organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-(4-meth­­oxy­phen­yl)-4′,4′-di­methyl-3-p-tolyl-3′,4′-di­hydro-1′H,3H-spiro­[isoxazole-5,2′-naphthalen]-1′-one

aLaboratoire de Chimie Organique, Faculté des Sciences Dhar el Mahraz, Université Sidi Mohammed Ben Abdellah, Fès, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V de Rabat, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: alhouarig@gmail.com

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 9 November 2015; accepted 18 November 2015; online 21 November 2015)

In the title compound, C28H27NO3, the cyclo­hexa­none and isoxazole rings have envelope conformations, with the methyl­ene and spiro C atoms as the flaps, respectively. The mean plane of the isoxazole ring is inclined slightly to the p-tolyl ring, making a dihedral angle of 14.20 (9)°, and is nearly perpendicular to the mean plane through the tetra­lone moiety and to the meth­oxy­phenyl ring [dihedral angles = 83.41 (8) and 72.12 (9)°, respectively]. The crystal packing is stabilized mainly by van der Waals forces.

1. Related literature

For general background to 1,3-dipolar cyclo­addition reactions, see: Al Houari et al. (2008[Al Houari, G., Kerbal, A., Bennani, B., Baba, M. F., Daoudi, M. & Ben Hadda, T. (2008). ARKIVOC, xii, 42-50.], 2010[Al Houari, G., Bennani, A. K., Bennani, B., Daoudi, M., Benlarbi, N., El Yazidi, M., Garrigues, B. & Kerbal, A. (2010). J. Mar. Chim. Heterocycl. 9, 36-43.]). For the structures of related compounds, see: Akhazzane et al. (2010[Akhazzane, M., Zouihri, H., Daran, J.-C., Kerbal, A. & Al Houari, G. (2010). Acta Cryst. E66, o3067.], 2011[Akhazzane, M., Zouihri, H., Bennani, A. K., Kerbal, A. & Al Houari, G. (2011). Acta Cryst. E67, o1862.]); Mahfoud et al. (2015[Mahfoud, A., Al Houari, G., El Yazidi, M., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o873-o874.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C28H27NO3

  • Mr = 425.50

  • Monoclinic, P 21 /n

  • a = 10.2158 (8) Å

  • b = 12.9129 (10) Å

  • c = 17.6582 (14) Å

  • β = 103.801 (3)°

  • V = 2262.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.42 × 0.31 × 0.26 mm

2.2. Data collection

  • Bruker X8 APEX diffractometer

  • 33809 measured reflections

  • 5385 independent reflections

  • 3283 reflections with I > 2σ(I)

  • Rint = 0.054

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.129

  • S = 1.02

  • 5385 reflections

  • 289 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In the context of our research concerning the approach of dipole-dipolarophile in 1,3-dipolar cycloaddition, we have already studied the case where the dipole is an arylnitriloxide and the dipolarophiles are 2-arylidenes of tetralone (systematic name: 3,4-dihydronaphthalen-1-one) substituted by an anisopropyl group in position 4 (Al Houari et al., 2008; Al Houari et al., 2010). We have shown that the ring closure reaction is highly regiselective and also highly diastereoselective. The relative configuration and conformation of the products have been determined by means of proton magnetic resonance measurements. In this paper we describe the regiochemistry in the reaction of para-tolylnitriloxide with (E)-2-(4-methoxybenzylidene)-4,4-dimethyl-3,4-dihydronaphthalen-1(2H)-one, as a continuation of the investigation on dihydronaphthalene derivatives (Akhazzane et al., 2010, Akhazzane et al., 2011, Mahfoud et al., 2015).

The molecule of the title compound is build up from a tetralone moiety linked to an isoxazole ring which is connected to a p-tolyl ring and to a methoxyphenyl group in axial position as shown in Fig. 1. The cyclohexanone and the isoxazole rings adopt an envelope conformation with atoms C22 and C9 (spiro C atom) as the flap, respectively. The puckering parameters (Cremer & Pople, 1975) are: QT = 0.413 (2) Å, θ = 122.0 (3)° and φ = 111.1 (3)° for the cyclohexanone ring; q2 = 0.0931 (17) Å, φ2 = 329.4 (11)° for the isoxazole ring. The mean planes through the tetralone moiety, the methoxyphenyl ring and the p-tolyl ring are inclined to the mean plane of the isoxazole ring by dihedral angles of 83.41 (8), 72.12 (9) and 14.20 (9)°, respectively. In the crystal, packing is enforced only by van der Waals interactions.

Related literature top

For general background to 1,3-dipolar cycloaddition reactions, see: Al Houari et al. (2008, 2010). For the structures of related compounds, see: Akhazzane et al. (2010, 2011); Mahfoud et al. (2015).

Experimental top

In a 100 ml flask, 2 mmol of the arylidene 2-(4-methoxybenzylidene)-4,4-dimethyl-3,4-dihydronaphthalen-1(2H)-one and 2.4 mmol of p-tolyloxime were dissolved in 20 ml chloroform. The mixture was cooled to 273 K under magnetic stirring in an ice bath. Then 15 ml of bleach at 18° (chlorometric degree) was added in small doses without exceeding 278 K. The mixture was left under magnetic stirring for 16 h at room temperature, then washed with water until the pH was neutral and dried on sodium sulfate. The solvent was evaporated with a rotating evaporator and the oily residue was dissolved in ethanol. The resulting residue was recrystallized from ethanol to afford the title compound as colourless needles crystals on slow evaporation of the solvent (yield: 58%; m. p: 443 K).

Refinement top

One reflection (0 1 1) affected by the beamstop was removed in the cycles of refinement. All H atoms were located in a difference Fourier map and treated as riding, with C–H = 0.96–0.98 Å and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms.

Structure description top

In the context of our research concerning the approach of dipole-dipolarophile in 1,3-dipolar cycloaddition, we have already studied the case where the dipole is an arylnitriloxide and the dipolarophiles are 2-arylidenes of tetralone (systematic name: 3,4-dihydronaphthalen-1-one) substituted by an anisopropyl group in position 4 (Al Houari et al., 2008; Al Houari et al., 2010). We have shown that the ring closure reaction is highly regiselective and also highly diastereoselective. The relative configuration and conformation of the products have been determined by means of proton magnetic resonance measurements. In this paper we describe the regiochemistry in the reaction of para-tolylnitriloxide with (E)-2-(4-methoxybenzylidene)-4,4-dimethyl-3,4-dihydronaphthalen-1(2H)-one, as a continuation of the investigation on dihydronaphthalene derivatives (Akhazzane et al., 2010, Akhazzane et al., 2011, Mahfoud et al., 2015).

The molecule of the title compound is build up from a tetralone moiety linked to an isoxazole ring which is connected to a p-tolyl ring and to a methoxyphenyl group in axial position as shown in Fig. 1. The cyclohexanone and the isoxazole rings adopt an envelope conformation with atoms C22 and C9 (spiro C atom) as the flap, respectively. The puckering parameters (Cremer & Pople, 1975) are: QT = 0.413 (2) Å, θ = 122.0 (3)° and φ = 111.1 (3)° for the cyclohexanone ring; q2 = 0.0931 (17) Å, φ2 = 329.4 (11)° for the isoxazole ring. The mean planes through the tetralone moiety, the methoxyphenyl ring and the p-tolyl ring are inclined to the mean plane of the isoxazole ring by dihedral angles of 83.41 (8), 72.12 (9) and 14.20 (9)°, respectively. In the crystal, packing is enforced only by van der Waals interactions.

For general background to 1,3-dipolar cycloaddition reactions, see: Al Houari et al. (2008, 2010). For the structures of related compounds, see: Akhazzane et al. (2010, 2011); Mahfoud et al. (2015).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip,2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small circles.
4-(4-Methoxyphenyl)-4',4'-dimethyl-3-p-tolyl-3',4'-dihydro-1'H,3H-spiro[isoxazole-5,2'-naphthalen]-1'-one top
Crystal data top
C28H27NO3Dx = 1.249 Mg m3
Mr = 425.50Melting point: 443 K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.2158 (8) ÅCell parameters from 5385 reflections
b = 12.9129 (10) Åθ = 2.4–27.9°
c = 17.6582 (14) ŵ = 0.08 mm1
β = 103.801 (3)°T = 296 K
V = 2262.1 (3) Å3Block, colourless
Z = 40.42 × 0.31 × 0.26 mm
F(000) = 904
Data collection top
Bruker X8 APEX
diffractometer
3283 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.054
Graphite monochromatorθmax = 27.9°, θmin = 2.4°
φ and ω scansh = 1312
33809 measured reflectionsk = 1616
5385 independent reflectionsl = 2323
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.050P)2 + 0.5224P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
5385 reflectionsΔρmax = 0.21 e Å3
289 parametersΔρmin = 0.17 e Å3
Crystal data top
C28H27NO3V = 2262.1 (3) Å3
Mr = 425.50Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.2158 (8) ŵ = 0.08 mm1
b = 12.9129 (10) ÅT = 296 K
c = 17.6582 (14) Å0.42 × 0.31 × 0.26 mm
β = 103.801 (3)°
Data collection top
Bruker X8 APEX
diffractometer
3283 reflections with I > 2σ(I)
33809 measured reflectionsRint = 0.054
5385 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.02Δρmax = 0.21 e Å3
5385 reflectionsΔρmin = 0.17 e Å3
289 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9515 (2)0.7328 (2)0.36467 (15)0.0826 (8)
H1A0.93510.69360.31710.124*
H1B0.97040.80350.35420.124*
H1C1.02730.70390.40150.124*
C20.8284 (2)0.72855 (16)0.39799 (12)0.0533 (5)
C30.7148 (2)0.67399 (16)0.36081 (12)0.0538 (5)
H30.71330.64160.31360.065*
C40.6036 (2)0.66646 (14)0.39201 (11)0.0472 (5)
H40.52890.62870.36590.057*
C50.60251 (17)0.71487 (13)0.46221 (10)0.0384 (4)
C60.71442 (19)0.77192 (16)0.49867 (12)0.0523 (5)
H60.71520.80600.54520.063*
C70.8254 (2)0.77869 (18)0.46652 (13)0.0599 (6)
H70.89940.81790.49170.072*
C80.48550 (17)0.70665 (13)0.49692 (10)0.0368 (4)
C90.33554 (17)0.71799 (13)0.57913 (10)0.0369 (4)
C100.48673 (16)0.73339 (12)0.58022 (10)0.0356 (4)
H100.50780.80720.58800.043*
C110.58808 (16)0.67307 (12)0.64087 (9)0.0338 (4)
C120.62936 (17)0.57313 (13)0.62684 (10)0.0394 (4)
H120.59450.54210.57870.047*
C130.72088 (17)0.52002 (13)0.68328 (10)0.0407 (4)
H130.74770.45380.67280.049*
C140.77340 (17)0.56424 (13)0.75562 (10)0.0374 (4)
C150.73391 (17)0.66315 (13)0.77078 (10)0.0399 (4)
H150.76820.69370.81910.048*
C160.64284 (17)0.71604 (13)0.71310 (10)0.0382 (4)
H160.61770.78280.72340.046*
C170.9263 (3)0.55048 (19)0.88033 (13)0.0815 (8)
H17A0.98710.50160.91130.122*
H17B0.97550.61100.87180.122*
H17C0.85850.56970.90720.122*
C180.26491 (19)0.82319 (14)0.57550 (11)0.0463 (5)
C190.15232 (17)0.83574 (13)0.61336 (10)0.0409 (4)
C200.09907 (17)0.75196 (14)0.64651 (10)0.0392 (4)
C210.15675 (17)0.64320 (13)0.64679 (10)0.0388 (4)
C220.30500 (17)0.64932 (13)0.64192 (10)0.0393 (4)
H22A0.35820.67330.69190.047*
H22B0.33520.57980.63410.047*
C230.07011 (19)0.58162 (15)0.57859 (12)0.0509 (5)
H23A0.10590.51290.57840.076*
H23B0.02080.57790.58440.076*
H23C0.07110.61550.53040.076*
C240.1549 (2)0.58621 (16)0.72334 (12)0.0543 (5)
H24A0.19160.51800.72220.081*
H24B0.20810.62400.76670.081*
H24C0.06380.58120.72870.081*
C250.0964 (2)0.93444 (15)0.61386 (14)0.0593 (6)
H250.13300.98990.59240.071*
C260.0122 (2)0.95033 (17)0.64576 (15)0.0700 (7)
H260.04841.01630.64650.084*
C270.0667 (2)0.86782 (18)0.67658 (14)0.0627 (6)
H270.14110.87800.69760.075*
C280.01280 (19)0.77072 (16)0.67676 (12)0.0519 (5)
H280.05180.71590.69760.062*
N10.37202 (15)0.67459 (12)0.45609 (9)0.0468 (4)
O10.86366 (13)0.50485 (9)0.80727 (7)0.0510 (3)
O20.27756 (12)0.67119 (11)0.50248 (7)0.0525 (4)
O30.30170 (16)0.89402 (12)0.53998 (11)0.0820 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0597 (15)0.117 (2)0.0819 (18)0.0152 (14)0.0383 (14)0.0347 (16)
C20.0439 (12)0.0670 (13)0.0533 (13)0.0142 (10)0.0199 (10)0.0249 (11)
C30.0618 (14)0.0563 (12)0.0498 (12)0.0125 (10)0.0264 (11)0.0073 (10)
C40.0490 (12)0.0469 (10)0.0496 (11)0.0009 (9)0.0193 (9)0.0017 (9)
C50.0362 (10)0.0411 (9)0.0392 (10)0.0050 (8)0.0113 (8)0.0065 (8)
C60.0426 (11)0.0713 (14)0.0437 (11)0.0038 (10)0.0115 (9)0.0002 (10)
C70.0393 (12)0.0838 (15)0.0555 (13)0.0092 (11)0.0088 (10)0.0129 (12)
C80.0352 (10)0.0366 (9)0.0390 (9)0.0017 (7)0.0096 (8)0.0007 (7)
C90.0335 (9)0.0402 (9)0.0380 (10)0.0011 (7)0.0105 (8)0.0035 (7)
C100.0333 (9)0.0347 (8)0.0396 (10)0.0019 (7)0.0102 (8)0.0026 (7)
C110.0288 (9)0.0377 (9)0.0372 (9)0.0040 (7)0.0122 (7)0.0031 (7)
C120.0425 (10)0.0396 (9)0.0354 (9)0.0043 (8)0.0077 (8)0.0077 (7)
C130.0443 (11)0.0323 (8)0.0460 (11)0.0020 (7)0.0118 (9)0.0048 (8)
C140.0331 (9)0.0384 (9)0.0412 (10)0.0053 (7)0.0096 (8)0.0031 (8)
C150.0381 (10)0.0460 (10)0.0358 (9)0.0060 (8)0.0089 (8)0.0078 (8)
C160.0366 (10)0.0363 (9)0.0436 (10)0.0007 (7)0.0137 (8)0.0072 (8)
C170.101 (2)0.0679 (15)0.0544 (14)0.0168 (14)0.0229 (13)0.0062 (12)
C180.0386 (10)0.0429 (10)0.0585 (12)0.0028 (8)0.0136 (9)0.0073 (9)
C190.0330 (9)0.0402 (9)0.0492 (11)0.0005 (7)0.0091 (8)0.0073 (8)
C200.0326 (9)0.0446 (9)0.0399 (10)0.0021 (8)0.0075 (8)0.0086 (8)
C210.0343 (9)0.0397 (9)0.0444 (10)0.0030 (7)0.0129 (8)0.0030 (8)
C220.0355 (10)0.0382 (9)0.0451 (10)0.0016 (7)0.0110 (8)0.0013 (8)
C230.0451 (11)0.0459 (11)0.0618 (13)0.0068 (9)0.0129 (10)0.0090 (9)
C240.0533 (13)0.0570 (12)0.0576 (13)0.0018 (10)0.0234 (10)0.0064 (10)
C250.0500 (12)0.0404 (10)0.0895 (17)0.0010 (9)0.0206 (12)0.0065 (10)
C260.0581 (14)0.0495 (12)0.107 (2)0.0096 (11)0.0299 (14)0.0218 (13)
C270.0471 (13)0.0689 (14)0.0782 (16)0.0077 (11)0.0271 (12)0.0192 (12)
C280.0424 (11)0.0601 (12)0.0575 (13)0.0005 (9)0.0206 (10)0.0064 (10)
N10.0397 (9)0.0613 (10)0.0417 (9)0.0045 (7)0.0145 (7)0.0069 (8)
O10.0552 (8)0.0442 (7)0.0473 (8)0.0008 (6)0.0006 (6)0.0016 (6)
O20.0368 (7)0.0785 (9)0.0437 (7)0.0124 (7)0.0127 (6)0.0136 (7)
O30.0735 (11)0.0620 (9)0.1266 (15)0.0204 (8)0.0559 (11)0.0408 (10)
Geometric parameters (Å, º) top
C1—C21.511 (3)C15—H150.9300
C1—H1A0.9600C16—H160.9300
C1—H1B0.9600C17—O11.424 (2)
C1—H1C0.9600C17—H17A0.9600
C2—C71.379 (3)C17—H17B0.9600
C2—C31.382 (3)C17—H17C0.9600
C3—C41.379 (3)C18—O31.218 (2)
C3—H30.9300C18—C191.471 (3)
C4—C51.391 (2)C19—C251.398 (3)
C4—H40.9300C19—C201.400 (2)
C5—C61.383 (3)C20—C281.393 (2)
C5—C81.471 (2)C20—C211.523 (2)
C6—C71.386 (3)C21—C231.535 (2)
C6—H60.9300C21—C221.539 (2)
C7—H70.9300C21—C241.543 (3)
C8—N11.279 (2)C22—H22A0.9700
C8—C101.508 (2)C22—H22B0.9700
C9—O21.472 (2)C23—H23A0.9600
C9—C221.509 (2)C23—H23B0.9600
C9—C181.532 (2)C23—H23C0.9600
C9—C101.553 (2)C24—H24A0.9600
C10—C111.516 (2)C24—H24B0.9600
C10—H100.9800C24—H24C0.9600
C11—C161.381 (2)C25—C261.374 (3)
C11—C121.398 (2)C25—H250.9300
C12—C131.376 (2)C26—C271.373 (3)
C12—H120.9300C26—H260.9300
C13—C141.385 (2)C27—C281.369 (3)
C13—H130.9300C27—H270.9300
C14—O11.367 (2)C28—H280.9300
C14—C151.385 (2)N1—O21.4077 (18)
C15—C161.385 (2)
C2—C1—H1A109.5C15—C16—H16118.9
C2—C1—H1B109.5O1—C17—H17A109.5
H1A—C1—H1B109.5O1—C17—H17B109.5
C2—C1—H1C109.5H17A—C17—H17B109.5
H1A—C1—H1C109.5O1—C17—H17C109.5
H1B—C1—H1C109.5H17A—C17—H17C109.5
C7—C2—C3117.65 (18)H17B—C17—H17C109.5
C7—C2—C1121.3 (2)O3—C18—C19121.48 (17)
C3—C2—C1121.1 (2)O3—C18—C9119.15 (17)
C4—C3—C2121.63 (19)C19—C18—C9119.35 (15)
C4—C3—H3119.2C25—C19—C20120.11 (17)
C2—C3—H3119.2C25—C19—C18117.94 (17)
C3—C4—C5120.47 (19)C20—C19—C18121.93 (16)
C3—C4—H4119.8C28—C20—C19117.51 (17)
C5—C4—H4119.8C28—C20—C21120.75 (16)
C6—C5—C4118.20 (17)C19—C20—C21121.68 (15)
C6—C5—C8120.53 (16)C20—C21—C23108.96 (15)
C4—C5—C8121.27 (16)C20—C21—C22109.74 (14)
C5—C6—C7120.58 (19)C23—C21—C22111.93 (14)
C5—C6—H6119.7C20—C21—C24110.92 (15)
C7—C6—H6119.7C23—C21—C24108.35 (15)
C2—C7—C6121.4 (2)C22—C21—C24106.94 (15)
C2—C7—H7119.3C9—C22—C21116.73 (15)
C6—C7—H7119.3C9—C22—H22A108.1
N1—C8—C5120.37 (16)C21—C22—H22A108.1
N1—C8—C10114.79 (15)C9—C22—H22B108.1
C5—C8—C10124.83 (15)C21—C22—H22B108.1
O2—C9—C22109.03 (13)H22A—C22—H22B107.3
O2—C9—C18104.09 (14)C21—C23—H23A109.5
C22—C9—C18111.95 (14)C21—C23—H23B109.5
O2—C9—C10104.17 (13)H23A—C23—H23B109.5
C22—C9—C10116.45 (14)C21—C23—H23C109.5
C18—C9—C10110.12 (14)H23A—C23—H23C109.5
C8—C10—C11114.65 (14)H23B—C23—H23C109.5
C8—C10—C9100.47 (13)C21—C24—H24A109.5
C11—C10—C9116.92 (14)C21—C24—H24B109.5
C8—C10—H10108.1H24A—C24—H24B109.5
C11—C10—H10108.1C21—C24—H24C109.5
C9—C10—H10108.1H24A—C24—H24C109.5
C16—C11—C12117.49 (15)H24B—C24—H24C109.5
C16—C11—C10120.28 (15)C26—C25—C19120.7 (2)
C12—C11—C10122.23 (15)C26—C25—H25119.7
C13—C12—C11120.88 (16)C19—C25—H25119.7
C13—C12—H12119.6C27—C26—C25119.34 (19)
C11—C12—H12119.6C27—C26—H26120.3
C12—C13—C14120.61 (16)C25—C26—H26120.3
C12—C13—H13119.7C28—C27—C26120.7 (2)
C14—C13—H13119.7C28—C27—H27119.7
O1—C14—C15124.73 (16)C26—C27—H27119.7
O1—C14—C13115.80 (15)C27—C28—C20121.7 (2)
C15—C14—C13119.47 (16)C27—C28—H28119.2
C16—C15—C14119.23 (16)C20—C28—H28119.2
C16—C15—H15120.4C8—N1—O2109.70 (14)
C14—C15—H15120.4C14—O1—C17117.26 (15)
C11—C16—C15122.30 (16)N1—O2—C9109.94 (12)
C11—C16—H16118.9

Experimental details

Crystal data
Chemical formulaC28H27NO3
Mr425.50
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)10.2158 (8), 12.9129 (10), 17.6582 (14)
β (°) 103.801 (3)
V3)2262.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.42 × 0.31 × 0.26
Data collection
DiffractometerBruker X8 APEX
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
33809, 5385, 3283
Rint0.054
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.129, 1.02
No. of reflections5385
No. of parameters289
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.17

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009) and publCIF (Westrip,2010).

 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationAkhazzane, M., Zouihri, H., Bennani, A. K., Kerbal, A. & Al Houari, G. (2011). Acta Cryst. E67, o1862.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAkhazzane, M., Zouihri, H., Daran, J.-C., Kerbal, A. & Al Houari, G. (2010). Acta Cryst. E66, o3067.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAl Houari, G., Bennani, A. K., Bennani, B., Daoudi, M., Benlarbi, N., El Yazidi, M., Garrigues, B. & Kerbal, A. (2010). J. Mar. Chim. Heterocycl. 9, 36–43.  CAS Google Scholar
First citationAl Houari, G., Kerbal, A., Bennani, B., Baba, M. F., Daoudi, M. & Ben Hadda, T. (2008). ARKIVOC, xii, 42–50.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMahfoud, A., Al Houari, G., El Yazidi, M., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o873–o874.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds