organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 3-(9H-carbazol-9-yl)-N′-[(E)-4-chloro­benzyl­­idene]propano­hydrazide

aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, cChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, dChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, eDepartment of Chemistry, Faculty of Science, Assiut University, 71515 Assiut, Egypt, and fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by P. McArdle, National University of Ireland, Ireland (Received 30 October 2015; accepted 2 November 2015; online 14 November 2015)

In the title compound, C22H18ClN3O, the carbazole ring system is essentially planar (r.m.s deviation = 0.003 Å), and makes a dihedral angle of 9.01 (8)° with the plane of the chloro­phenyl ring. In the crystal, neighbouring mol­ecules are linked into centrosymmetric R22(8) dimers by pairs of N—H⋯O inter­actions and into a three-dimensional network by C—H⋯π inter­actions. The dimers are arranged into layers parallel to (010).

1. Related literature

For synthesis and pharmacuetical studies of carbazole containing compounds, see: Hewlins et al. (1984[Hewlins, M. J. E., Oliveira-Campos, A. & Shannon, P. V. R. (1984). Synthesis, pp. 289-302.]); Kansal & Potier (1986[Kansal, V. K. & Potier, P. (1986). Tetrahedron, 42, 2389-2408.]); Haider et al. (1998[Haider, N., Jbara, R., Khadami, F. & Wanko, R. (1998). Heterocycles, 48, 1609-1622.]); Hirata et al. (1999[Hirata, K., Ito, C., Furukawa, H., Itoigawa, M., Cosentino, L. M. & Lee, K. H. (1999). Bioorg. Med. Chem. Lett. 9, 119-122.]); Chowdhury et al. (1978[Chowdhury, D. N., Basak, S. K. & Das, B. P. (1978). Curr. Sci. 47, 490-491.]); Sakano et al. (1980[Sakano, K., Ishimaru, K. & Nakamura, S. (1980). J. Antibiot. 33, 683-689.]); Pindur (1990[Pindur, U. (1990). Chimia, 44, 406-412.]); Knölker & Reddy (2002[Knölker, H. J. & Reddy, K. R. (2002). Chem. Rev. 102, 4303-4428.]); Martin & Prasad (2006[Martin, A. E. & Prasad, K. J. R. (2006). Acta Pharm. 56, 79-86.]); Saturnino et al. (2003[Saturnino, C., Buonerba, M., Boatto, G., Pascale, M., Moltedo, O., de Napoli, L., Montesarchio, D., Lancelot, J. C. & de Caprariis, P. (2003). Chem. Pharm. Bull. 51, 971-974.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C22H18ClN3O

  • Mr = 375.84

  • Monoclinic, P 21 /c

  • a = 16.0126 (7) Å

  • b = 7.4316 (3) Å

  • c = 16.1654 (9) Å

  • β = 94.607 (4)°

  • V = 1917.46 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 293 K

  • 0.42 × 0.36 × 0.08 mm

2.2. Data collection

  • Agilent Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.847, Tmax = 1.000

  • 12277 measured reflections

  • 6312 independent reflections

  • 3066 reflections with I > 2σ(I)

  • Rint = 0.023

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.167

  • S = 1.02

  • 6312 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2, Cg3 and Cg4 are the centroids of the two benzene rings (C1–C6 and C7–C12) of the carbazole ring system and the chloro­phenyl ring (C17–C22), respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O1i 0.81 2.08 2.8952 (19) 175
C5—H5⋯Cg4ii 0.93 2.81 3.696 (3) 160
C21—H21⋯Cg3iii 0.93 2.97 3.858 (3) 160
C22—H22⋯Cg2iii 0.93 2.79 3.699 (2) 166
Symmetry codes: (i) -x+1, -y-1, -z+1; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Carbazole scaffold compunds are well known for their pharmacological activities. The syntheses of carbazole derivatives in connection with the search for newer physiologically activities have been recognized in many reports (Hewlins et al., 1984; Kansal & Potier 1986; Haider et al., 1998; Hirata et al., 1999). Carbazomycin A and carbazomycin B have been found to be useful antibacterial and antifungal agents (Chowdhury et al., 1978; Sakano et al., 1980). In addition pyridocarbazoles show marked anticancer and anti-HIV activities (Pindur, 1990; Knölker & Reddy, 2002; Martin & Prasad 2006; Saturnino et al., 2003). Based on such facts we report in this study the synthesis and crystal structure of the title compound.

As shown in Fig. 1, the carbazole ring system (N1/C1–C12) of the title compound is essentially planar (r.m.s deviation = 0.003 Å), and makes a dihedral angle of 9.01 (8)° with the plane of the chlorophenyl ring (C17–C22). The bond lengths and angles are within normal ranges and are similar to those reported earlier for similar compounds.

In the crystal, two molecules are associated through a pair of N—H···O intermolecular hydrogen bonds, forming a centrosymmetric dimer with R22(8) ring motifs (Table 1), into layers parallel to (010) (Fig. 2). The dimers are connected by C—H···π interactions, forming a three-dimensional network.

Related literature top

For synthesis and pharmacuetical studies of carbazole containing compounds, see: Hewlins et al. (1984); Kansal & Potier (1986); Haider et al. (1998); Hirata et al. (1999); Chowdhury et al. (1978); Sakano et al. (1980); Pindur (1990); Knölker & Reddy (2002); Martin & Prasad (2006); Saturnino et al. (2003).

Experimental top

A mixture of 1.5 mmol (380 mg) of 3-(9H-carbazol-9-yl)propanehydrazide and 1.5 mmol (261 mg) of 4-chlorobenzaldehyde was heated in 10 ml of absolute ethanol and 3 ml of acetic acid catalyst. The reaction was monitored by TLC till completion after 3 h. The product which deposited on cooling, was collected, dried under vacuum and recrystallized from dioxan to give orange plates in 78% yield.

Refinement top

All H atoms were placed in calculated positions with N—H = 0.81 and C—H = 0.93 - 0.97 Å, and refined as riding with Uiso(H) = 1.2Ueq(C, N).

Structure description top

Carbazole scaffold compunds are well known for their pharmacological activities. The syntheses of carbazole derivatives in connection with the search for newer physiologically activities have been recognized in many reports (Hewlins et al., 1984; Kansal & Potier 1986; Haider et al., 1998; Hirata et al., 1999). Carbazomycin A and carbazomycin B have been found to be useful antibacterial and antifungal agents (Chowdhury et al., 1978; Sakano et al., 1980). In addition pyridocarbazoles show marked anticancer and anti-HIV activities (Pindur, 1990; Knölker & Reddy, 2002; Martin & Prasad 2006; Saturnino et al., 2003). Based on such facts we report in this study the synthesis and crystal structure of the title compound.

As shown in Fig. 1, the carbazole ring system (N1/C1–C12) of the title compound is essentially planar (r.m.s deviation = 0.003 Å), and makes a dihedral angle of 9.01 (8)° with the plane of the chlorophenyl ring (C17–C22). The bond lengths and angles are within normal ranges and are similar to those reported earlier for similar compounds.

In the crystal, two molecules are associated through a pair of N—H···O intermolecular hydrogen bonds, forming a centrosymmetric dimer with R22(8) ring motifs (Table 1), into layers parallel to (010) (Fig. 2). The dimers are connected by C—H···π interactions, forming a three-dimensional network.

For synthesis and pharmacuetical studies of carbazole containing compounds, see: Hewlins et al. (1984); Kansal & Potier (1986); Haider et al. (1998); Hirata et al. (1999); Chowdhury et al. (1978); Sakano et al. (1980); Pindur (1990); Knölker & Reddy (2002); Martin & Prasad (2006); Saturnino et al. (2003).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SIR92 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. View of the dimers formed by N—H···O hydrogen bonds down the b axis.
3-(9H-Carbazol-9-yl)-N'-[(E)-4-chlorobenzylidene]propanohydrazide top
Crystal data top
C22H18ClN3OF(000) = 784
Mr = 375.84Dx = 1.302 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2141 reflections
a = 16.0126 (7) Åθ = 3.7–30.7°
b = 7.4316 (3) ŵ = 0.22 mm1
c = 16.1654 (9) ÅT = 293 K
β = 94.607 (4)°Plate, orange
V = 1917.46 (16) Å30.42 × 0.36 × 0.08 mm
Z = 4
Data collection top
Agilent Xcalibur Eos Gemini
diffractometer
6312 independent reflections
Radiation source: Enhance (Mo) X-ray Source3066 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 16.0416 pixels mm-1θmax = 32.8°, θmin = 3.0°
ω scansh = 2124
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 510
Tmin = 0.847, Tmax = 1.000l = 2319
12277 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.167 w = 1/[σ2(Fo2) + (0.0569P)2 + 0.350P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
6312 reflectionsΔρmax = 0.20 e Å3
244 parametersΔρmin = 0.24 e Å3
Crystal data top
C22H18ClN3OV = 1917.46 (16) Å3
Mr = 375.84Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.0126 (7) ŵ = 0.22 mm1
b = 7.4316 (3) ÅT = 293 K
c = 16.1654 (9) Å0.42 × 0.36 × 0.08 mm
β = 94.607 (4)°
Data collection top
Agilent Xcalibur Eos Gemini
diffractometer
6312 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
3066 reflections with I > 2σ(I)
Tmin = 0.847, Tmax = 1.000Rint = 0.023
12277 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.167H-atom parameters constrained
S = 1.02Δρmax = 0.20 e Å3
6312 reflectionsΔρmin = 0.24 e Å3
244 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.99666 (4)0.31996 (9)0.20792 (5)0.0942 (3)
O10.50960 (9)0.32276 (16)0.57559 (9)0.0624 (5)
N10.66300 (10)0.17932 (18)0.56956 (10)0.0547 (5)
N20.60196 (9)0.39049 (19)0.48394 (9)0.0535 (5)
N30.67596 (9)0.35405 (19)0.44990 (10)0.0511 (5)
C10.64514 (12)0.2806 (2)0.63777 (12)0.0539 (6)
C20.57672 (16)0.2737 (3)0.68399 (17)0.0803 (9)
C30.5780 (2)0.3896 (4)0.75265 (19)0.1108 (14)
C40.6440 (3)0.5071 (4)0.77117 (19)0.1203 (16)
C50.7099 (2)0.5122 (3)0.72554 (17)0.0944 (12)
C60.71287 (14)0.3976 (2)0.65793 (12)0.0609 (7)
C70.77393 (13)0.3604 (3)0.60061 (13)0.0649 (7)
C80.85479 (19)0.4244 (4)0.5889 (2)0.1049 (13)
C90.8972 (2)0.3490 (6)0.5267 (3)0.1362 (18)
C100.8626 (3)0.2141 (6)0.4766 (3)0.1306 (17)
C110.78534 (18)0.1509 (4)0.48540 (17)0.0887 (10)
C120.74149 (13)0.2233 (2)0.54750 (13)0.0578 (6)
C130.61339 (13)0.0290 (2)0.53681 (13)0.0646 (7)
C140.63465 (11)0.1461 (2)0.58248 (12)0.0522 (6)
C150.57783 (12)0.2941 (2)0.54829 (12)0.0502 (6)
C160.69414 (11)0.4544 (2)0.39006 (12)0.0546 (6)
C170.76989 (11)0.4242 (2)0.34818 (11)0.0507 (6)
C180.83316 (12)0.3082 (2)0.37949 (12)0.0567 (6)
C190.90254 (12)0.2777 (3)0.33665 (14)0.0625 (7)
C200.90972 (13)0.3622 (3)0.26225 (14)0.0626 (7)
C210.84950 (14)0.4801 (3)0.23015 (14)0.0701 (8)
C220.78026 (13)0.5105 (3)0.27385 (13)0.0647 (7)
H20.532000.196400.670500.0960*
H2N0.572900.474000.466100.0640*
H30.533700.387500.786400.1330*
H40.642400.584100.816400.1450*
H50.753500.592200.739000.1130*
H80.879000.515300.622400.1260*
H90.950700.390300.518400.1640*
H100.893500.165600.435600.1570*
H110.762100.061100.450700.1060*
H13A0.622300.013800.478600.0780*
H13B0.554500.055900.540600.0780*
H14A0.692500.178100.576100.0630*
H14B0.628100.130700.641200.0630*
H160.658400.548300.372900.0660*
H180.828400.250800.430000.0680*
H190.944400.200000.358100.0750*
H210.855200.538200.180000.0840*
H220.739500.591100.252800.0780*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0802 (4)0.0860 (4)0.1213 (6)0.0009 (3)0.0377 (4)0.0096 (4)
O10.0627 (8)0.0490 (7)0.0762 (9)0.0175 (6)0.0092 (7)0.0065 (6)
N10.0572 (9)0.0354 (7)0.0690 (10)0.0128 (6)0.0100 (7)0.0014 (7)
N20.0576 (9)0.0383 (7)0.0638 (10)0.0184 (7)0.0009 (7)0.0023 (7)
N30.0525 (8)0.0393 (7)0.0605 (9)0.0101 (6)0.0020 (7)0.0047 (7)
C10.0650 (12)0.0325 (8)0.0620 (11)0.0028 (8)0.0089 (9)0.0074 (8)
C20.0819 (16)0.0551 (12)0.1050 (19)0.0077 (11)0.0151 (14)0.0141 (13)
C30.157 (3)0.0816 (19)0.101 (2)0.041 (2)0.055 (2)0.0206 (17)
C40.221 (4)0.0656 (17)0.074 (2)0.013 (2)0.010 (2)0.0023 (15)
C50.160 (3)0.0472 (12)0.0692 (16)0.0157 (15)0.0327 (17)0.0001 (11)
C60.0858 (14)0.0358 (9)0.0567 (11)0.0128 (9)0.0216 (10)0.0100 (8)
C70.0677 (12)0.0478 (10)0.0745 (14)0.0214 (9)0.0224 (11)0.0250 (10)
C80.0827 (18)0.093 (2)0.133 (3)0.0414 (16)0.0290 (17)0.0530 (19)
C90.0716 (19)0.149 (3)0.191 (4)0.016 (2)0.029 (2)0.094 (3)
C100.115 (3)0.137 (3)0.147 (3)0.019 (2)0.055 (2)0.062 (3)
C110.101 (2)0.0791 (16)0.0881 (18)0.0100 (15)0.0215 (15)0.0222 (14)
C120.0640 (12)0.0444 (9)0.0637 (12)0.0037 (9)0.0031 (9)0.0148 (9)
C130.0723 (13)0.0375 (9)0.0786 (13)0.0143 (9)0.0275 (10)0.0013 (9)
C140.0569 (10)0.0389 (8)0.0584 (11)0.0108 (8)0.0099 (8)0.0005 (8)
C150.0580 (11)0.0334 (8)0.0575 (11)0.0100 (8)0.0050 (8)0.0058 (8)
C160.0560 (11)0.0377 (9)0.0682 (12)0.0101 (8)0.0073 (9)0.0006 (8)
C170.0524 (10)0.0370 (8)0.0609 (11)0.0019 (7)0.0073 (8)0.0011 (8)
C180.0584 (11)0.0493 (10)0.0611 (11)0.0056 (9)0.0033 (9)0.0079 (9)
C190.0538 (11)0.0509 (10)0.0811 (14)0.0078 (9)0.0043 (10)0.0045 (10)
C200.0579 (11)0.0515 (10)0.0783 (14)0.0090 (9)0.0054 (10)0.0043 (10)
C210.0703 (13)0.0644 (13)0.0750 (14)0.0045 (11)0.0019 (11)0.0212 (11)
C220.0606 (12)0.0534 (11)0.0781 (14)0.0052 (9)0.0060 (10)0.0178 (10)
Geometric parameters (Å, º) top
Cl1—C201.733 (2)C16—C171.453 (3)
O1—C151.229 (2)C17—C221.384 (3)
N1—C11.384 (2)C17—C181.394 (2)
N1—C121.373 (3)C18—C191.374 (3)
N1—C131.446 (2)C19—C201.370 (3)
N2—N31.373 (2)C20—C211.374 (3)
N2—C151.345 (2)C21—C221.380 (3)
N3—C161.274 (2)C2—H20.9300
C1—C21.376 (3)C3—H30.9300
C1—C61.408 (3)C4—H40.9300
C2—C31.404 (4)C5—H50.9300
N2—H2N0.8100C8—H80.9300
C3—C41.385 (5)C9—H90.9300
C4—C51.336 (5)C10—H100.9300
C5—C61.389 (3)C11—H110.9300
C6—C71.427 (3)C13—H13A0.9700
C7—C121.405 (3)C13—H13B0.9700
C7—C81.406 (4)C14—H14A0.9700
C8—C91.377 (5)C14—H14B0.9700
C9—C101.377 (6)C16—H160.9300
C10—C111.342 (6)C18—H180.9300
C11—C121.380 (3)C19—H190.9300
C13—C141.521 (2)C21—H210.9300
C14—C151.504 (2)C22—H220.9300
C1—N1—C12109.24 (15)C19—C20—C21121.2 (2)
C1—N1—C13124.70 (16)C20—C21—C22118.7 (2)
C12—N1—C13125.17 (16)C17—C22—C21121.73 (19)
N3—N2—C15121.05 (14)C1—C2—H2122.00
N2—N3—C16116.50 (14)C3—C2—H2122.00
N1—C1—C2129.57 (18)C2—C3—H3119.00
N1—C1—C6108.41 (16)C4—C3—H3119.00
C2—C1—C6121.98 (18)C3—C4—H4119.00
C1—C2—C3116.4 (2)C5—C4—H4119.00
N3—N2—H2N120.00C4—C5—H5120.00
C15—N2—H2N119.00C6—C5—H5120.00
C2—C3—C4121.4 (3)C7—C8—H8121.00
C3—C4—C5121.4 (3)C9—C8—H8121.00
C4—C5—C6119.7 (3)C8—C9—H9119.00
C5—C6—C7134.3 (2)C10—C9—H9119.00
C1—C6—C7106.58 (16)C9—C10—H10119.00
C1—C6—C5119.1 (2)C11—C10—H10119.00
C6—C7—C8135.1 (2)C10—C11—H11121.00
C6—C7—C12107.36 (18)C12—C11—H11121.00
C8—C7—C12117.5 (2)N1—C13—H13A109.00
C7—C8—C9118.3 (3)N1—C13—H13B109.00
C8—C9—C10121.8 (3)C14—C13—H13A109.00
C9—C10—C11121.6 (4)C14—C13—H13B109.00
C10—C11—C12117.9 (3)H13A—C13—H13B108.00
N1—C12—C7108.37 (17)C13—C14—H14A110.00
N1—C12—C11128.76 (19)C13—C14—H14B110.00
C7—C12—C11122.9 (2)C15—C14—H14A110.00
N1—C13—C14112.84 (16)C15—C14—H14B110.00
C13—C14—C15110.00 (15)H14A—C14—H14B108.00
N2—C15—C14118.09 (16)N3—C16—H16120.00
O1—C15—C14121.57 (16)C17—C16—H16120.00
O1—C15—N2120.28 (16)C17—C18—H18120.00
N3—C16—C17120.91 (15)C19—C18—H18120.00
C18—C17—C22117.87 (17)C18—C19—H19120.00
C16—C17—C18122.40 (16)C20—C19—H19120.00
C16—C17—C22119.72 (16)C20—C21—H21121.00
C17—C18—C19120.82 (18)C22—C21—H21121.00
C18—C19—C20119.68 (19)C17—C22—H22119.00
Cl1—C20—C21119.48 (17)C21—C22—H22119.00
Cl1—C20—C19119.30 (16)
C1—N1—C12—C72.1 (2)C5—C6—C7—C80.5 (4)
C12—N1—C1—C2175.4 (2)C6—C7—C12—N11.2 (2)
C13—N1—C1—C25.7 (3)C6—C7—C12—C11178.4 (2)
C12—N1—C1—C62.3 (2)C6—C7—C8—C9177.5 (3)
C13—N1—C1—C6171.93 (16)C12—C7—C8—C90.2 (4)
C12—N1—C13—C1484.8 (2)C8—C7—C12—N1179.5 (2)
C1—N1—C13—C1483.2 (2)C8—C7—C12—C110.1 (3)
C13—N1—C12—C7171.72 (17)C7—C8—C9—C100.1 (6)
C1—N1—C12—C11177.4 (2)C8—C9—C10—C110.8 (7)
C13—N1—C12—C117.8 (3)C9—C10—C11—C121.1 (6)
C15—N2—N3—C16178.89 (16)C10—C11—C12—C70.7 (4)
N3—N2—C15—C140.5 (2)C10—C11—C12—N1178.7 (3)
N3—N2—C15—O1176.58 (16)N1—C13—C14—C15177.03 (16)
N2—N3—C16—C17178.32 (15)C13—C14—C15—O188.0 (2)
N1—C1—C6—C5179.18 (18)C13—C14—C15—N289.05 (19)
N1—C1—C6—C71.5 (2)N3—C16—C17—C1811.7 (3)
C6—C1—C2—C30.1 (3)N3—C16—C17—C22167.34 (18)
N1—C1—C2—C3177.3 (2)C16—C17—C18—C19177.55 (17)
C2—C1—C6—C7176.36 (19)C22—C17—C18—C191.5 (3)
C2—C1—C6—C51.3 (3)C16—C17—C22—C21177.23 (19)
C1—C2—C3—C41.5 (4)C18—C17—C22—C211.9 (3)
C2—C3—C4—C51.5 (5)C17—C18—C19—C200.0 (3)
C3—C4—C5—C60.0 (5)C18—C19—C20—Cl1178.96 (16)
C4—C5—C6—C7175.5 (3)C18—C19—C20—C211.3 (3)
C4—C5—C6—C11.4 (4)Cl1—C20—C21—C22179.29 (17)
C5—C6—C7—C12177.4 (2)C19—C20—C21—C221.0 (3)
C1—C6—C7—C120.2 (2)C20—C21—C22—C170.7 (3)
C1—C6—C7—C8177.6 (3)
Hydrogen-bond geometry (Å, º) top
Cg2, Cg3 and Cg4 are the centroids of the two benzene rings (C1–C6 and C7–C12) of the carbazole ring system and the chlorophenyl ring (C17–C22), respectively.
D—H···AD—HH···AD···AD—H···A
N2—H2N···O1i0.812.082.8952 (19)175
C14—H14A···N30.972.422.765 (2)100
C5—H5···Cg4ii0.932.813.696 (3)160
C21—H21···Cg3iii0.932.973.858 (3)160
C22—H22···Cg2iii0.932.793.699 (2)166
Symmetry codes: (i) x+1, y1, z+1; (ii) x, y+1/2, z+1/2; (iii) x, y1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
Cg2, Cg3 and Cg4 are the centroids of the two benzene rings (C1–C6 and C7–C12) of the carbazole ring system and the chlorophenyl ring (C17–C22), respectively.
D—H···AD—HH···AD···AD—H···A
N2—H2N···O1i0.812.082.8952 (19)175
C5—H5···Cg4ii0.932.813.696 (3)160
C21—H21···Cg3iii0.932.973.858 (3)160
C22—H22···Cg2iii0.932.793.699 (2)166
Symmetry codes: (i) x+1, y1, z+1; (ii) x, y+1/2, z+1/2; (iii) x, y1/2, z1/2.
 

Acknowledgements

JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChowdhury, D. N., Basak, S. K. & Das, B. P. (1978). Curr. Sci. 47, 490–491.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHaider, N., Jbara, R., Khadami, F. & Wanko, R. (1998). Heterocycles, 48, 1609–1622.  CrossRef CAS Google Scholar
First citationHewlins, M. J. E., Oliveira-Campos, A. & Shannon, P. V. R. (1984). Synthesis, pp. 289–302.  CrossRef Google Scholar
First citationHirata, K., Ito, C., Furukawa, H., Itoigawa, M., Cosentino, L. M. & Lee, K. H. (1999). Bioorg. Med. Chem. Lett. 9, 119–122.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKansal, V. K. & Potier, P. (1986). Tetrahedron, 42, 2389–2408.  CrossRef CAS Web of Science Google Scholar
First citationKnölker, H. J. & Reddy, K. R. (2002). Chem. Rev. 102, 4303–4428.  Web of Science PubMed Google Scholar
First citationMartin, A. E. & Prasad, K. J. R. (2006). Acta Pharm. 56, 79–86.  PubMed CAS Google Scholar
First citationPindur, U. (1990). Chimia, 44, 406–412.  CAS Google Scholar
First citationSakano, K., Ishimaru, K. & Nakamura, S. (1980). J. Antibiot. 33, 683–689.  CrossRef CAS PubMed Google Scholar
First citationSaturnino, C., Buonerba, M., Boatto, G., Pascale, M., Moltedo, O., de Napoli, L., Montesarchio, D., Lancelot, J. C. & de Caprariis, P. (2003). Chem. Pharm. Bull. 51, 971–974.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds