research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of catena-poly[N,N,N′,N′-tetra­methyl­guanidinium [(chlorido­cadmate)-di-μ-chlorido]]

CROSSMARK_Color_square_no_text.svg

aLaboratoire des Produits Naturels, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, bLaboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and cDépartement de Chimie, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montréal, Québec, H3C 3J7, Canada
*Correspondence e-mail: dlibasse@gmail.com, thierry.maris@umontreal.ca

Edited by M. Weil, Vienna University of Technology, Austria (Received 20 August 2015; accepted 3 November 2015; online 1 January 2016)

In the structure of the title salt, {(C5H14N3)[CdCl3]}n, the CdII atom of the complex anion is five-coordinated by one terminal and four bridging Cl atoms. The corresponding coordination polyhedron is a distorted trigonal bipyramid, with Cd—Cl distances in the range 2.4829 (4)–2.6402 (4) Å. The bipyramids are condensed into a polyanionic zigzag chain extending parallel to [101]. The tetra­methyl­guanidinium cations are situated between the polyanionic chains and are linked to them through N—H⋯Cl hydrogen bonds, forming a layered network parallel to (010).

1. Chemical context

Tetra­methyl­guanidine is known to crystallize in its neutral form, as a Lewis base or as a singly protonated cation. Several cationic complexes of Pd, Ga and Pt have been reported with tetra­methyl­guanidine acting as a ligand (Li et al., 2005[Li, S., Xie, H., Zhang, S., Lin, Y., Xu, J. & Cao, J. (2005). Synlett, pp. 1885-1888.]; Cowley et al., 2005[Cowley, A. R., Downs, A. J., Himmel, H.-J., Marchant, S., Parsons, S. & Yeoman, J. A. (2005). Dalton Trans. pp. 1591-1597.]; Eliseev et al., 2013[Eliseev, I. I., Bokach, N. A., Haukka, M. & Golenya, I. A. (2013). Acta Cryst. E69, m117-m118.]), and halogenidometalates have been reported with tetra­methyl­guanidinium as a counter-cation (Bujak et al., 1999[Bujak, M., Osadczuk, P. & Zaleski, J. (1999). Acta Cryst. C55, 1443-1447.]; Bujak & Zaleski, 2007[Bujak, M. & Zaleski, J. (2007). Acta Cryst. E63, m102-m104.]). Since none of these complexes has cadmium as a component, we decided to study the inter­actions between tetra­methyl­guanidine and [CdCl2]·H2O, which has yielded the title salt, (C5H14N3)+[CdCl3], (I)[link].

[Scheme 1]

2. Structural commentary

The asymmetric unit of (I)[link] (Fig. 1[link]) consists of a CdII cation surrounded by four Cl atoms and one N,N,N′,N′-tetra­methyl­guanidinium cation. The coordination polyhedron around CdII can be described best as a distorted trigonal bipyramid where atoms Cl1, Cl2 and Cl4 define the equatorial plane while atoms Cl3 and Cl4i [symmetry code: (i) [{3\over 2}] − x, [{1\over 2}] − y, 1 − z] are in axial positions with a Cl3—Cd1—Cl4i angle of 166.347 (10)°. The equatorial Cd—Cl bond lengths range from 2.4829 (4) Å to 2.5829 (4) Å while the axial bond lengths Cd1—Cl3 and Cd1—Cl4i are 2.5854 (4) Å and 2.6403 (4) Å, respectively. The CdCl4 moieties of the asymmetric unit are related by an inversion center, generating an extended zigzag chain of edge-sharing trigonal bipyramids running parallel to [101]. These 1[CdCl4/2Cl1/1] chains are formed by the bridging atoms Cl2, Cl3, Cl4 and Cl4i with a Cd—Cd—Cd angle of 137.893 (6)°. The corrugation of the chains results in rather short Cd⋯Cd distances of 3.8720 (3) and 3.8026 (3) Å. The same kind of zigzag chain is found, for example, in the [CdCl3] salt obtained with benzyl­tri­ethyl­ammonium as counter-cation (Sun & Jin, 2013[Sun, S.-W. & Jin, L. (2013). Acta Cryst. C69, 1030-1033.]) but with a less pronounced corrugation. Accordingly, the angle between two successive rectangular [Cd2Cl2] units is 57.928 (3)° in the structure of the benzyl­tri­ethyl­ammonium compound compared with 129.859 (2)° for the present structure. The tetra­methyl­guanidinium cation has the central atom C1 in an almost trigonal–planar configuration. The three N—C—N angles range from 119.26 (14) to 121.14 (14)° and the r.m.s deviation from the least-squares plane calculated with atoms C1, N1, N2 and N3 is only 0.005 Å. The corresponding C—N bond lengths of 1.330 (2), 1.3360 (19), and 1.3441 (19) Å indicate a partial double-bond character. Hence the positive charge may be considered as delocalized in the CN3 plane (Tiritiris, 2012[Tiritiris, I. (2012). Acta Cryst. E68, o3500.]). The two pairs of di­methyl­ammonium groups are twisted by 24.67 (8) and 27.31 (9)° with respect to this plane.

[Figure 1]
Figure 1
The asymmetric unit of compound (I)[link], with displacement ellipsoids drawn at the 50% probability level. The N—H⋯Cl hydrogen bond is indicated by a dashed line.

3. Supra­molecular features

The 1[CdCl4/2Cl1/1] chains are inter­connected through N—H⋯·Cl hydrogen bonds by pairs of tetra­methyl­guanidinium cations linked to symmetry-related Cl1 atoms (Table 1[link]). These inter­actions define layers extending parallel to (010) (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯Cl1 0.83 (2) 2.51 (2) 3.2871 (15) 157 (2)
N2—H2B⋯Cl1i 0.83 (2) 2.46 (2) 3.2710 (15) 164 (2)
Symmetry code: (i) [-x+1, y, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
Partial packing diagram of (I)[link], viewed along [010], showing one layer made up of alternating 1[CdCl4/2Cl1/1] chains and inter­mediate tetra­methyl­guanidinium cations. N—H⋯Cl hydrogen bonds are shown as black dotted lines.

4. Database survey

The tri­chlorido­cadmate anion, [CdCl3], may have various discrete or chain structures with tetra­hedral, octa­hedral and trigonal–bipyramidal environments around the central CdII cation. A search in the Cambridge Structural Database (CSD Version 5.36 with three updates; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) returned only five entries with the chains having a trigonal–bipyramidal environment for CdII. The corresponding structures contain different cations such as sulfonium ylide (Sabounchei et al., 2013[Sabounchei, S. J., Bagherjeri, F. A., Boskovic, C. & Gable, R. W. (2013). J. Mol. Struct. 1046, 39-43.]), tetra­ethyl­ammonium (Lakshmi et al., 2004[Lakshmi, S., Sridhar, M. A., Prasad, J. S., Amirthaganesan, G., Kandhaswamy, M. A. & Srinivasan, V. (2004). Anal. Sci. X-ray Struct. Anal. Online, 20, x57-x58.]), hexa­decyl sulfonium (Sokka et al., 2008[Sokka, I., Fischer, A. & Kloo, L. (2008). Struct. Chem. 19, 51-55.]), benzyl­tri­ethyl­ammonium (Sun & Jin, 2013[Sun, S.-W. & Jin, L. (2013). Acta Cryst. C69, 1030-1033.]) or tri­methyl­ammonium­phenyl-4-thiol (Tang & Lang, 2011[Tang, X.-Y. & Lang, J.-P. (2011). Acta Cryst. E67, m1883.]).

5. Synthesis and crystallization

Crystals suitable for a single-crystal X-ray diffraction study were obtained by mixing stoichiometric amounts of tetra­methyl­guanidine with CdCl2·H2O in ethanol and allowing the solvent to evaporate slowly at room temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The H-atom positions of all methyl groups were placed geometrically and refined with Uiso(H) = 1.5Ueq(C). H atoms bonded to the N atoms were located from a Fourier difference map and were refined freely.

Table 2
Experimental details

Crystal data
Chemical formula (C5H14N3)[CdCl3]
Mr 334.94
Crystal system, space group Monoclinic, C2/c
Temperature (K) 100
a, b, c (Å) 15.1305 (7), 14.2921 (6), 11.6939 (5)
β (°) 117.370 (2)
V3) 2245.69 (17)
Z 8
Radiation type Ga Kα, λ = 1.34139 Å
μ (mm−1) 14.50
Crystal size (mm) 0.19 × 0.10 × 0.10
 
Data collection
Diffractometer Bruker Venture Metaljet
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.400, 0.752
No. of measured, independent and observed [I > 2σ(I)] reflections 24837, 2593, 2575
Rint 0.043
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.040, 1.13
No. of reflections 2593
No. of parameters 122
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.63, −0.40
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

catena-Poly[N,N,N',N'-tetramethylguanidinium [(chloridocadmate)-di-µ-chlorido]] top
Crystal data top
(C5H14N3)[CdCl3]F(000) = 1312
Mr = 334.94Dx = 1.981 Mg m3
Monoclinic, C2/cGa Kα radiation, λ = 1.34139 Å
a = 15.1305 (7) ÅCell parameters from 9941 reflections
b = 14.2921 (6) Åθ = 3.9–60.7°
c = 11.6939 (5) ŵ = 14.50 mm1
β = 117.370 (2)°T = 100 K
V = 2245.69 (17) Å3Block, clear light colourless
Z = 80.19 × 0.10 × 0.10 mm
Data collection top
Bruker Venture Metaljet
diffractometer
2593 independent reflections
Radiation source: Metal Jet, Gallium Liquid Metal Jet Source2575 reflections with I > 2σ(I)
Helios MX Mirror Optics monochromatorRint = 0.043
Detector resolution: 10.24 pixels mm-1θmax = 60.7°, θmin = 3.9°
ω and φ scansh = 1919
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1818
Tmin = 0.400, Tmax = 0.752l = 1515
24837 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.016H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.040 w = 1/[σ2(Fo2) + (0.0144P)2 + 2.6083P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max = 0.001
2593 reflectionsΔρmax = 0.63 e Å3
122 parametersΔρmin = 0.40 e Å3
0 restraints
Special details top

Experimental. X-ray crystallographic data for I were collected from a single-crystal sample, which was mounted on a loop fiber. Data were collected using a Bruker Venture diffractometer equipped with a Photon 100 CMOS Detector, a Helios MX optics and a Kappa goniometer. The crystal-to-detector distance was 4.0 cm, and the data collection was carried out in 1024 x 1024 pixel mode.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.18403 (9)0.36639 (9)0.56127 (12)0.0134 (2)
N20.35116 (10)0.36153 (11)0.61584 (14)0.0191 (3)
N30.24068 (10)0.42244 (9)0.41914 (13)0.0150 (3)
C10.25851 (11)0.38434 (10)0.53204 (15)0.0132 (3)
C20.09488 (11)0.42502 (11)0.51613 (15)0.0153 (3)
H2C0.10420.48160.47560.023*
H2D0.08350.44250.58940.023*
H2E0.03730.39010.45320.023*
C30.19647 (12)0.29906 (11)0.66197 (15)0.0152 (3)
H3A0.24790.25350.67190.023*
H3B0.13340.26640.63790.023*
H3C0.21640.33220.74350.023*
C40.14557 (12)0.41074 (12)0.30272 (15)0.0200 (3)
H4A0.10740.36040.31630.030*
H4B0.15810.39480.23000.030*
H4C0.10760.46920.28420.030*
C50.32011 (13)0.46786 (12)0.40087 (17)0.0212 (3)
H5A0.37180.49020.48410.032*
H5B0.29260.52100.34200.032*
H5C0.34910.42280.36430.032*
Cd10.60861 (2)0.27596 (2)0.41882 (2)0.01199 (5)
Cl10.54707 (3)0.30385 (3)0.57950 (3)0.01619 (8)
Cl20.50000.15363 (3)0.25000.01344 (10)
Cl30.50000.39855 (4)0.25000.01852 (11)
Cl40.76617 (3)0.35865 (2)0.45006 (4)0.01607 (8)
H2A0.3944 (15)0.3603 (16)0.591 (2)0.021 (5)*
H2B0.3677 (16)0.3540 (16)0.694 (2)0.026 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0108 (6)0.0151 (6)0.0146 (6)0.0020 (5)0.0061 (5)0.0016 (5)
N20.0120 (6)0.0333 (8)0.0139 (7)0.0037 (5)0.0076 (5)0.0038 (6)
N30.0148 (6)0.0161 (6)0.0152 (6)0.0008 (5)0.0079 (5)0.0010 (5)
C10.0143 (7)0.0120 (7)0.0141 (7)0.0012 (5)0.0072 (6)0.0027 (5)
C20.0118 (7)0.0156 (7)0.0196 (7)0.0026 (5)0.0083 (6)0.0001 (6)
C30.0140 (7)0.0174 (7)0.0151 (7)0.0016 (6)0.0073 (6)0.0020 (6)
C40.0200 (8)0.0249 (8)0.0124 (7)0.0067 (6)0.0052 (6)0.0027 (6)
C50.0232 (8)0.0210 (8)0.0254 (8)0.0017 (6)0.0163 (7)0.0050 (7)
Cd10.00895 (7)0.01692 (7)0.01027 (7)0.00065 (3)0.00457 (5)0.00147 (3)
Cl10.01164 (16)0.02608 (19)0.01180 (16)0.00064 (14)0.00620 (13)0.00316 (14)
Cl20.0121 (2)0.0156 (2)0.0115 (2)0.0000.00446 (18)0.000
Cl30.0168 (2)0.0176 (2)0.0151 (2)0.0000.00209 (19)0.000
Cl40.01132 (16)0.01586 (16)0.02072 (18)0.00045 (12)0.00710 (14)0.00232 (13)
Geometric parameters (Å, º) top
N1—C11.3441 (19)C4—H4A0.9800
N1—C21.4649 (19)C4—H4B0.9800
N1—C31.4643 (19)C4—H4C0.9800
N2—C11.330 (2)C5—H5A0.9800
N2—H2A0.83 (2)C5—H5B0.9800
N2—H2B0.83 (2)C5—H5C0.9800
N3—C11.3360 (19)Cd1—Cl12.4829 (4)
N3—C41.467 (2)Cd1—Cl22.5829 (4)
N3—C51.465 (2)Cd1—Cl32.5854 (4)
C2—H2C0.9800Cd1—Cl42.5323 (4)
C2—H2D0.9800Cd1—Cl4i2.6403 (4)
C2—H2E0.9800Cl2—Cd1ii2.5830 (4)
C3—H3A0.9800Cl3—Cd1ii2.5854 (4)
C3—H3B0.9800Cl4—Cd1i2.6402 (4)
C3—H3C0.9800
C1—N1—C2122.68 (13)N3—C4—H4B109.5
C1—N1—C3121.14 (12)N3—C4—H4C109.5
C3—N1—C2114.98 (12)H4A—C4—H4B109.5
C1—N2—H2A118.6 (14)H4A—C4—H4C109.5
C1—N2—H2B121.6 (15)H4B—C4—H4C109.5
H2A—N2—H2B120 (2)N3—C5—H5A109.5
C1—N3—C4122.47 (13)N3—C5—H5B109.5
C1—N3—C5121.21 (14)N3—C5—H5C109.5
C5—N3—C4115.83 (13)H5A—C5—H5B109.5
N2—C1—N1119.26 (14)H5A—C5—H5C109.5
N2—C1—N3119.57 (14)H5B—C5—H5C109.5
N3—C1—N1121.14 (14)Cl1—Cd1—Cl2111.033 (10)
N1—C2—H2C109.5Cl1—Cd1—Cl398.115 (10)
N1—C2—H2D109.5Cl1—Cd1—Cl4i95.516 (13)
N1—C2—H2E109.5Cl1—Cd1—Cl4118.137 (13)
H2C—C2—H2D109.5Cl2—Cd1—Cl385.262 (13)
H2C—C2—H2E109.5Cl2—Cd1—Cl4i89.152 (12)
H2D—C2—H2E109.5Cl3—Cd1—Cl4i166.347 (10)
N1—C3—H3A109.5Cl4—Cd1—Cl2130.701 (9)
N1—C3—H3B109.5Cl4—Cd1—Cl391.126 (11)
N1—C3—H3C109.5Cl4—Cd1—Cl4i83.088 (12)
H3A—C3—H3B109.5Cd1—Cl2—Cd1ii94.798 (17)
H3A—C3—H3C109.5Cd1ii—Cl3—Cd194.679 (18)
H3B—C3—H3C109.5Cd1—Cl4—Cd1i96.910 (13)
N3—C4—H4A109.5
C2—N1—C1—N2148.47 (15)C4—N3—C1—N127.1 (2)
C2—N1—C1—N333.2 (2)C4—N3—C1—N2151.23 (15)
C3—N1—C1—N218.4 (2)C5—N3—C1—N1161.27 (14)
C3—N1—C1—N3159.92 (14)C5—N3—C1—N220.4 (2)
Symmetry codes: (i) x+3/2, y+1/2, z+1; (ii) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2C···Cl4iii0.982.873.6567 (16)138
C3—H3B···Cl1iv0.982.923.7614 (16)144
C4—H4B···Cl4ii0.982.873.8347 (17)169
N2—H2A···Cl10.83 (2)2.51 (2)3.2871 (15)157 (2)
N2—H2B···Cl1v0.83 (2)2.46 (2)3.2710 (15)164 (2)
Symmetry codes: (ii) x+1, y, z+1/2; (iii) x+1, y+1, z+1; (iv) x+1/2, y+1/2, z+1; (v) x+1, y, z+3/2.
 

Acknowledgements

The authors acknowledge the Cheikh Anta Diop University of Dakar (Sénégal), the Canada Foundation for Innovation and the Université de Montréal for financial support.

References

First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBujak, M., Osadczuk, P. & Zaleski, J. (1999). Acta Cryst. C55, 1443–1447.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBujak, M. & Zaleski, J. (2007). Acta Cryst. E63, m102–m104.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCowley, A. R., Downs, A. J., Himmel, H.-J., Marchant, S., Parsons, S. & Yeoman, J. A. (2005). Dalton Trans. pp. 1591–1597.  Web of Science CSD CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEliseev, I. I., Bokach, N. A., Haukka, M. & Golenya, I. A. (2013). Acta Cryst. E69, m117–m118.  CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLakshmi, S., Sridhar, M. A., Prasad, J. S., Amirthaganesan, G., Kandhaswamy, M. A. & Srinivasan, V. (2004). Anal. Sci. X-ray Struct. Anal. Online, 20, x57–x58.  CSD CrossRef CAS Google Scholar
First citationLi, S., Xie, H., Zhang, S., Lin, Y., Xu, J. & Cao, J. (2005). Synlett, pp. 1885–1888.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSabounchei, S. J., Bagherjeri, F. A., Boskovic, C. & Gable, R. W. (2013). J. Mol. Struct. 1046, 39–43.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSokka, I., Fischer, A. & Kloo, L. (2008). Struct. Chem. 19, 51–55.  Web of Science CSD CrossRef CAS Google Scholar
First citationSun, S.-W. & Jin, L. (2013). Acta Cryst. C69, 1030–1033.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTang, X.-Y. & Lang, J.-P. (2011). Acta Cryst. E67, m1883.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTiritiris, I. (2012). Acta Cryst. E68, o3500.  CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds