organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of the bora­benzene–2,6-lutidine adduct

aDepartment of Chemistry, University of Jyväskylä, PO Box 35, FI-40014 Jyväskylä, Finland
*Correspondence e-mail: matti.o.haukka@jyu.fi

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 18 October 2015; accepted 30 October 2015; online 14 November 2015)

In the title compound, C12H14BN, the complete mol­ecule is generated by a crystallographic twofold axis, with two C atoms, the B atom and the N atom lying on the rotation axis. The dihedral angle between the bora­benzene and pyridine rings is 81.20 (6)°. As well as dative electron donation from the N atom to the B atom [B—N = 1.5659 (18) Å], the methyl substituents on the lutidine ring shield the B atom, which further stabilizes the mol­ecule. In the crystal, weak aromatic ππ stacking between the pyridine rings [centroid–centroid separation = 3.6268 (9) Å] is observed, which generates [001] columns of mol­ecules.

1. Related literature

For the synthesis of the title compound, see: Hoic et al. (1996[Hoic, D. A., Wolf, J. R., Davis, W. M. & Fu, G. C. (1996). Organometallics, 15, 1315-1318.]). For a related structure, see: Boese et al. (1985[Boese, R., Finke, N., Henkelmann, J., Maier, G., Paetzold, P., Reisenauer, H. P. & Schmid, G. (1985). Chem. Ber. 118, 1644-1654.]). For bora­benzene adducts as analogues of cyclo­penta­dienyl anions (Cp), see: Bazan et al. (2000[Bazan, G. C., Cotter, W. D., Komon, Z. J. A., Lee, R. A. & Lachicotte, R. J. (2000). J. Am. Chem. Soc. 122, 1371-1380.]); Wang et al. (2002[Wang, X., Zheng, X. & Herberich, G. E. (2002). Eur. J. Inorg. Chem. 2002, 31-41.]); Cui et al. (2010[Cui, P., Chen, Y., Zhang, Q., Li, G. & Xia, W. (2010). J. Organomet. Chem. 695, 2713-2719.]). For the uses of bora­benzenes and their metal complexes, see: Wang et al. (2002[Wang, X., Zheng, X. & Herberich, G. E. (2002). Eur. J. Inorg. Chem. 2002, 31-41.]; Jaska et al. (2006[Jaska, C. A., Emslie, D. J. H., Bosdet, M. J. D., Piers, W. E., Sorensen, T. S. & Parvez, M. (2006). J. Am. Chem. Soc. 128, 10885-10896.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C12H14BN

  • Mr = 183.05

  • Monoclinic, C 2/c

  • a = 10.008 (2) Å

  • b = 14.447 (3) Å

  • c = 7.1360 (14) Å

  • β = 90.16 (3)°

  • V = 1031.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 120 K

  • 0.24 × 0.18 × 0.16 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2012[Bruker (2012). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.646, Tmax = 0.746

  • 7258 measured reflections

  • 1482 independent reflections

  • 1280 reflections with I > 2σ(I)

  • Rint = 0.028

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.120

  • S = 1.06

  • 1482 reflections

  • 67 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: COLLECT (Bruker, 2008[Bruker (2008). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: CHIMERA (Pettersen et al., 2004[Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C. & Ferrin, T. E. (2004). J. Comput. Chem. 25, 1605-1612.]); software used to prepare material for publication: SHELXL2014.

Supporting information


Structural commentary top

The title compound lies on a two-fold rotational axis, which passes through atoms H3, C3, B1, N1, C6, and H6.

Bora­benzene-2,6-lutidine is an example of nitro­gen-stabilized bora­benzene adducts. The nitro­gen atom of the base (2,5-lutidine) donates an electron pair to the boron atom, and thus stabilizes the bora­benzene ring. Bora­benzene-2,6-lutidine has a zwitterionic nature. The nitro­gen ring bears a positive charge, and the boron ring a negative charge.

Bora­benzenes are analogous to cyclo­penta­dienyl anions (Cp), althought they are generally weaker electron donors than Cp (Bazan et al., 2000; Wang et al., 2002 and Cui et al., 2010). Bora­benzene rings can thus be used as a replacement for Cp when weaker electron donation properties are required. There is a growing inter­est to utilize bora­benzenes and their metal complexes in several applications including catalytic and semiconducting materials as well as light-emitting devices (Wang et al., 2002 and Jaska et al., 2006).

Synthesis and crystallization top

The compound was synthesized according to the previously reported procedure (Hoic et al. 1996). X-ray quality crystals were obtained by using the following procedure: In a glove box, bora­benzene-2,6-lutidine was dissolved in pure toluene at room temperature until a saturated solution was obtained. The clear solution was separated and and the solution was allowed to evaporate slowly. Formed crystals were collected from the solution after one week and were immediately taken to an X-ray diffraction analysis. In order to protect the crystals from air and moisture, the crystals were immersed to cryo oil before taking them out from the glove box.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. Hydrogen atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.95-0.98 Å and Uiso = 1.2-1.5 Ueq(parent atom). The highest peak is located 0.69 Å from atom C5 and the deepest hole is located 0.67 Å from atom N1.

Related literature top

For the synthesis of the title compound, see: Hoic et al. (1996). For a related structure, see: Boese et al. (1985). For borabenzene adducts as analogues of cyclopentadienyl anions (Cp), see: Bazan et al. (2000); Wang et al. (2002); Cui et al. (2010). For the uses of borabenzenes and their metal complexes, see: Wang et al. (2002; Jaska et al. (2006).

Structure description top

The title compound lies on a two-fold rotational axis, which passes through atoms H3, C3, B1, N1, C6, and H6.

Bora­benzene-2,6-lutidine is an example of nitro­gen-stabilized bora­benzene adducts. The nitro­gen atom of the base (2,5-lutidine) donates an electron pair to the boron atom, and thus stabilizes the bora­benzene ring. Bora­benzene-2,6-lutidine has a zwitterionic nature. The nitro­gen ring bears a positive charge, and the boron ring a negative charge.

Bora­benzenes are analogous to cyclo­penta­dienyl anions (Cp), althought they are generally weaker electron donors than Cp (Bazan et al., 2000; Wang et al., 2002 and Cui et al., 2010). Bora­benzene rings can thus be used as a replacement for Cp when weaker electron donation properties are required. There is a growing inter­est to utilize bora­benzenes and their metal complexes in several applications including catalytic and semiconducting materials as well as light-emitting devices (Wang et al., 2002 and Jaska et al., 2006).

For the synthesis of the title compound, see: Hoic et al. (1996). For a related structure, see: Boese et al. (1985). For borabenzene adducts as analogues of cyclopentadienyl anions (Cp), see: Bazan et al. (2000); Wang et al. (2002); Cui et al. (2010). For the uses of borabenzenes and their metal complexes, see: Wang et al. (2002; Jaska et al. (2006).

Synthesis and crystallization top

The compound was synthesized according to the previously reported procedure (Hoic et al. 1996). X-ray quality crystals were obtained by using the following procedure: In a glove box, bora­benzene-2,6-lutidine was dissolved in pure toluene at room temperature until a saturated solution was obtained. The clear solution was separated and and the solution was allowed to evaporate slowly. Formed crystals were collected from the solution after one week and were immediately taken to an X-ray diffraction analysis. In order to protect the crystals from air and moisture, the crystals were immersed to cryo oil before taking them out from the glove box.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 1. Hydrogen atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.95-0.98 Å and Uiso = 1.2-1.5 Ueq(parent atom). The highest peak is located 0.69 Å from atom C5 and the deepest hole is located 0.67 Å from atom N1.

Computing details top

Data collection: COLLECT (Bruker, 2008); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: CHIMERA (Pettersen et al., 2004); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms.
Borabenzene–2,6-lutidine top
Crystal data top
C12H14BNF(000) = 392
Mr = 183.05Dx = 1.178 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 10.008 (2) ÅCell parameters from 10098 reflections
b = 14.447 (3) Åθ = 1.0–28.7°
c = 7.1360 (14) ŵ = 0.07 mm1
β = 90.16 (3)°T = 120 K
V = 1031.8 (4) Å3Needle, yellow
Z = 40.24 × 0.18 × 0.16 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1482 independent reflections
Radiation source: fine-focus sealed tube1280 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.028
Detector resolution: 16 pixels mm-1θmax = 30.0°, θmin = 4.0°
φ scans and ω scans with κ offseth = 1414
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
k = 1620
Tmin = 0.646, Tmax = 0.746l = 99
7258 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0555P)2 + 0.6142P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1482 reflectionsΔρmax = 0.30 e Å3
67 parametersΔρmin = 0.17 e Å3
Crystal data top
C12H14BNV = 1031.8 (4) Å3
Mr = 183.05Z = 4
Monoclinic, C2/cMo Kα radiation
a = 10.008 (2) ŵ = 0.07 mm1
b = 14.447 (3) ÅT = 120 K
c = 7.1360 (14) Å0.24 × 0.18 × 0.16 mm
β = 90.16 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1482 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
1280 reflections with I > 2σ(I)
Tmin = 0.646, Tmax = 0.746Rint = 0.028
7258 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.06Δρmax = 0.30 e Å3
1482 reflectionsΔρmin = 0.17 e Å3
67 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.50000.38254 (7)0.75000.0182 (2)
C10.43941 (9)0.22210 (7)0.59114 (13)0.0229 (2)
H10.39930.25340.48830.028*
C20.44362 (10)0.12556 (7)0.59879 (14)0.0246 (2)
H20.40690.09100.49770.030*
C30.50000.07806 (9)0.75000.0254 (3)
H30.50000.01230.75000.031*
C40.38816 (9)0.42921 (7)0.80474 (12)0.0197 (2)
C50.38693 (9)0.52523 (7)0.80370 (13)0.0225 (2)
H50.30860.55780.83980.027*
C60.50000.57352 (9)0.75000.0241 (3)
H60.50000.63930.75000.029*
C70.26941 (10)0.37460 (7)0.86747 (15)0.0258 (2)
H7A0.29570.33320.96990.039*
H7B0.23510.33790.76240.039*
H7C0.19960.41690.91120.039*
B10.50000.27415 (10)0.75000.0195 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0180 (5)0.0187 (5)0.0179 (5)0.0000.0021 (4)0.000
C10.0222 (4)0.0228 (5)0.0239 (5)0.0022 (3)0.0018 (3)0.0003 (3)
C20.0222 (4)0.0235 (5)0.0282 (5)0.0047 (3)0.0024 (4)0.0045 (4)
C30.0230 (6)0.0179 (6)0.0355 (7)0.0000.0068 (5)0.000
C40.0183 (4)0.0224 (4)0.0183 (4)0.0011 (3)0.0013 (3)0.0003 (3)
C50.0237 (5)0.0221 (5)0.0218 (5)0.0042 (3)0.0006 (3)0.0004 (3)
C60.0309 (7)0.0193 (6)0.0220 (6)0.0000.0004 (5)0.000
C70.0195 (4)0.0268 (5)0.0312 (5)0.0010 (3)0.0025 (4)0.0003 (4)
B10.0177 (6)0.0177 (6)0.0230 (6)0.0000.0002 (5)0.000
Geometric parameters (Å, º) top
N1—C4i1.3647 (11)C4—C51.3874 (13)
N1—C41.3647 (11)C4—C71.4961 (13)
N1—B11.5659 (18)C5—C61.3843 (12)
C1—C21.3964 (14)C5—H50.9500
C1—B11.4881 (12)C6—C5i1.3843 (12)
C1—H10.9500C6—H60.9500
C2—C31.3965 (13)C7—H7A0.9800
C2—H20.9500C7—H7B0.9800
C3—C2i1.3966 (13)C7—H7C0.9800
C3—H30.9500B1—C1i1.4881 (12)
C4i—N1—C4120.78 (11)C6—C5—C4119.88 (9)
C4i—N1—B1119.61 (6)C6—C5—H5120.1
C4—N1—B1119.61 (6)C4—C5—H5120.1
C2—C1—B1117.56 (9)C5i—C6—C5119.48 (13)
C2—C1—H1121.2C5i—C6—H6120.3
B1—C1—H1121.2C5—C6—H6120.3
C1—C2—C3122.22 (9)C4—C7—H7A109.5
C1—C2—H2118.9C4—C7—H7B109.5
C3—C2—H2118.9H7A—C7—H7B109.5
C2—C3—C2i121.13 (13)C4—C7—H7C109.5
C2—C3—H3119.4H7A—C7—H7C109.5
C2i—C3—H3119.4H7B—C7—H7C109.5
N1—C4—C5119.99 (9)C1—B1—C1i119.30 (12)
N1—C4—C7118.55 (9)C1—B1—N1120.35 (6)
C5—C4—C7121.46 (8)C1i—B1—N1120.35 (6)
B1—C1—C2—C31.10 (12)C4—C5—C6—C5i0.52 (6)
C1—C2—C3—C2i0.59 (7)C2—C1—B1—C1i0.53 (6)
C4i—N1—C4—C50.52 (6)C2—C1—B1—N1179.47 (6)
B1—N1—C4—C5179.47 (6)C4i—N1—B1—C198.80 (6)
C4i—N1—C4—C7178.65 (9)C4—N1—B1—C181.20 (6)
B1—N1—C4—C71.35 (9)C4i—N1—B1—C1i81.20 (6)
N1—C4—C5—C61.05 (12)C4—N1—B1—C1i98.80 (6)
C7—C4—C5—C6178.10 (7)
Symmetry code: (i) x+1, y, z+3/2.

Experimental details

Crystal data
Chemical formulaC12H14BN
Mr183.05
Crystal system, space groupMonoclinic, C2/c
Temperature (K)120
a, b, c (Å)10.008 (2), 14.447 (3), 7.1360 (14)
β (°) 90.16 (3)
V3)1031.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.24 × 0.18 × 0.16
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2012)
Tmin, Tmax0.646, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
7258, 1482, 1280
Rint0.028
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.120, 1.06
No. of reflections1482
No. of parameters67
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.17

Computer programs: COLLECT (Bruker, 2008), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SUPERFLIP (Palatinus & Chapuis, 2007), SHELXL2014 (Sheldrick, 2015), CHIMERA (Pettersen et al., 2004).

 

References

First citationBazan, G. C., Cotter, W. D., Komon, Z. J. A., Lee, R. A. & Lachicotte, R. J. (2000). J. Am. Chem. Soc. 122, 1371–1380.  Web of Science CSD CrossRef CAS Google Scholar
First citationBoese, R., Finke, N., Henkelmann, J., Maier, G., Paetzold, P., Reisenauer, H. P. & Schmid, G. (1985). Chem. Ber. 118, 1644–1654.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2012). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCui, P., Chen, Y., Zhang, Q., Li, G. & Xia, W. (2010). J. Organomet. Chem. 695, 2713–2719.  Web of Science CrossRef CAS Google Scholar
First citationHoic, D. A., Wolf, J. R., Davis, W. M. & Fu, G. C. (1996). Organometallics, 15, 1315–1318.  CSD CrossRef CAS Web of Science Google Scholar
First citationJaska, C. A., Emslie, D. J. H., Bosdet, M. J. D., Piers, W. E., Sorensen, T. S. & Parvez, M. (2006). J. Am. Chem. Soc. 128, 10885–10896.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C. & Ferrin, T. E. (2004). J. Comput. Chem. 25, 1605–1612.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, X., Zheng, X. & Herberich, G. E. (2002). Eur. J. Inorg. Chem. 2002, 31–41.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds