organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of phenyl N-(4-nitro­phen­yl)carbamate

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and bDepartment of Polymer Science, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: aspandian59@gmail.com

Edited by H. Ishida, Okayama University, Japan (Received 15 September 2015; accepted 13 November 2015; online 21 November 2015)

The asymmetric unit of the title compound, C13H10N2O4, contains two independent mol­ecules (A and B). The dihedral angle between the aromatic rings is 48.18 (14)° in mol­ecule A and 45.81 (14)° in mol­ecule B. The mean plane of the carbamate N—C(=O)—O group is twisted slightly from the attached benzene and phenyl rings, making respective dihedral angles of 12.97 (13) and 60.93 (14)° in A, and 23.11 (14) and 59.10 (14)° in B. In the crystal, A and B mol­ecules are arranged alternately through N—H⋯O hydrogen bonds and C—H⋯π inter­actions, forming chains along the a axis. The chains are further linked by C—H⋯O hydrogen bonds into a double-chain structure.

1. Related literature

For the details of biological activity of carbamate derivatives, see: O'Donnell et al. (1979[O'Donnell, S., Mandaro, R., Schuster, T. M. & Arnone, A. (1979). J. Biol. Chem. 254, 12204-12208.]); Bubert et al. (2007[Bubert, C., Leese, M. P., Mahon, M. F., Ferrandis, E., Regis-Lydi, S., Kasprzyk, P. G., Newman, S. P., Ho, Y. T., Purohit, A., Reed, M. J. & Potter, B. V. L. (2007). J. Med. Chem. 50, 4431-4443.]). For applications of the carbamate group as a building block in crystal engineering, see: Ghosh et al. (2006[Ghosh, K., Adhikari, S. & Fröhlich, R. (2006). J. Mol. Struct. 785, 63-67.]). For polymorphs of phenyl carbamate, see: Wishkerman & Bernstein (2008[Wishkerman, S. & Bernstein, J. (2008). Chem. Eur. J. 14, 197-203.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C13H10N2O4

  • Mr = 258.23

  • Triclinic, [P \overline 1]

  • a = 9.6722 (3) Å

  • b = 10.2543 (5) Å

  • c = 12.4787 (6) Å

  • α = 84.625 (3)°

  • β = 79.386 (3)°

  • γ = 77.955 (3)°

  • V = 1187.73 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.20 × 0.18 × 0.17 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.978, Tmax = 0.982

  • 26582 measured reflections

  • 4755 independent reflections

  • 2713 reflections with I > 2σ(I)

  • Rint = 0.051

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.127

  • S = 1.05

  • 4755 reflections

  • 343 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C8–C13 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O8i 0.86 2.35 3.057 (2) 140
N4—H4⋯O4 0.86 2.05 2.906 (2) 171
C25—H25⋯O8ii 0.93 2.57 3.448 (4) 158
C14—H14⋯Cg2 0.93 2.94 3.592 (2) 128
C17—H17⋯Cg2iii 0.93 2.94 3.736 (3) 144
Symmetry codes: (i) x-1, y, z; (ii) -x+2, -y+2, -z+1; (iii) x+1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The carbamate group is known in biochemistry for its role in biological process. For example it tunes haemoglobin affinity for O2 during physiological respiration (O'Donnell et al., 1979). Carbamate derivatives present significant pharmacological activity, in some cases exhibiting potential anticancer drugs (Bubert et al., 2007). In the solid state, the carbamate group acts as both donor and acceptor in hydrogen bonding, favoring the formation of highly stable synthons. Thus, the carbamate group has been proposed in crystal engineering as a building block for hydrogen bonded solids (Ghosh et al., 2006). Most carbamate compounds of interest are phenyl derivatives. In the known polymorphs of one such compound, phenyl carbamate, the molecular environment is very similar around the carbamate group but very different around the phenyl ring (Wishkerman & Bernstein, 2008). As part of our studies in this area, we report herein on the synthesis of phenyl 4-nitrophenylcarbamate.

Two molecules (A and B) present in the asymmetric unit (Fig. 1) have nitrophenyl groups exhibiting planar conformations, with their maximum deviations of 0.0207 Å for atom O1 in molecule A and 0.0186 Å for atom N3 in molecule B. In molecule A the nitrophenyl ring (C1–C6) makes a dihedral angle of 48.18 (14)° with the phenyl ring (C8–C13), while in B the C14–C19 ring makes a dihedral angle of 45.81 (41)° with the C21–C26 ring. In the crystal, molecules are linked to one another by N—H···O and C—H···π interactions (Table 1), leading to formation of a hydrogen bonded chain along [100] (Fig. 2). A C—H···O interaction is also observed between the chains.

Related literature top

For the details of biological activity of carbamate derivatives, see: O'Donnell et al. (1979); Bubert et al. (2007). For applications of the carbamate group as a building block in crystal engineering, see: Ghosh et al. (2006). For polymorphs of phenyl carbamate, see: Wishkerman & Bernstein (2008).

Experimental top

To a stirred solution of 1.0 g (5.45 mmol) of 4-nitroaniline dissolved in 100 ml of dry THF was added calculated amount with 5% excess of phenylchloroforamate in 50ml of dry THF. The addition rate was such that it took 1.5 hrs for complete transfer. After the addition was over, the stirring was continued overnight. Excess THF was removed under vacuum at room temperature. The crude product was extracted with ethyl acetate (3×100 ml). The organic layer was dried over anhydrous sodium sulphate. Removal of solvent under vacuum at room temperature yielded light yellow product and the product was dried under vacuum to constant weight. Light yellow crystals were obtained by slow evaporation of an ethyl acetate solution at room temperature (yield 99%).

Refinement top

The N- and C-bound H atoms were positioned geometrically (N—H = 0.86 Å and C—H = 0.93–0.97 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(N, C).

Structure description top

The carbamate group is known in biochemistry for its role in biological process. For example it tunes haemoglobin affinity for O2 during physiological respiration (O'Donnell et al., 1979). Carbamate derivatives present significant pharmacological activity, in some cases exhibiting potential anticancer drugs (Bubert et al., 2007). In the solid state, the carbamate group acts as both donor and acceptor in hydrogen bonding, favoring the formation of highly stable synthons. Thus, the carbamate group has been proposed in crystal engineering as a building block for hydrogen bonded solids (Ghosh et al., 2006). Most carbamate compounds of interest are phenyl derivatives. In the known polymorphs of one such compound, phenyl carbamate, the molecular environment is very similar around the carbamate group but very different around the phenyl ring (Wishkerman & Bernstein, 2008). As part of our studies in this area, we report herein on the synthesis of phenyl 4-nitrophenylcarbamate.

Two molecules (A and B) present in the asymmetric unit (Fig. 1) have nitrophenyl groups exhibiting planar conformations, with their maximum deviations of 0.0207 Å for atom O1 in molecule A and 0.0186 Å for atom N3 in molecule B. In molecule A the nitrophenyl ring (C1–C6) makes a dihedral angle of 48.18 (14)° with the phenyl ring (C8–C13), while in B the C14–C19 ring makes a dihedral angle of 45.81 (41)° with the C21–C26 ring. In the crystal, molecules are linked to one another by N—H···O and C—H···π interactions (Table 1), leading to formation of a hydrogen bonded chain along [100] (Fig. 2). A C—H···O interaction is also observed between the chains.

For the details of biological activity of carbamate derivatives, see: O'Donnell et al. (1979); Bubert et al. (2007). For applications of the carbamate group as a building block in crystal engineering, see: Ghosh et al. (2006). For polymorphs of phenyl carbamate, see: Wishkerman & Bernstein (2008).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of two independent molecules (A and B) of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A partial packing view of the title compound. The N—H···O and C—H···O hydrogen bonds are indicated by dashed lines.
Phenyl N-(4-nitrophenyl)carbamate top
Crystal data top
C13H10N2O4Z = 4
Mr = 258.23F(000) = 536
Triclinic, P1Dx = 1.444 Mg m3
a = 9.6722 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.2543 (5) ÅCell parameters from 2713 reflections
c = 12.4787 (6) Åθ = 1.7–26.7°
α = 84.625 (3)°µ = 0.11 mm1
β = 79.386 (3)°T = 293 K
γ = 77.955 (3)°Block, yellow
V = 1187.73 (9) Å30.20 × 0.18 × 0.17 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2713 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.051
ω and φ scanθmax = 26.7°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1212
Tmin = 0.978, Tmax = 0.982k = 1212
26582 measured reflectionsl = 1515
4755 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0314P)2 + 0.7359P]
where P = (Fo2 + 2Fc2)/3
4755 reflections(Δ/σ)max = 0.001
343 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C13H10N2O4γ = 77.955 (3)°
Mr = 258.23V = 1187.73 (9) Å3
Triclinic, P1Z = 4
a = 9.6722 (3) ÅMo Kα radiation
b = 10.2543 (5) ŵ = 0.11 mm1
c = 12.4787 (6) ÅT = 293 K
α = 84.625 (3)°0.20 × 0.18 × 0.17 mm
β = 79.386 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4755 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2713 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.982Rint = 0.051
26582 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.05Δρmax = 0.20 e Å3
4755 reflectionsΔρmin = 0.18 e Å3
343 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1987 (3)1.4653 (3)0.2962 (2)0.1211 (11)
O20.4178 (3)1.3760 (3)0.2866 (2)0.1112 (10)
O30.14804 (16)0.94691 (18)0.85885 (14)0.0536 (5)
O40.36223 (17)0.98269 (19)0.76845 (16)0.0623 (6)
O50.6977 (2)0.6060 (2)1.24825 (17)0.0808 (7)
O60.9181 (3)0.5613 (3)1.1749 (2)0.1056 (9)
O70.64969 (17)1.0924 (2)0.67313 (15)0.0636 (6)
O80.86028 (16)1.01542 (18)0.73187 (14)0.0503 (5)
N10.2949 (3)1.3872 (3)0.3303 (2)0.0700 (7)
N20.15095 (19)1.0939 (2)0.72024 (16)0.0459 (6)
H20.06011.10630.74360.055*
N30.7953 (3)0.6162 (2)1.1734 (2)0.0624 (7)
N40.6566 (2)0.9385 (2)0.80607 (17)0.0538 (6)
H40.57080.94230.79470.065*
C10.3347 (2)1.1489 (3)0.5694 (2)0.0488 (7)
H10.40651.08820.59800.059*
C20.3674 (3)1.2201 (3)0.4728 (2)0.0525 (7)
H2A0.46121.20780.43530.063*
C30.2609 (3)1.3093 (3)0.4319 (2)0.0471 (7)
C40.1224 (3)1.3294 (3)0.4854 (2)0.0528 (7)
H4A0.05131.39040.45650.063*
C50.0896 (3)1.2587 (3)0.5818 (2)0.0496 (7)
H50.00441.27220.61890.060*
C60.1948 (2)1.1675 (2)0.62459 (19)0.0391 (6)
C70.2340 (3)1.0057 (3)0.7803 (2)0.0439 (6)
C80.2096 (2)0.8366 (3)0.9213 (2)0.0413 (6)
C90.1760 (3)0.8419 (3)1.0324 (2)0.0519 (7)
H90.12320.91941.06410.062*
C100.2220 (3)0.7299 (3)1.0962 (2)0.0597 (8)
H100.19890.73121.17190.072*
C110.3018 (3)0.6165 (3)1.0489 (2)0.0613 (8)
H110.33180.54081.09220.074*
C120.3366 (3)0.6156 (3)0.9380 (2)0.0588 (8)
H120.39310.53950.90610.071*
C130.2898 (3)0.7250 (3)0.8724 (2)0.0499 (7)
H130.31210.72330.79680.060*
C140.5899 (2)0.8313 (3)0.9790 (2)0.0491 (7)
H140.49490.86800.97370.059*
C150.6218 (3)0.7541 (3)1.0701 (2)0.0509 (7)
H150.54920.73921.12730.061*
C160.7617 (3)0.6991 (3)1.0757 (2)0.0472 (7)
C170.8703 (3)0.7182 (3)0.9922 (2)0.0574 (8)
H170.96470.67820.99700.069*
C180.8386 (3)0.7970 (3)0.9014 (2)0.0586 (8)
H180.91170.81110.84440.070*
C190.6979 (2)0.8553 (3)0.8949 (2)0.0438 (6)
C200.7362 (3)1.0130 (3)0.7368 (2)0.0459 (7)
C210.7079 (2)1.1696 (3)0.5852 (2)0.0446 (7)
C220.6464 (3)1.3018 (3)0.5788 (2)0.0579 (8)
H220.57611.33900.63500.070*
C230.6904 (3)1.3792 (3)0.4876 (3)0.0634 (8)
H230.64871.46930.48170.076*
C240.7946 (3)1.3247 (3)0.4059 (2)0.0636 (8)
H240.82401.37740.34450.076*
C250.8553 (3)1.1925 (3)0.4147 (2)0.0611 (8)
H250.92691.15540.35930.073*
C260.8121 (3)1.1135 (3)0.5045 (2)0.0523 (7)
H260.85331.02320.51010.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0914 (18)0.159 (3)0.0944 (19)0.0135 (17)0.0231 (15)0.0760 (19)
O20.0793 (17)0.134 (2)0.0881 (18)0.0056 (15)0.0246 (14)0.0447 (16)
O30.0328 (9)0.0660 (13)0.0531 (11)0.0047 (8)0.0035 (8)0.0224 (10)
O40.0300 (10)0.0772 (14)0.0786 (14)0.0164 (9)0.0170 (8)0.0295 (11)
O50.0936 (16)0.0871 (17)0.0543 (13)0.0163 (13)0.0073 (12)0.0208 (12)
O60.0705 (16)0.129 (2)0.108 (2)0.0078 (14)0.0356 (14)0.0576 (17)
O70.0348 (9)0.0821 (14)0.0709 (13)0.0169 (9)0.0156 (9)0.0368 (11)
O80.0310 (10)0.0694 (13)0.0513 (11)0.0153 (8)0.0097 (7)0.0104 (9)
N10.0719 (18)0.081 (2)0.0531 (16)0.0175 (15)0.0082 (14)0.0196 (14)
N20.0286 (10)0.0535 (14)0.0510 (13)0.0052 (9)0.0061 (9)0.0132 (11)
N30.0702 (17)0.0595 (17)0.0613 (17)0.0180 (13)0.0243 (14)0.0153 (13)
N40.0299 (11)0.0725 (16)0.0599 (14)0.0180 (10)0.0155 (10)0.0251 (12)
C10.0329 (13)0.0548 (17)0.0563 (17)0.0070 (11)0.0096 (11)0.0102 (14)
C20.0391 (14)0.0621 (19)0.0530 (17)0.0124 (13)0.0011 (12)0.0062 (15)
C30.0491 (15)0.0500 (17)0.0435 (15)0.0159 (12)0.0096 (12)0.0084 (13)
C40.0469 (15)0.0531 (17)0.0579 (18)0.0072 (12)0.0186 (13)0.0139 (14)
C50.0351 (13)0.0547 (17)0.0549 (17)0.0056 (12)0.0071 (12)0.0097 (14)
C60.0344 (13)0.0403 (15)0.0443 (14)0.0118 (10)0.0099 (10)0.0051 (12)
C70.0365 (15)0.0479 (16)0.0472 (16)0.0110 (11)0.0080 (11)0.0063 (13)
C80.0290 (12)0.0490 (16)0.0443 (15)0.0095 (11)0.0080 (10)0.0126 (13)
C90.0414 (14)0.0629 (19)0.0455 (16)0.0051 (12)0.0014 (12)0.0031 (14)
C100.0542 (17)0.079 (2)0.0406 (16)0.0099 (16)0.0061 (13)0.0144 (16)
C110.0563 (17)0.058 (2)0.064 (2)0.0100 (15)0.0107 (14)0.0228 (16)
C120.0589 (17)0.0484 (18)0.065 (2)0.0080 (13)0.0074 (14)0.0034 (15)
C130.0479 (15)0.0591 (19)0.0429 (15)0.0130 (13)0.0076 (12)0.0018 (14)
C140.0332 (13)0.0536 (17)0.0589 (17)0.0096 (11)0.0090 (12)0.0099 (14)
C150.0448 (15)0.0521 (17)0.0533 (17)0.0117 (12)0.0043 (12)0.0071 (14)
C160.0521 (16)0.0434 (16)0.0503 (16)0.0153 (12)0.0187 (12)0.0105 (13)
C170.0390 (14)0.0611 (19)0.072 (2)0.0110 (13)0.0189 (13)0.0191 (16)
C180.0343 (14)0.075 (2)0.0627 (18)0.0133 (13)0.0083 (12)0.0220 (16)
C190.0365 (13)0.0477 (16)0.0500 (16)0.0154 (11)0.0136 (11)0.0111 (13)
C200.0339 (14)0.0576 (18)0.0459 (15)0.0101 (12)0.0106 (11)0.0087 (13)
C210.0347 (13)0.0532 (17)0.0479 (16)0.0141 (12)0.0143 (11)0.0143 (13)
C220.0448 (15)0.063 (2)0.0610 (19)0.0023 (14)0.0077 (13)0.0014 (16)
C230.0658 (19)0.0501 (19)0.078 (2)0.0123 (15)0.0277 (17)0.0120 (17)
C240.0667 (19)0.074 (2)0.0555 (19)0.0270 (17)0.0215 (16)0.0217 (17)
C250.0630 (18)0.078 (2)0.0417 (17)0.0143 (16)0.0068 (13)0.0018 (16)
C260.0522 (16)0.0511 (17)0.0557 (18)0.0097 (13)0.0163 (13)0.0006 (14)
Geometric parameters (Å, º) top
O3—C71.347 (3)C5—C41.365 (3)
O3—C81.402 (3)C5—H50.9300
O8—C201.196 (3)C14—C151.368 (3)
O7—C201.354 (3)C14—H140.9300
O7—C211.394 (3)C9—C101.377 (4)
N2—C71.348 (3)C9—H90.9300
N2—C61.397 (3)C15—C161.365 (3)
N2—H20.8600C15—H150.9300
O4—C71.197 (3)C13—C121.373 (4)
C6—C51.380 (3)C13—H130.9300
C6—C11.384 (3)C10—C111.372 (4)
N4—C201.341 (3)C10—H100.9300
N4—C191.401 (3)C4—C31.365 (3)
N4—H40.8600C4—H4A0.9300
C19—C141.381 (3)C17—C161.368 (4)
C19—C181.381 (3)C17—C181.373 (3)
N1—O21.200 (3)C17—H170.9300
N1—O11.208 (3)C26—C251.373 (4)
N1—C31.457 (3)C26—H260.9300
C1—C21.370 (3)C25—C241.363 (4)
C1—H10.9300C25—H250.9300
C8—C131.367 (3)C18—H180.9300
C8—C91.367 (3)C22—C231.379 (4)
C21—C261.361 (4)C22—H220.9300
C21—C221.363 (4)C12—C111.364 (4)
O5—N31.213 (3)C12—H120.9300
C2—C31.368 (3)C11—H110.9300
C2—H2A0.9300C23—C241.364 (4)
N3—O61.206 (3)C23—H230.9300
N3—C161.467 (3)C24—H240.9300
C7—O3—C8118.89 (17)C10—C9—H9120.7
C20—O7—C21120.14 (18)C16—C15—C14119.0 (2)
C7—N2—C6127.80 (19)C16—C15—H15120.5
C7—N2—H2116.1C14—C15—H15120.5
C6—N2—H2116.1C8—C13—C12118.3 (3)
C5—C6—C1119.4 (2)C8—C13—H13120.9
C5—C6—N2117.0 (2)C12—C13—H13120.9
C1—C6—N2123.6 (2)C11—C10—C9120.4 (3)
C20—N4—C19127.1 (2)C11—C10—H10119.8
C20—N4—H4116.4C9—C10—H10119.8
C19—N4—H4116.4C3—C4—C5119.2 (2)
C14—C19—C18119.6 (2)C3—C4—H4A120.4
C14—C19—N4116.9 (2)C5—C4—H4A120.4
C18—C19—N4123.4 (2)C16—C17—C18119.4 (2)
O8—C20—N4127.9 (2)C16—C17—H17120.3
O8—C20—O7124.1 (2)C18—C17—H17120.3
N4—C20—O7108.0 (2)C15—C16—C17121.7 (2)
O4—C7—O3124.7 (2)C15—C16—N3118.8 (2)
O4—C7—N2127.0 (2)C17—C16—N3119.5 (2)
O3—C7—N2108.37 (19)C4—C3—C2121.5 (2)
O2—N1—O1122.7 (3)C4—C3—N1118.7 (2)
O2—N1—C3118.9 (3)C2—C3—N1119.9 (2)
O1—N1—C3118.4 (3)C21—C26—C25118.8 (3)
C2—C1—C6119.9 (2)C21—C26—H26120.6
C2—C1—H1120.0C25—C26—H26120.6
C6—C1—H1120.0C24—C25—C26120.7 (3)
C13—C8—C9122.0 (2)C24—C25—H25119.6
C13—C8—O3120.8 (2)C26—C25—H25119.6
C9—C8—O3117.0 (2)C17—C18—C19119.8 (2)
C26—C21—C22121.6 (2)C17—C18—H18120.1
C26—C21—O7121.5 (2)C19—C18—H18120.1
C22—C21—O7116.7 (2)C21—C22—C23118.7 (3)
C3—C2—C1119.4 (2)C21—C22—H22120.6
C3—C2—H2A120.3C23—C22—H22120.6
C1—C2—H2A120.3C11—C12—C13121.2 (3)
O6—N3—O5123.6 (3)C11—C12—H12119.4
O6—N3—C16118.3 (3)C13—C12—H12119.4
O5—N3—C16118.1 (2)C12—C11—C10119.5 (3)
C4—C5—C6120.6 (2)C12—C11—H11120.2
C4—C5—H5119.7C10—C11—H11120.2
C6—C5—H5119.7C24—C23—C22120.6 (3)
C15—C14—C19120.5 (2)C24—C23—H23119.7
C15—C14—H14119.7C22—C23—H23119.7
C19—C14—H14119.7C25—C24—C23119.6 (3)
C8—C9—C10118.6 (3)C25—C24—H24120.2
C8—C9—H9120.7C23—C24—H24120.2
C7—N2—C6—C5175.7 (3)C14—C15—C16—C170.7 (4)
C7—N2—C6—C17.5 (4)C14—C15—C16—N3180.0 (3)
C20—N4—C19—C14154.4 (3)C18—C17—C16—C151.4 (5)
C20—N4—C19—C1825.8 (5)C18—C17—C16—N3179.3 (3)
C19—N4—C20—O86.2 (5)O6—N3—C16—C15175.5 (3)
C19—N4—C20—O7171.3 (3)O5—N3—C16—C154.1 (4)
C21—O7—C20—O89.8 (4)O6—N3—C16—C173.8 (4)
C21—O7—C20—N4172.6 (2)O5—N3—C16—C17176.6 (3)
C8—O3—C7—O410.3 (4)C5—C4—C3—C20.1 (4)
C8—O3—C7—N2170.2 (2)C5—C4—C3—N1178.8 (3)
C6—N2—C7—O47.1 (5)C1—C2—C3—C40.1 (4)
C6—N2—C7—O3173.4 (2)C1—C2—C3—N1178.9 (3)
C5—C6—C1—C20.5 (4)O2—N1—C3—C4175.4 (3)
N2—C6—C1—C2176.3 (3)O1—N1—C3—C41.0 (5)
C7—O3—C8—C1357.6 (3)O2—N1—C3—C23.4 (5)
C7—O3—C8—C9127.5 (3)O1—N1—C3—C2179.8 (3)
C20—O7—C21—C2656.3 (4)C22—C21—C26—C250.3 (4)
C20—O7—C21—C22129.3 (3)O7—C21—C26—C25173.8 (2)
C6—C1—C2—C30.1 (4)C21—C26—C25—C240.4 (4)
C1—C6—C5—C40.5 (4)C16—C17—C18—C190.4 (5)
N2—C6—C5—C4176.5 (3)C14—C19—C18—C171.3 (5)
C18—C19—C14—C152.1 (4)N4—C19—C18—C17179.0 (3)
N4—C19—C14—C15178.2 (3)C26—C21—C22—C230.7 (4)
C13—C8—C9—C101.7 (4)O7—C21—C22—C23173.6 (2)
O3—C8—C9—C10173.2 (2)C8—C13—C12—C111.3 (4)
C19—C14—C15—C161.1 (4)C13—C12—C11—C101.8 (5)
C9—C8—C13—C120.5 (4)C9—C10—C11—C120.5 (5)
O3—C8—C13—C12174.2 (2)C21—C22—C23—C240.6 (5)
C8—C9—C10—C111.2 (4)C26—C25—C24—C230.6 (5)
C6—C5—C4—C30.3 (4)C22—C23—C24—C250.1 (5)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2···O8i0.862.353.057 (2)140
N4—H4···O40.862.052.906 (2)171
C25—H25···O8ii0.932.573.448 (4)158
C14—H14···Cg20.932.943.592 (2)128
C17—H17···Cg2iii0.932.943.736 (3)144
Symmetry codes: (i) x1, y, z; (ii) x+2, y+2, z+1; (iii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2···O8i0.862.353.057 (2)140
N4—H4···O40.862.052.906 (2)171
C25—H25···O8ii0.932.573.448 (4)158
C14—H14···Cg20.932.943.592 (2)128
C17—H17···Cg2iii0.932.943.736 (3)144
Symmetry codes: (i) x1, y, z; (ii) x+2, y+2, z+1; (iii) x+1, y, z.
 

Acknowledgements

The authors thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBubert, C., Leese, M. P., Mahon, M. F., Ferrandis, E., Regis-Lydi, S., Kasprzyk, P. G., Newman, S. P., Ho, Y. T., Purohit, A., Reed, M. J. & Potter, B. V. L. (2007). J. Med. Chem. 50, 4431–4443.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGhosh, K., Adhikari, S. & Fröhlich, R. (2006). J. Mol. Struct. 785, 63–67.  Web of Science CSD CrossRef CAS Google Scholar
First citationO'Donnell, S., Mandaro, R., Schuster, T. M. & Arnone, A. (1979). J. Biol. Chem. 254, 12204–12208.  CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWishkerman, S. & Bernstein, J. (2008). Chem. Eur. J. 14, 197–203.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds