definition of the mol­ecular conformations are the rotations around the C—C bonds that connect the substituents to the chromone ring. As such, the analysis of the mol­ecular geometry will be based on the values for the dihedral angles between the mean planes of the chromone and the phenyl ring (θChr–Phe) and the chromone and the ethyl carboxyl­ate moiety (θChr–carboxlylate), Table 1[link]. As can be seen, the dihedral angles for mol­ecules a and b of (1) are significantly different from each other. An overlay fit using the quaternion transformation method (Mackay, 1984[Mackay, A. L. (1984). Acta Cryst. A40, 165-166.]) shows that mol­ecule i inverts on mol­ecule ii where the weighted/unit weight r.m.s. fits are 0.090/0.089 Å for 23 atoms. The largest individual displacement is 0.169 Å (O14/O24 pair). The r.m.s. bond fit is 0.0021 Å and the r.m.s. angle fit is 0.376°. These values show that, in spite of the large differences in the dihedral angles, the mol­ecules are quite similar overall.

Table 1
Selected dihedral angles (°)

θChr–C3ring is the dihedral angle between the mean planes of the chromene and the phenyl ring. θChr–C6ester is the dihedral angle between the mean planes of the chromone ring and the plane defined by the ester atoms attached to C2 but not including it. θChr–OCO is the dihedral angle between the mean planes of the chromone ring and the OCO atoms of the ester.

Compound θChr–Phe θChr–carboxyl­ate θChr–OCO
(1) molecule a 32.8754) 23.23 (7) 21.16 (16)
(1) molecule b 24.14 (5) 14.191 (7) 12.16 (17)
(2) 36.05 (5) 9.52 (6) 12.97 (13)

Considering the relative position of the ethyl carboxyl­ate residue with respect to the chromone ring as may be seen in Fig. 3[link], the mol­ecules may have any conformation between two possible extremes: conformation A where the carbonyl groups are trans-related and conformation B where they are cis-related. A theoretical calculation made with Gaussian03 (Frisch et al., 2004[Frisch, M. J., et al. (2004). GAUSSIAN 03. Gaussian, Inc., Wallingford, Connecticut, USA.]) at the B3LYP /631++(d,p) level shows that the energy associated with each of the boundary conformations is similar in adiabatic conditions [see supporting information; the B3LYP model combines the hybrid exchange functional of Becke (1997[Becke, A. D. (1997). J. Chem. Phys. 107, 8554-8560.]) with the gradient-correlation functional of Lee et al. (1988[Lee, C., Yang, W. & Parr, G. R. (1988). Phys. Rev. B, 37, 785-789.]) and the split-valence polarized 6-311+G(d, p) basis set (Hehre et al., 1986[Hehre, W. J., Radom, L., Schleyer, P. V. R. & Pople, J. A. (1986). Ab Initio Molecular Orbital Theory. New York: Wiley.])]. Thus the adopted conformation in the solid state, with a geometry closer to A where the degree of twist lies between 9 and 21° (as measured by dihedral angles) may be due to packing factors. Preliminary results for the structures of similar compounds such as 6-(phen­yl)-4-oxo-4H-chromene-2-carboxyl­ate, 6-(4-meth­oxy­phen­yl)-4-oxo-4H-chromene-2-carboxyl­ate and 6-(4-3,4-di­meth­oxy­phen­yl)-4-oxo-4H-chromene-2-carboxyl­ate indicate that the major components have the same trans conformation as described above. These structures are imprecisely determined (the crystal quality was poor and the structures appeared to be intra­ctably disordered).

[Figure 3]
Figure 3
The relative position of the ethyl carboxyl­ate residue with respect to the chromone ring. Mol­ecules may have any conformation between two possible extremes: conformation A where the carbonyl groups are trans-related and conformation B where they are cis-related.

The rotation around the C(phen­yl)—C(chromone) bond is higher than the rotation around the C(chromone)—C(carb­oxy­eth­yl) bond for all of the three mol­ecules. This rotation may also contribute to the mol­ecular packing since, in the absence of electronically crowded substituents in the o- or m- positions, the phenyl substituent does not impose steric hindrance with respect to the chromone ring.

3. Supra­molecular structures

In the absence of strong hydrogen-bond donors, the supra­molecular structures depend on weak C—H⋯O hydrogen bonds and C—H⋯π and very weak ππ inter­actions.

In (1) there are no weak C—H⋯O inter­actions and aromatic inter­actions appear to play the major role in the establishment of the packing. There are two T-shaped C—H⋯π inter­actions, one between C162 and the centroid of the phenyl ring with pivot atom C261, Cg(C261) within the selected asymmetric unit, and the other between C262 and the centroid of the phenyl ring with pivot atom C161, Cg(C161)(x, [{3\over 2}] − y, −[{1\over 2}] + z), Table 2[link]. This forms a chain of alternating glide-related asymmetric units which runs parallel to the c axis. Within the asymmetric unit, the shortest packing contact is between the rings containing C15 and C25 and has a value of 4.2901 (9) Å, with an average perpendicular distance between the planes of 3.5350 Å and an angle between the planes of 6.46 (7)°, suggesting a possible very weak ππ inter­action. Centrosymmetrically related pairs of mol­ecule i form ππ stacked pairs, as do centrosymmetric pairs of mol­ecule ii, Table 3[link]. These base-paired units form a column of mol­ecule along the a axis, Fig. 4[link].

Table 2
Hydrogen-bond geometry (Å, °) for (1)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C162—H162⋯Cg(C261) 0.95 2.85 3.4914 (15) 126
C262—H262⋯Cg(C161)i 0.95 2.84 3.5408 (4) 131
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Table 3
Selected π–π contacts and short inter­molecular contacts (Å, °)

In compound (1), Cg1, Cg2, Cg5 and Cg6 are the centroids of the rings containing atoms O11, C15, O21 and C25, respectively. In compound (2), Cg1, Cg2 and Cg6 are the centroids of the rings containing atoms O1, C5 and C61. Values marked with an asterisk are average perpendicular distances and angles between the planes.

Compound contacts distance perp. distance slippage/angle*
(1) Cg1⋯Cg2i 3.7338 (8) 3.503* 0.45*
  Cg2⋯Cg2i 3.7226 (8) 3.5040 (6) 1.257
  Cg5⋯Cg6ii 3.6743 (9) 3.824* 0.98*
  Cg6⋯Cg6ii 3.9299 (9) 3.5762 (6) 1.630
(2) Cg1⋯Cg1iii 3.8521 (7) 3.3989 (4) 1.813
  Cg2⋯Cg2iii 3.8521 (7) 3.3957 (4) 1.819
  Cg3⋯Cg3iii' 3.8521 (7) 3.5811 (5) 1.419
Symmetry codes: (i) −x, 1 − y, 1 − z; (ii) 1 − x, 1 − y, 1 − z; (iii) 1 + x, y, z.
[Figure 4]
Figure 4
A view showing the stacking of the mol­ecules along the a axis. Symmetry codes: (*) −x, −y + 1, −z + 1; (#) −x + 1, −y + 1, −z + 1. H atoms are omitted.

In contrast, compound (2) has a more intricate supra­molecular structure, based on C—H⋯O and ππ inter­actions (Tables 3[link] and 4[link]). Both carb­oxy­lic oxygen atoms (O21 and O4) act as acceptors of C—H⋯O hydrogen bonds. Atom O21 is involved in two centrosymmetrically linked ring structures. In one of these, the C7—H7⋯O21(−x, −y + 1, −z + 1) hydrogen bond forms an R22(16) ring, Fig. 5[link], and in the other the C66—H66⋯O21(−x + 1, −y + 1, −z + 1) hydrogen bond forms an R22(22) ring (Fig. 6[link]). These inter­actions combine to link the mol­ecules into zigzag chains of rings which run parallel to the a axis, Fig. 7[link]. These are linked to form a three-dimensional network by the C65—H65⋯O4(−x + 2, y + [{1\over 2}], −z + 3/2) weak hydrogen bond formed by the action of the twofold screw axis at (1, y, 3/4), Fig. 8[link]. The mol­ecules are ππ stacked above each other with unit translation along the a axis, Table 3[link] and Fig. 9[link].

Table 4
Hydrogen-bond geometry (Å, °) for (2)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O21i 0.95 2.47 3.1977 (13) 133
C65—H65⋯O4ii 0.95 2.50 3.4447 (13) 175
C66—H66⋯O21iii 0.95 2.53 3.4425 (13) 162
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x+1, -y+1, -z+1.
[Figure 5]
Figure 5
Compound (2), view of the C7—H7⋯O21 centrosymetric R22(16) ring structure centred on (0, ½, ½). Atoms labelelled with a postscript,(i), are in mol­ecules at (−x, −y + 1, −z + 1). Hydrogen atoms not involved in the hydrogen bonding are omitted.
[Figure 6]
Figure 6
Compound (2), view of the C66—H66⋯O21 centrosymetric R22(22) ring structure centred on (½, ½, ½). Symmetry code: (i) = −x + 1, −y + 1, −z + 1. H atoms not involved in the hydrogen bonding are omitted.
[Figure 7]
Figure 7
Compound (2), the combined ring structure formed by the combination of the ring structures in Figs. 4[link] and 5[link]. This chain of rings extends along the a axis. H atoms not involved in the hydrogen bonding are omitted.
[Figure 8]
Figure 8
Compound (2), the simple C9 chain formed by the C65—H65⋯O4 weak hydrogen bond. This chain of rings extends along the a axis and is generated by the twofold screw axis at (1, y, [{3\over 4}]). Symmetry codes: (i) −x + 2, y + [{1\over 2}], −z + [{3\over 2}]; (ii) −x + 2, y − [{1\over 2}], −z + [{3\over 2}]. H atoms not involved in the hydrogen bonding are omitted.
[Figure 9]
Figure 9
A view showing the stacking of the mol­ecules along the a axis. Symmetry codes: (*) x − 1, y, z; (#) x + 1, y, z + 1. H atoms are omitted.

The inter­molecular inter­actions probably account for the significant difference (about 36 K) in the melting points for these compounds [411–418 K for (1) and 446–455 K for (2)]. They also may have an influence in the conformations of the mol­ecules since in (2) the atoms in the carb­oxy­ethyl group are involved either as donors or acceptors; these inter­actions may constrain the conformation of the orientation of the carb­oxy­ethyl moiety.

4. Synthesis and crystallization

Compounds (1) and (2) were obtained, in moderate yields, by a two-step synthetic procedure. In the first step, the required phenyl­aceto­phenone derivatives were obtained from 5′-bromo-2′-hy­droxy­aceto­phenone by a Suzuki C–C cross-coupling reaction assisted by microwave (MW) heating (Soares et al., 2015[Soares, P., Fernandes, C., Chavarria, D. & Borges, F. (2015). J. Chem. Educ. 92, 575-578.]). In the second step, the phenyl­aceto­phenone derivatives were converted in the corresponding chromones via an intra­molecular Claisen condensation reaction accomplished with diethyl oxalate in the presence of ethano­lic sodium ethoxide and cyclization under acidic conditions of the inter­mediate formed in situ.

Ethyl 6-(4-methyl­phen­yl)-4-oxo-4H-chromene-2-carboxyl­ate (1). Overall yield 50.7%; m.p. 411–418 K. Crystallization: ethyl acetate to form colourless prisms.

Ethyl 6-(4-fluoro­phen­yl)-4-oxo-4H-chromene-2-carboxyl­ate (2). Overall yield 55.9%; m.p. 446–455 K. Crystallization: ethyl acetate, to form colourless needles.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. H atoms were treated as riding atoms with C—H(aromatic) = 0.95 Å, with Uiso = 1.2Ueq(C) and C—H(meth­yl) = 0.98 Å with Uiso = 1.5Ueq(C).

Table 5
Experimental details

  (1) (2)
Crystal data
Chemical formula C19H16O4 C18H13FO4
Mr 308.32 312.28
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 100 100
a, b, c (Å) 14.7129 (11), 18.9613 (13), 11.3031 (6) 3.8521 (2), 20.6970 (15), 17.5478 (11)
β (°) 111.632 (7) 91.546 (1)
V3) 2931.2 (4) 1398.52 (15)
Z 8 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.10 0.11
Crystal size (mm) 0.20 × 0.09 × 0.05 0.42 × 0.02 × 0.01
 
Data collection
Diffractometer Rigaku Saturn724+ Rigaku Saturn724+
Absorption correction Multi-scan (CrystalClear-SM Expert; Rigaku, 20112) Multi-scan CrystalClear-SM Expert (Rigaku, 20112)
Tmin, Tmax 0.981, 0.995 0.954, 0.999
No. of measured, independent and observed [I > 2σ(I)] reflections 22133, 6680, 5311 16479, 3177, 2725
Rint 0.033 0.035
(sin θ/λ)max−1) 0.649 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.104, 1.11 0.031, 0.087, 0.98
No. of reflections 6680 3176
No. of parameters 419 209
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.23 0.31, −0.20
Computer programs: CrystalClear-SM Expert (Rigaku, 2012[Rigaku (2012). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OSCAIL (McArdle et al., 2004[McArdle, P., Gilligan, K., Cunningham, D., Dark, R. & Mahon, M. (2004). CrystEngComm, 6, 303-309.]), ShelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

For both compounds, data collection: CrystalClear-SM Expert (Rigaku, 2012); cell refinement: CrystalClear-SM Expert (Rigaku, 2012); data reduction: CrystalClear-SM Expert (Rigaku, 2012); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: OSCAIL (McArdle et al., 2004), ShelXle (Hübschle et al., 2011) and SHELXL2014 (Sheldrick, 2015b). Molecular graphics: Mercury (Macrae et al., 2006) and PLATON (Spek, 2009) for (1); Mercury (Macrae et al., 2006) for (2). For both compounds, software used to prepare material for publication: OSCAIL (McArdle et al., 2004), SHELXL2014 (Sheldrick, 2015b) and PLATON (Spek, 2009).

(1) Ethyl 6-(4-methylphenyl)-4-oxo-4H-chromene-2-carboxylate top
Crystal data top
C19H16O4F(000) = 1296
Mr = 308.32Dx = 1.397 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
a = 14.7129 (11) ÅCell parameters from 18061 reflections
b = 18.9613 (13) Åθ = 3.0–27.5°
c = 11.3031 (6) ŵ = 0.10 mm1
β = 111.632 (7)°T = 100 K
V = 2931.2 (4) Å3Prism, colourless
Z = 80.20 × 0.09 × 0.05 mm
Data collection top
Rigaku Saturn724+ (2x2 bin mode)
diffractometer
6680 independent reflections
Radiation source: Rotating Anode5311 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.033
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 3.0°
profile data from ω–scansh = 1719
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 20112)
k = 1724
Tmin = 0.981, Tmax = 0.995l = 1414
22133 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0504P)2 + 0.4579P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
6680 reflectionsΔρmax = 0.33 e Å3
419 parametersΔρmin = 0.23 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O110.13984 (7)0.39931 (4)0.51267 (8)0.0167 (2)
O140.14523 (8)0.46234 (5)0.86202 (8)0.0239 (2)
O1210.18698 (7)0.26721 (4)0.47772 (8)0.0186 (2)
O1220.13729 (7)0.23141 (4)0.63468 (8)0.0162 (2)
C120.14765 (9)0.35255 (6)0.60658 (11)0.0153 (3)
C130.14901 (9)0.37041 (6)0.72208 (11)0.0161 (3)
H130.15400.33440.78270.019*
C140.14293 (10)0.44401 (6)0.75658 (11)0.0166 (3)
C14A0.13289 (9)0.49463 (6)0.65301 (11)0.0150 (2)
C150.12422 (9)0.56769 (6)0.66738 (11)0.0156 (3)
H150.12470.58550.74620.019*
C160.11494 (9)0.61435 (6)0.56912 (11)0.0147 (2)
C170.11434 (10)0.58625 (6)0.45309 (11)0.0171 (3)
H170.10840.61750.38490.021*
C180.12206 (10)0.51512 (7)0.43612 (11)0.0176 (3)
H180.12090.49720.35710.021*
C18A0.13157 (9)0.46978 (6)0.53635 (11)0.0150 (3)
C1210.15961 (9)0.27911 (6)0.56400 (11)0.0152 (3)
C1220.16128 (10)0.15886 (6)0.61422 (11)0.0173 (3)
H12A0.23280.15350.63840.021*
H12B0.12880.14570.52350.021*
C1230.12554 (11)0.11295 (6)0.69613 (12)0.0222 (3)
H12C0.14450.06390.69000.033*
H12D0.05420.11620.66710.033*
H12E0.15460.12870.78480.033*
C1610.10558 (9)0.69191 (6)0.58084 (11)0.0141 (2)
C1620.14423 (9)0.73832 (6)0.51543 (11)0.0160 (3)
H1620.17760.72000.46450.019*
C1630.13461 (9)0.81085 (6)0.52375 (11)0.0168 (3)
H1630.16120.84120.47790.020*
C1640.08671 (9)0.83989 (6)0.59792 (11)0.0162 (3)
C1650.04831 (9)0.79352 (6)0.66303 (11)0.0164 (3)
H1650.01500.81200.71400.020*
C1660.05741 (9)0.72085 (6)0.65533 (11)0.0157 (3)
H1660.03060.69060.70110.019*
C1670.07977 (10)0.91884 (6)0.60848 (12)0.0208 (3)
H16A0.01760.93100.61670.031*
H16B0.08310.94120.53200.031*
H16C0.13410.93560.68360.031*
O210.36690 (7)0.39338 (4)0.38688 (8)0.0173 (2)
O240.39990 (8)0.46146 (5)0.74405 (8)0.0256 (2)
O2210.34285 (7)0.25860 (4)0.32365 (8)0.0197 (2)
O2220.39836 (7)0.22764 (4)0.53103 (8)0.0170 (2)
C220.37715 (9)0.34766 (6)0.48321 (11)0.0151 (3)
C230.38783 (9)0.36726 (6)0.60153 (11)0.0166 (3)
H230.39420.33210.66390.020*
C240.38986 (10)0.44161 (6)0.63652 (11)0.0170 (3)
C24A0.37849 (9)0.49097 (6)0.53085 (11)0.0152 (3)
C250.37738 (9)0.56447 (6)0.54600 (11)0.0155 (3)
H250.38500.58320.62700.019*
C260.36546 (9)0.61053 (6)0.44566 (11)0.0154 (3)
C270.35322 (10)0.58073 (6)0.32652 (12)0.0182 (3)
H270.34460.61110.25640.022*
C280.35334 (10)0.50898 (7)0.30850 (12)0.0190 (3)
H280.34440.49010.22710.023*
C28A0.36677 (9)0.46452 (6)0.41131 (11)0.0159 (3)
C2210.37034 (9)0.27309 (6)0.43493 (11)0.0156 (3)
C2220.38561 (10)0.15314 (6)0.49520 (11)0.0187 (3)
H22A0.41290.14310.42890.022*
H22B0.31540.14050.46150.022*
C2230.43928 (11)0.11188 (7)0.61367 (12)0.0211 (3)
H22C0.43130.06130.59470.032*
H22D0.41270.12330.67910.032*
H22E0.50890.12400.64460.032*
C2610.36521 (9)0.68856 (6)0.46004 (11)0.0146 (3)
C2620.31923 (9)0.73240 (6)0.35536 (11)0.0163 (3)
H2620.28690.71200.27380.020*
C2630.31995 (9)0.80523 (6)0.36846 (11)0.0167 (3)
H2630.28850.83360.29550.020*
C2640.36574 (9)0.83778 (6)0.48628 (11)0.0165 (3)
C2650.41121 (10)0.79387 (6)0.59067 (11)0.0175 (3)
H2650.44280.81440.67230.021*
C2660.41138 (9)0.72107 (7)0.57822 (11)0.0166 (3)
H2660.44340.69280.65120.020*
C2670.36524 (11)0.91687 (6)0.49995 (12)0.0211 (3)
H26A0.36620.93910.42210.032*
H26B0.42310.93160.57250.032*
H26C0.30610.93130.51410.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O110.0239 (5)0.0110 (4)0.0160 (4)0.0018 (4)0.0083 (4)0.0015 (3)
O140.0381 (6)0.0187 (5)0.0180 (4)0.0004 (4)0.0138 (4)0.0006 (4)
O1210.0209 (5)0.0164 (4)0.0209 (4)0.0001 (4)0.0103 (4)0.0004 (3)
O1220.0215 (5)0.0103 (4)0.0174 (4)0.0006 (3)0.0079 (4)0.0009 (3)
C120.0135 (6)0.0129 (6)0.0182 (6)0.0002 (5)0.0044 (5)0.0023 (4)
C130.0154 (7)0.0149 (6)0.0175 (6)0.0010 (5)0.0053 (5)0.0023 (5)
C140.0173 (7)0.0157 (6)0.0168 (6)0.0006 (5)0.0063 (5)0.0002 (5)
C14A0.0131 (6)0.0145 (6)0.0167 (6)0.0002 (5)0.0047 (5)0.0006 (5)
C150.0155 (6)0.0157 (6)0.0155 (6)0.0011 (5)0.0058 (5)0.0015 (5)
C160.0123 (6)0.0138 (6)0.0170 (6)0.0001 (5)0.0042 (5)0.0010 (4)
C170.0210 (7)0.0138 (6)0.0163 (6)0.0017 (5)0.0065 (5)0.0023 (4)
C180.0228 (7)0.0158 (6)0.0149 (6)0.0022 (5)0.0076 (5)0.0006 (5)
C18A0.0145 (7)0.0111 (6)0.0190 (6)0.0008 (5)0.0059 (5)0.0011 (4)
C1210.0123 (6)0.0139 (6)0.0175 (6)0.0001 (5)0.0033 (5)0.0005 (5)
C1220.0224 (7)0.0106 (6)0.0186 (6)0.0017 (5)0.0071 (5)0.0009 (4)
C1230.0317 (8)0.0125 (6)0.0231 (6)0.0001 (6)0.0109 (6)0.0015 (5)
C1610.0136 (6)0.0125 (6)0.0140 (5)0.0001 (5)0.0024 (5)0.0006 (4)
C1620.0161 (7)0.0165 (6)0.0159 (6)0.0015 (5)0.0065 (5)0.0012 (5)
C1630.0180 (7)0.0146 (6)0.0172 (6)0.0015 (5)0.0059 (5)0.0008 (5)
C1640.0152 (7)0.0136 (6)0.0155 (6)0.0007 (5)0.0005 (5)0.0020 (4)
C1650.0155 (7)0.0177 (6)0.0151 (6)0.0014 (5)0.0047 (5)0.0032 (5)
C1660.0155 (7)0.0164 (6)0.0140 (5)0.0009 (5)0.0042 (5)0.0003 (4)
C1670.0241 (8)0.0141 (6)0.0237 (6)0.0007 (5)0.0084 (6)0.0017 (5)
O210.0246 (5)0.0114 (4)0.0164 (4)0.0006 (4)0.0082 (4)0.0010 (3)
O240.0415 (7)0.0190 (5)0.0152 (4)0.0008 (4)0.0091 (4)0.0007 (3)
O2210.0232 (5)0.0172 (5)0.0163 (4)0.0007 (4)0.0046 (4)0.0006 (3)
O2220.0224 (5)0.0109 (4)0.0163 (4)0.0013 (4)0.0053 (4)0.0008 (3)
C220.0137 (6)0.0134 (6)0.0167 (6)0.0003 (5)0.0040 (5)0.0025 (4)
C230.0160 (7)0.0151 (6)0.0166 (6)0.0000 (5)0.0037 (5)0.0028 (5)
C240.0169 (7)0.0168 (6)0.0154 (6)0.0008 (5)0.0036 (5)0.0012 (5)
C24A0.0130 (6)0.0152 (6)0.0156 (6)0.0000 (5)0.0031 (5)0.0011 (4)
C250.0155 (7)0.0155 (6)0.0147 (5)0.0011 (5)0.0047 (5)0.0018 (4)
C260.0126 (6)0.0162 (6)0.0174 (6)0.0004 (5)0.0055 (5)0.0008 (5)
C270.0226 (7)0.0149 (6)0.0188 (6)0.0012 (5)0.0096 (5)0.0028 (5)
C280.0257 (7)0.0165 (6)0.0161 (6)0.0003 (5)0.0092 (5)0.0010 (5)
C28A0.0154 (7)0.0130 (6)0.0196 (6)0.0008 (5)0.0068 (5)0.0006 (5)
C2210.0130 (6)0.0151 (6)0.0186 (6)0.0004 (5)0.0055 (5)0.0014 (5)
C2220.0235 (7)0.0114 (6)0.0202 (6)0.0015 (5)0.0070 (5)0.0021 (5)
C2230.0280 (8)0.0142 (6)0.0222 (6)0.0005 (5)0.0107 (6)0.0024 (5)
C2610.0139 (6)0.0138 (6)0.0179 (6)0.0006 (5)0.0082 (5)0.0001 (4)
C2620.0149 (7)0.0181 (6)0.0157 (6)0.0011 (5)0.0056 (5)0.0021 (5)
C2630.0158 (7)0.0170 (6)0.0168 (6)0.0019 (5)0.0056 (5)0.0029 (5)
C2640.0151 (7)0.0158 (6)0.0207 (6)0.0004 (5)0.0090 (5)0.0013 (5)
C2650.0174 (7)0.0175 (6)0.0171 (6)0.0009 (5)0.0057 (5)0.0039 (5)
C2660.0157 (7)0.0179 (6)0.0159 (6)0.0014 (5)0.0054 (5)0.0020 (5)
C2670.0253 (8)0.0148 (6)0.0228 (6)0.0002 (5)0.0085 (6)0.0023 (5)
Geometric parameters (Å, º) top
O11—C121.3551 (14)O21—C221.3561 (14)
O11—C18A1.3769 (14)O21—C28A1.3770 (14)
O14—C141.2299 (14)O24—C241.2282 (14)
O121—C1211.2057 (14)O221—C2211.2025 (14)
O122—C1211.3258 (14)O222—C2211.3274 (14)
O122—C1221.4597 (14)O222—C2221.4625 (14)
C12—C131.3418 (16)C22—C231.3403 (16)
C12—C1211.5046 (17)C22—C2211.5056 (17)
C13—C141.4606 (17)C23—C241.4615 (17)
C13—H130.9500C23—H230.9500
C14—C14A1.4785 (16)C24—C24A1.4777 (16)
C14A—C18A1.3936 (16)C24A—C28A1.3911 (16)
C14A—C151.4061 (16)C24A—C251.4049 (17)
C15—C161.3869 (16)C25—C261.3904 (17)
C15—H150.9500C25—H250.9500
C16—C171.4126 (16)C26—C271.4095 (16)
C16—C1611.4875 (16)C26—C2611.4885 (16)
C17—C181.3729 (17)C27—C281.3757 (17)
C17—H170.9500C27—H270.9500
C18—C18A1.3877 (16)C28—C28A1.3895 (17)
C18—H180.9500C28—H280.9500
C122—C1231.5001 (17)C222—C2231.4998 (17)
C122—H12A0.9900C222—H22A0.9900
C122—H12B0.9900C222—H22B0.9900
C123—H12C0.9800C223—H22C0.9800
C123—H12D0.9800C223—H22D0.9800
C123—H12E0.9800C223—H22E0.9800
C161—C1661.3973 (17)C261—C2661.3989 (16)
C161—C1621.3979 (17)C261—C2621.3995 (16)
C162—C1631.3893 (17)C262—C2631.3885 (17)
C162—H1620.9500C262—H2620.9500
C163—C1641.3924 (17)C263—C2641.3952 (17)
C163—H1630.9500C263—H2630.9500
C164—C1651.3930 (17)C264—C2651.3968 (17)
C164—C1671.5083 (16)C264—C2671.5079 (17)
C165—C1661.3901 (17)C265—C2661.3875 (17)
C165—H1650.9500C265—H2650.9500
C166—H1660.9500C266—H2660.9500
C167—H16A0.9800C267—H26A0.9800
C167—H16B0.9800C267—H26B0.9800
C167—H16C0.9800C267—H26C0.9800
C12—O11—C18A118.08 (9)C22—O21—C28A118.25 (9)
C121—O122—C122114.80 (9)C221—O222—C222115.53 (9)
C13—C12—O11124.30 (11)C23—C22—O21124.14 (11)
C13—C12—C121125.68 (11)C23—C22—C221126.14 (11)
O11—C12—C121109.95 (10)O21—C22—C221109.67 (9)
C12—C13—C14121.37 (11)C22—C23—C24121.38 (11)
C12—C13—H13119.3C22—C23—H23119.3
C14—C13—H13119.3C24—C23—H23119.3
O14—C14—C13123.11 (11)O24—C24—C23123.13 (11)
O14—C14—C14A122.88 (11)O24—C24—C24A122.83 (11)
C13—C14—C14A114.01 (10)C23—C24—C24A114.04 (10)
C18A—C14A—C15118.18 (11)C28A—C24A—C25118.24 (11)
C18A—C14A—C14119.48 (11)C28A—C24A—C24119.56 (11)
C15—C14A—C14122.34 (10)C25—C24A—C24122.19 (11)
C16—C15—C14A121.49 (11)C26—C25—C24A121.82 (11)
C16—C15—H15119.3C26—C25—H25119.1
C14A—C15—H15119.3C24A—C25—H25119.1
C15—C16—C17117.90 (11)C25—C26—C27117.43 (11)
C15—C16—C161122.99 (10)C25—C26—C261122.68 (11)
C17—C16—C161119.11 (10)C27—C26—C261119.89 (10)
C18—C17—C16121.85 (11)C28—C27—C26122.09 (11)
C18—C17—H17119.1C28—C27—H27119.0
C16—C17—H17119.1C26—C27—H27119.0
C17—C18—C18A118.90 (11)C27—C28—C28A118.93 (11)
C17—C18—H18120.6C27—C28—H28120.5
C18A—C18—H18120.6C28A—C28—H28120.5
O11—C18A—C18115.60 (10)O21—C28A—C28115.91 (10)
O11—C18A—C14A122.73 (10)O21—C28A—C24A122.62 (10)
C18—C18A—C14A121.67 (11)C28—C28A—C24A121.47 (11)
O121—C121—O122126.18 (11)O221—C221—O222126.22 (11)
O121—C121—C12123.04 (11)O221—C221—C22123.05 (11)
O122—C121—C12110.77 (10)O222—C221—C22110.73 (10)
O122—C122—C123106.78 (10)O222—C222—C223106.56 (10)
O122—C122—H12A110.4O222—C222—H22A110.4
C123—C122—H12A110.4C223—C222—H22A110.4
O122—C122—H12B110.4O222—C222—H22B110.4
C123—C122—H12B110.4C223—C222—H22B110.4
H12A—C122—H12B108.6H22A—C222—H22B108.6
C122—C123—H12C109.5C222—C223—H22C109.5
C122—C123—H12D109.5C222—C223—H22D109.5
H12C—C123—H12D109.5H22C—C223—H22D109.5
C122—C123—H12E109.5C222—C223—H22E109.5
H12C—C123—H12E109.5H22C—C223—H22E109.5
H12D—C123—H12E109.5H22D—C223—H22E109.5
C166—C161—C162117.85 (11)C266—C261—C262117.31 (11)
C166—C161—C16121.74 (11)C266—C261—C26121.49 (11)
C162—C161—C16120.40 (11)C262—C261—C26121.20 (11)
C163—C162—C161121.06 (11)C263—C262—C261121.22 (11)
C163—C162—H162119.5C263—C262—H262119.4
C161—C162—H162119.5C261—C262—H262119.4
C162—C163—C164121.27 (11)C262—C263—C264121.58 (11)
C162—C163—H163119.4C262—C263—H263119.2
C164—C163—H163119.4C264—C263—H263119.2
C163—C164—C165117.54 (11)C263—C264—C265117.07 (11)
C163—C164—C167120.28 (11)C263—C264—C267121.25 (11)
C165—C164—C167122.16 (11)C265—C264—C267121.68 (11)
C166—C165—C164121.70 (11)C266—C265—C264121.70 (11)
C166—C165—H165119.2C266—C265—H265119.1
C164—C165—H165119.2C264—C265—H265119.1
C165—C166—C161120.59 (11)C265—C266—C261121.12 (11)
C165—C166—H166119.7C265—C266—H266119.4
C161—C166—H166119.7C261—C266—H266119.4
C164—C167—H16A109.5C264—C267—H26A109.5
C164—C167—H16B109.5C264—C267—H26B109.5
H16A—C167—H16B109.5H26A—C267—H26B109.5
C164—C167—H16C109.5C264—C267—H26C109.5
H16A—C167—H16C109.5H26A—C267—H26C109.5
H16B—C167—H16C109.5H26B—C267—H26C109.5
C18A—O11—C12—C130.81 (19)C28A—O21—C22—C230.43 (19)
C18A—O11—C12—C121177.93 (10)C28A—O21—C22—C221177.20 (10)
O11—C12—C13—C140.6 (2)O21—C22—C23—C240.4 (2)
C121—C12—C13—C14176.04 (12)C221—C22—C23—C24177.63 (12)
C12—C13—C14—O14179.03 (13)C22—C23—C24—O24179.71 (13)
C12—C13—C14—C14A1.46 (18)C22—C23—C24—C24A0.44 (18)
O14—C14—C14A—C18A179.54 (12)O24—C24—C24A—C28A179.56 (13)
C13—C14—C14A—C18A0.96 (17)C23—C24—C24A—C28A0.29 (18)
O14—C14—C14A—C150.7 (2)O24—C24—C24A—C250.7 (2)
C13—C14—C14A—C15178.85 (12)C23—C24—C24A—C25179.18 (12)
C18A—C14A—C15—C160.24 (19)C28A—C24A—C25—C260.31 (19)
C14—C14A—C15—C16179.95 (12)C24—C24A—C25—C26179.21 (12)
C14A—C15—C16—C170.05 (19)C24A—C25—C26—C270.75 (19)
C14A—C15—C16—C161179.98 (12)C24A—C25—C26—C261179.29 (12)
C15—C16—C17—C180.36 (19)C25—C26—C27—C280.3 (2)
C161—C16—C17—C18179.57 (12)C261—C26—C27—C28179.72 (12)
C16—C17—C18—C18A0.6 (2)C26—C27—C28—C28A0.5 (2)
C12—O11—C18A—C18178.91 (11)C22—O21—C28A—C28178.28 (11)
C12—O11—C18A—C14A1.31 (18)C22—O21—C28A—C24A1.20 (18)
C17—C18—C18A—O11179.42 (11)C27—C28—C28A—O21179.49 (12)
C17—C18—C18A—C14A0.4 (2)C27—C28—C28A—C24A1.0 (2)
C15—C14A—C18A—O11179.80 (11)C25—C24A—C28A—O21179.94 (11)
C14—C14A—C18A—O110.39 (19)C24—C24A—C28A—O211.13 (19)
C15—C14A—C18A—C180.03 (19)C25—C24A—C28A—C280.60 (19)
C14—C14A—C18A—C18179.84 (12)C24—C24A—C28A—C28178.33 (12)
C122—O122—C121—O1218.49 (18)C222—O222—C221—O2215.78 (19)
C122—O122—C121—C12170.74 (10)C222—O222—C221—C22174.17 (10)
C13—C12—C121—O121156.97 (13)C23—C22—C221—O221165.68 (13)
O11—C12—C121—O12120.10 (17)O21—C22—C221—O22111.89 (17)
C13—C12—C121—O12222.30 (18)C23—C22—C221—O22214.27 (18)
O11—C12—C121—O122160.63 (10)O21—C22—C221—O222168.16 (10)
C121—O122—C122—C123176.76 (10)C221—O222—C222—C223168.94 (11)
C15—C16—C161—C16633.27 (18)C25—C26—C261—C26624.15 (19)
C17—C16—C161—C166146.65 (12)C27—C26—C261—C266155.89 (12)
C15—C16—C161—C162147.55 (12)C25—C26—C261—C262156.33 (12)
C17—C16—C161—C16232.53 (18)C27—C26—C261—C26223.63 (18)
C166—C161—C162—C1630.31 (18)C266—C261—C262—C2630.30 (18)
C16—C161—C162—C163178.90 (11)C26—C261—C262—C263179.24 (11)
C161—C162—C163—C1640.36 (19)C261—C262—C263—C2640.47 (19)
C162—C163—C164—C1650.32 (18)C262—C263—C264—C2650.19 (18)
C162—C163—C164—C167178.21 (12)C262—C263—C264—C267179.32 (12)
C163—C164—C165—C1660.26 (18)C263—C264—C265—C2660.26 (19)
C167—C164—C165—C166178.24 (11)C267—C264—C265—C266179.76 (12)
C164—C165—C166—C1610.23 (19)C264—C265—C266—C2610.4 (2)
C162—C161—C166—C1650.25 (18)C262—C261—C266—C2650.14 (19)
C16—C161—C166—C165178.95 (11)C26—C261—C266—C265179.68 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C162—H162···Cg(C261)0.952.853.4914 (15)126
C262—H262···Cg(C161)i0.952.843.5408 (4)131
Symmetry code: (i) x, y+1/2, z1/2.
(2) Ethyl 6-(4-fluorophenyl)-4-oxo-4H-chromene-2-carboxylate top
Crystal data top
C18H13FO4F(000) = 648
Mr = 312.28Dx = 1.483 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
a = 3.8521 (2) ÅCell parameters from 15331 reflections
b = 20.6970 (15) Åθ = 2.3–27.5°
c = 17.5478 (11) ŵ = 0.11 mm1
β = 91.546 (1)°T = 100 K
V = 1398.52 (15) Å3Needle, colourless
Z = 40.42 × 0.02 × 0.01 mm
Data collection top
Rigaku Saturn724+ (2x2 bin mode)
diffractometer
3177 independent reflections
Radiation source: Sealed Tube2725 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.035
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 2.3°
profile data from ω–scansh = 44
Absorption correction: multi-scan
CrystalClear-SM Expert (Rigaku, 20112)
k = 2626
Tmin = 0.954, Tmax = 0.999l = 2222
16479 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0482P)2 + 0.4787P]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.001
3176 reflectionsΔρmax = 0.31 e Å3
209 parametersΔρmin = 0.20 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.3562 (3)0.34130 (5)0.52749 (6)0.0141 (2)
C30.5254 (3)0.30718 (5)0.58218 (6)0.0155 (2)
H30.57140.26260.57410.019*
C40.6397 (3)0.33746 (5)0.65381 (6)0.0149 (2)
C50.6674 (3)0.44460 (5)0.72144 (6)0.0138 (2)
H50.78820.42450.76300.017*
C4A0.5615 (3)0.40718 (5)0.65824 (6)0.0135 (2)
C60.5990 (3)0.51041 (5)0.72442 (6)0.0137 (2)
C70.4184 (3)0.53915 (5)0.66195 (6)0.0145 (2)
H70.36990.58410.66330.017*
C80.3108 (3)0.50362 (5)0.59912 (6)0.0147 (2)
H80.18910.52370.55770.018*
C8A0.3843 (3)0.43766 (5)0.59763 (6)0.0134 (2)
C210.2302 (3)0.31555 (5)0.45161 (6)0.0143 (2)
C220.2530 (3)0.22857 (5)0.36482 (6)0.0175 (2)
H22A0.37810.24960.32300.021*
H22B0.00050.23430.35530.021*
C230.3417 (3)0.15775 (5)0.36840 (6)0.0193 (2)
H23A0.27950.13730.31950.029*
H23B0.21200.13720.40910.029*
H23C0.59140.15260.37890.029*
C610.7187 (3)0.55070 (5)0.79004 (6)0.0142 (2)
C620.7275 (3)0.52672 (5)0.86460 (6)0.0169 (2)
H620.64910.48400.87400.020*
C630.8493 (3)0.56456 (5)0.92520 (6)0.0193 (2)
H630.85350.54830.97590.023*
C640.9640 (3)0.62638 (5)0.90974 (6)0.0182 (2)
C650.9542 (3)0.65260 (5)0.83766 (6)0.0179 (2)
H651.02990.69560.82900.021*
C660.8302 (3)0.61423 (5)0.77786 (6)0.0161 (2)
H660.82070.63150.72770.019*
F641.0940 (2)0.66280 (3)0.96871 (4)0.02586 (17)
O10.27388 (19)0.40483 (3)0.53315 (4)0.01485 (17)
O40.7946 (2)0.30785 (4)0.70522 (4)0.02071 (19)
O210.0372 (2)0.34557 (4)0.40948 (4)0.02041 (18)
O220.3576 (2)0.25727 (4)0.43820 (4)0.01680 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0153 (5)0.0131 (5)0.0141 (5)0.0001 (4)0.0014 (4)0.0013 (4)
C30.0180 (5)0.0132 (5)0.0151 (5)0.0016 (4)0.0001 (4)0.0010 (4)
C40.0163 (5)0.0143 (5)0.0141 (5)0.0011 (4)0.0001 (4)0.0009 (4)
C50.0141 (5)0.0151 (5)0.0121 (5)0.0001 (4)0.0001 (4)0.0018 (4)
C4A0.0134 (5)0.0139 (5)0.0132 (5)0.0004 (4)0.0012 (4)0.0005 (4)
C60.0130 (5)0.0155 (5)0.0126 (5)0.0014 (4)0.0011 (4)0.0006 (4)
C70.0151 (5)0.0126 (4)0.0157 (5)0.0002 (4)0.0012 (4)0.0006 (4)
C80.0154 (5)0.0150 (5)0.0138 (5)0.0013 (4)0.0005 (4)0.0020 (4)
C8A0.0140 (5)0.0149 (5)0.0113 (4)0.0014 (4)0.0005 (4)0.0011 (4)
C210.0154 (5)0.0144 (5)0.0133 (5)0.0012 (4)0.0014 (4)0.0006 (4)
C220.0198 (5)0.0194 (5)0.0130 (5)0.0002 (4)0.0033 (4)0.0046 (4)
C230.0193 (6)0.0183 (5)0.0203 (5)0.0004 (4)0.0002 (4)0.0050 (4)
C610.0135 (5)0.0152 (5)0.0139 (5)0.0013 (4)0.0001 (4)0.0015 (4)
C620.0201 (5)0.0143 (5)0.0161 (5)0.0008 (4)0.0006 (4)0.0004 (4)
C630.0250 (6)0.0199 (5)0.0130 (5)0.0004 (4)0.0004 (4)0.0007 (4)
C640.0197 (5)0.0198 (5)0.0149 (5)0.0013 (4)0.0010 (4)0.0065 (4)
C650.0199 (5)0.0149 (5)0.0190 (5)0.0019 (4)0.0020 (4)0.0017 (4)
C660.0180 (5)0.0159 (5)0.0144 (5)0.0004 (4)0.0009 (4)0.0005 (4)
F640.0363 (4)0.0244 (3)0.0167 (3)0.0080 (3)0.0025 (3)0.0070 (3)
O10.0197 (4)0.0123 (3)0.0123 (3)0.0017 (3)0.0030 (3)0.0008 (3)
O40.0290 (5)0.0163 (4)0.0165 (4)0.0055 (3)0.0062 (3)0.0002 (3)
O210.0265 (4)0.0183 (4)0.0161 (4)0.0045 (3)0.0046 (3)0.0003 (3)
O220.0204 (4)0.0154 (4)0.0143 (4)0.0026 (3)0.0039 (3)0.0039 (3)
Geometric parameters (Å, º) top
C2—C31.3457 (14)C21—O221.3257 (12)
C2—O11.3568 (12)C22—O221.4647 (12)
C2—C211.5025 (14)C22—C231.5059 (15)
C3—C41.4617 (14)C22—H22A0.9900
C3—H30.9500C22—H22B0.9900
C4—O41.2315 (13)C23—H23A0.9800
C4—C4A1.4766 (14)C23—H23B0.9800
C5—C61.3886 (14)C23—H23C0.9800
C5—C4A1.4042 (14)C61—C621.3989 (14)
C5—H50.9500C61—C661.4015 (14)
C4A—C8A1.3984 (14)C62—C631.3920 (15)
C6—C71.4135 (14)C62—H620.9500
C6—C611.4851 (14)C63—C641.3829 (16)
C7—C81.3797 (14)C63—H630.9500
C7—H70.9500C64—F641.3646 (12)
C8—C8A1.3948 (14)C64—C651.3759 (15)
C8—H80.9500C65—C661.3903 (14)
C8A—O11.3774 (12)C65—H650.9500
C21—O211.2065 (13)C66—H660.9500
C3—C2—O1124.47 (9)O22—C22—H22A110.2
C3—C2—C21125.77 (9)C23—C22—H22A110.2
O1—C2—C21109.76 (8)O22—C22—H22B110.2
C2—C3—C4121.14 (9)C23—C22—H22B110.2
C2—C3—H3119.4H22A—C22—H22B108.5
C4—C3—H3119.4C22—C23—H23A109.5
O4—C4—C3123.05 (9)C22—C23—H23B109.5
O4—C4—C4A122.91 (9)H23A—C23—H23B109.5
C3—C4—C4A114.03 (9)C22—C23—H23C109.5
C6—C5—C4A121.29 (9)H23A—C23—H23C109.5
C6—C5—H5119.4H23B—C23—H23C109.5
C4A—C5—H5119.4C62—C61—C66118.41 (9)
C8A—C4A—C5118.51 (9)C62—C61—C6121.68 (9)
C8A—C4A—C4119.79 (9)C66—C61—C6119.91 (9)
C5—C4A—C4121.69 (9)C63—C62—C61120.93 (10)
C5—C6—C7118.26 (9)C63—C62—H62119.5
C5—C6—C61121.65 (9)C61—C62—H62119.5
C7—C6—C61120.07 (9)C64—C63—C62118.27 (10)
C8—C7—C6121.77 (9)C64—C63—H63120.9
C8—C7—H7119.1C62—C63—H63120.9
C6—C7—H7119.1F64—C64—C65118.67 (10)
C7—C8—C8A118.68 (9)F64—C64—C63118.35 (10)
C7—C8—H8120.7C65—C64—C63122.98 (10)
C8A—C8—H8120.7C64—C65—C66117.97 (10)
O1—C8A—C8116.10 (9)C64—C65—H65121.0
O1—C8A—C4A122.40 (9)C66—C65—H65121.0
C8—C8A—C4A121.50 (9)C65—C66—C61121.41 (10)
O21—C21—O22125.79 (10)C65—C66—H66119.3
O21—C21—C2122.64 (9)C61—C66—H66119.3
O22—C21—C2111.57 (9)C2—O1—C8A118.08 (8)
O22—C22—C23107.55 (8)C21—O22—C22115.51 (8)
O1—C2—C3—C40.66 (17)C3—C2—C21—O2211.10 (15)
C21—C2—C3—C4179.33 (10)O1—C2—C21—O22168.89 (8)
C2—C3—C4—O4179.88 (11)C5—C6—C61—C6235.73 (15)
C2—C3—C4—C4A1.71 (15)C7—C6—C61—C62145.98 (11)
C6—C5—C4A—C8A0.07 (15)C5—C6—C61—C66143.58 (11)
C6—C5—C4A—C4178.64 (10)C7—C6—C61—C6634.71 (15)
O4—C4—C4A—C8A179.98 (10)C66—C61—C62—C631.07 (16)
C3—C4—C4A—C8A1.60 (14)C6—C61—C62—C63178.25 (10)
O4—C4—C4A—C51.48 (16)C61—C62—C63—C640.46 (17)
C3—C4—C4A—C5176.94 (9)C62—C63—C64—F64177.91 (10)
C4A—C5—C6—C70.08 (15)C62—C63—C64—C651.81 (18)
C4A—C5—C6—C61178.24 (9)F64—C64—C65—C66178.21 (10)
C5—C6—C7—C80.02 (16)C63—C64—C65—C661.50 (17)
C61—C6—C7—C8178.33 (10)C64—C65—C66—C610.15 (16)
C6—C7—C8—C8A0.20 (16)C62—C61—C66—C651.39 (16)
C7—C8—C8A—O1179.34 (9)C6—C61—C66—C65177.94 (10)
C7—C8—C8A—C4A0.36 (16)C3—C2—O1—C8A3.16 (15)
C5—C4A—C8A—O1179.38 (9)C21—C2—O1—C8A176.84 (8)
C4—C4A—C8A—O10.79 (15)C8—C8A—O1—C2176.53 (9)
C5—C4A—C8A—C80.30 (15)C4A—C8A—O1—C23.17 (14)
C4—C4A—C8A—C8178.89 (10)O21—C21—O22—C220.82 (15)
C3—C2—C21—O21168.95 (11)C2—C21—O22—C22179.12 (8)
O1—C2—C21—O2111.05 (14)C23—C22—O22—C21165.47 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O21i0.952.473.1977 (13)133
C65—H65···O4ii0.952.503.4447 (13)175
C66—H66···O21iii0.952.533.4425 (13)162
Symmetry codes: (i) x, y+1, z+1; (ii) x+2, y+1/2, z+3/2; (iii) x+1, y+1, z+1.
Selected dihedral angles (°) top
θChr–C3ring is the dihedral angle between the mean planes of the chromene and the phenyl ring. θChr–C6ester is the dihedral angle between the mean planes of the chromone ring and the plane defined by the ester atoms attached to C2 but not including it. θChr–OCO is the dihedral angle between the mean planes of the chromone ring and the OCO atoms of the ester.
CompoundθChr–PheθChr–carboxylateθChr–OCO
(1) a32.8754)23.23 (7)21.16 (16)
(1) b24.14 (5)14.191 (7)12.16 (17)
(2)36.05 (5)9.52 (6)12.97 (13)
Selected ππ contacts and short intermolecular contacts (Å, °) top
In compound (1), Cg1, Cg2, Cg5 and Cg6 are the centroids of the rings containing atoms O11, C15, O21 and C25, respectively. In compound (2), Cg1, Cg2 and Cg6 are the centroids of the rings containing atoms O1, C5 and C61. Values marked with an asterisk are average perpendicular distances and angles between the planes.
Compoundcontactsdistanceperpendicular distanceslippage/angle*
(1)Cg1···Cg2i3.7338 (8)3.503*0.45*
Cg2···Cg2i3.7226 (8)3.5040 (6)1.257
Cg5···Cg6ii3.6743 (9)3.824*0.98*
Cg6···Cg6ii3.9299 (9)3.5762 (6)1.630
(2)Cg1···Cg1iii3.8521 (7)3.3989 (4)1.813
Cg2···Cg2iii3.8521 (7)3.3957 (4)1.819
Cg3···Cg3iii'3.8521 (7)3.5811 (5)1.419
Symmetry codes: (i) -x, 1 - y, 1 - z; (ii) 1 - x, 1 - y, 1 - z; (iii) 1 + x, y, z.
 

Acknowledgements

The authors thank the staff at the National Crystallographic Service, University of Southampton, for the data collection, help and advice (Coles & Gale, 2012[Coles, S. J. & Gale, P. A. (2012). Chem. Sci. 3, 683-689.]), and the Foundation for Science and Technology (FCT) of Portugal (QUI/UI0081/2015) for financial support. CF (SFRH/BD/98519/2013) and AG (SFRH/BPD/93331/2013) are supported by FCT, POPH and QREN.

References

First citationBecke, A. D. (1997). J. Chem. Phys. 107, 8554–8560.  CrossRef CAS Web of Science Google Scholar
First citationCagide, F., Gaspar, A., Reis, J., Chavarria, D., Vilar, S., Hripcsak, S., Uriarte, E., Kachler, S., Klotz, K. N. & Borges, F. (2015a). RSC Adv. 5, 78572–78585.  Web of Science CrossRef CAS Google Scholar
First citationCagide, F., Silva, T., Reis, J., Gaspar, A., Borges, F., Gomes, L. R. & Low, J. N. (2015b). Chem. Commun. 51, 2832–2835.  Web of Science CSD CrossRef CAS Google Scholar
First citationColes, S. J. & Gale, P. A. (2012). Chem. Sci. 3, 683–689.  Web of Science CSD CrossRef CAS Google Scholar
First citationFrisch, M. J., et al. (2004). GAUSSIAN 03. Gaussian, Inc., Wallingford, Connecticut, USA.  Google Scholar
First citationGaspar, A., Matos, M. J., Garrido, J., Uriarte, E. & Borges, F. (2014). Chem. Rev. 114, 4960–4992.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGaspar, A., Milhazes, N., Santana, L., Uriarte, E., Borges, F. & Matos, M. J. (2015). Curr. Top. Med. Chem. 15, 432–445.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHehre, W. J., Radom, L., Schleyer, P. V. R. & Pople, J. A. (1986). Ab Initio Molecular Orbital Theory. New York: Wiley.  Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKo, S. K., Jang, H. J., Kim, E. & Park, S. B. (2006). Chem. Commun. pp. 2962–2694.  Web of Science CrossRef Google Scholar
First citationLee, C., Yang, W. & Parr, G. R. (1988). Phys. Rev. B, 37, 785–789.  CrossRef CAS Web of Science Google Scholar
First citationMackay, A. L. (1984). Acta Cryst. A40, 165–166.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMcArdle, P., Gilligan, K., Cunningham, D., Dark, R. & Mahon, M. (2004). CrystEngComm, 6, 303–309.  Web of Science CSD CrossRef CAS Google Scholar
First citationNicolaou, K. C., Pfefferkorn, J. A., Roecker, A. J., Cao, G. Q., Barluenga, S. & Mitchell, H. J. (2000). J. Am. Chem. Soc. 122, 9939–9953.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2012). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSoares, P., Fernandes, C., Chavarria, D. & Borges, F. (2015). J. Chem. Educ. 92, 575–578.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWelsch, M. E., Snyder, S. A. & Stockwell, B. R. (2010). Curr. Opin. Chem. Biol. 14, 347–361.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds