organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of {[2-hy­dr­oxy-2-(3-meth­­oxy­phen­yl)cyclo­hex­yl]meth­yl}di­methyl­ammonium benzoate

aDepartment of Chemistry, GSSS Institute of Engineering Technology for Women, Mysuru 570 016, India, bDepartment of Chemistry, BET Academy of Higher Education, Bharathi College, Bharthi Nagara, Mandya 571 422, India, cDepartment of Engineering Chemistry, Cauvery Institute of Technology, Mandya 571 402, India, dDepartment of Chemistry, Cambridge institute of Technology, Bengaluru 560 036, India, eDepartment of Materials Science, Mangalagangotri, Mangalore University, Mangaluru 574 199, India, fDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysore, 570 006, India, and gPURSE Lab, Mangalagangotri, Mangalore University, Mangaluru 574 199, India
*Correspondence e-mail: madan.mx@gmail.com

Edited by J. Simpson, University of Otago, New Zealand (Received 1 October 2015; accepted 13 October 2015; online 17 October 2015)

The title compound, C16H26NO2+·C7H5O2, is a benzoate salt of the painkiller Tramadol. The six-membered cyclo­hexane ring of the cation adopts a slightly distorted chair conformation and carries OH and 3-meth­oxy­phenyl substituents at the 2-position and a protonated methyl­aza­niumylmethyl group at the 3-position. In addition, a weak intra­molecular C—H⋯O hydrogen bond is observed in the cation. In the crystal, weak O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds link the components into chains along [010]. A C—H⋯π contact is also observed.

1. Related literature

For pharmaceutical applications of Tramadol and related analgesics, see: Scott & Perry (2000[Scott, L. J. & Perry, C. M. (2000). Drugs, 60, 139-176.]). For related structures, see: Tessler & Goldberg (2004[Tessler, L. & Goldberg, I. (2004). Acta Cryst. E60, o1868-o1869.]); Arman et al. (2010[Arman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2813.]); Hemamalini & Fun (2010[Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o479-o480.]); Siddaraju et al. (2011[Siddaraju, B. P., Jasinski, J. P., Golen, J. A., Yathirajan, H. S. & Raju, C. R. (2011). Acta Cryst. E67, o2351.]); Lin & Zhang (2013[Lin, H. & Zhang, Y.-P. (2013). Acta Cryst. E69, o77.]); Smith (2014[Smith, G. (2014). Acta Cryst. C70, 315-319.]); Jasinski et al. (2015[Jasinski, J. P., Mohamed, S. K., Akkurt, M., Abdelhamid, A. A. & Albayati, M. R. (2015). Acta Cryst. E71, o77-o78.]); Sun et al. (2012[Sun, Z.-Q., Ding, Z.-Y. & Shao, Z.-Y. (2012). Acta Cryst. E68, o3029.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C16H26NO2+·C7H5O2

  • Mr = 385.49

  • Triclinic, [P \overline 1]

  • a = 9.013 (4) Å

  • b = 9.767 (4) Å

  • c = 12.726 (6) Å

  • α = 75.008 (16)°

  • β = 89.79 (2)°

  • γ = 76.493 (16)°

  • V = 1050.3 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.55 × 0.51 × 0.3 mm

2.2. Data collection

  • Rigaku Saturn724+ diffractometer

  • Absorption correction: multi-scan (NUMABS; Rigaku 1999[Rigaku. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.955, Tmax = 0.975

  • 11931 measured reflections

  • 5660 independent reflections

  • 3504 reflections with I > 2σ(I)

  • Rint = 0.029

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.134

  • S = 1.03

  • 5660 reflections

  • 257 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O10 0.93 2.42 2.775 (2) 102
C14—H14B⋯O28i 0.97 2.41 3.251 (2) 144
N17—H17⋯O28i 0.98 1.65 2.6120 (18) 165
O10—H10⋯O27ii 0.82 1.94 2.7269 (17) 161
C23—H23⋯Cg1iii 0.93 2.83 3.684 (3) 153
Symmetry codes: (i) x+1, y, z; (ii) x+1, y-1, z; (iii) x, y+1, z.

Data collection: CrystalClear SM Expert (Rigaku, 2011[Rigaku (2011). CrystalClear SM Expert. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear SM Expert; data reduction: CrystalClear SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

2-((dimethylamino)methyl)-1-(3-methoxyphenyl)cyclohexanol hydrochloride (Tramadol) is used in the treatment of disorders of the central nervous system and in treating extreme pain. This molecule is analogous to the phenanthrene alkaloid codeine and is used in the control of pre-operative pain (Scott & Perry, 2000).

There are number of crystal structures reported available related to this salt. These include Venlafaxine [(RS)-1-[2-dimethylamino-1-(4-methoxyphenyl)-ethyl]- cyclohexanol] (Tessler & Goldberg, 2004), benzoic acid-2-{(E)-[(E)-2-(2-pyridylmethylidene) hydrazin-1-ylidene]methyl}pyridine (2/1) (Arman et al., 2010), 2,3-diaminopyridinium benzoate benzoic acid solvate (Hemamalini & Fun, 2010), Tramadol hydrochloride-benzoic acid (1/1) (Siddaraju et al., 2011), 4-(cyclo-propane-carboxamido) benzoic acid (Sun et al., 2012), 3,5-bis[(pyridin-4-yl)meth-oxy]benzoic acid (Lin & Zhang, 2013). The hydrogen-bonded two- and three-dimensional polymeric structures of the ammonium salts of 3,5-di-nitro-benzoic acid, 4-nitro-benzoic acid and 2,4-di-chloro-benzoic acid (Smith, 2014) and 4-[1-(2-hydroxypropyl)-4,5-diphenyl-1H-imidazol-2-yl]benzoic acid (Jasinski et al., 2015) have also been reported. In the view of the importance of Tramadol, we report herein the crystal structure of the title compound 2-hydroxy-2-(3-methoxy-phenyl)-cyclohexylmethyl-dimethyl-ammonium benzoate.

In the title molecule (Fig. 1), the six membered cyclohexane ring (C9/C11–C15) adopts a slightly distorted chair conformation with ring puckering parameters Q, θ and φ of 0.5605 (16) Å, 5.06 (16)°, and 210.3 (6)°, respectively. An intramolecular C6—H6···O10 hydrogen bond (Fig 1, Table 1) is found in the cation. Bond lengths are within normal ranges.

The crystal structure is stabilized with weak intermolecular O—H···O, N—H···O and C—H···O hydrogen bonds and a weak intermolecular C23—H23···Cg1 interaction is also observed Table 1, Fig. 2.

Related literature top

For pharmaceutical applications of Tramadol and related analgesics, see: Scott & Perry (2000). For related structures, see: Tessler & Goldberg (2004); Arman et al. (2010); Hemamalini & Fun (2010); Siddaraju et al. (2011); Lin & Zhang (2013); Smith (2014); Jasinski et al. (2015); Sun et al. (2012).

Experimental top

Tramadol (3 g, 0.01 mol) and benzoic acid (1 g, 0.01 mol) were each dissolved in 10 ml of ethanol. The solutions were mixed and stirred in a beaker at 333 K for 30 minutes. The mixture was kept aside for three days at room temperature. Colourless X-ray quality crystals were formed and one was used for the data collection

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. The hydrogen atoms were fixed geometrically (C—H = 0.93–0.96 Å, N—H = 0.98 Å) and allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq(C/N).

Structure description top

2-((dimethylamino)methyl)-1-(3-methoxyphenyl)cyclohexanol hydrochloride (Tramadol) is used in the treatment of disorders of the central nervous system and in treating extreme pain. This molecule is analogous to the phenanthrene alkaloid codeine and is used in the control of pre-operative pain (Scott & Perry, 2000).

There are number of crystal structures reported available related to this salt. These include Venlafaxine [(RS)-1-[2-dimethylamino-1-(4-methoxyphenyl)-ethyl]- cyclohexanol] (Tessler & Goldberg, 2004), benzoic acid-2-{(E)-[(E)-2-(2-pyridylmethylidene) hydrazin-1-ylidene]methyl}pyridine (2/1) (Arman et al., 2010), 2,3-diaminopyridinium benzoate benzoic acid solvate (Hemamalini & Fun, 2010), Tramadol hydrochloride-benzoic acid (1/1) (Siddaraju et al., 2011), 4-(cyclo-propane-carboxamido) benzoic acid (Sun et al., 2012), 3,5-bis[(pyridin-4-yl)meth-oxy]benzoic acid (Lin & Zhang, 2013). The hydrogen-bonded two- and three-dimensional polymeric structures of the ammonium salts of 3,5-di-nitro-benzoic acid, 4-nitro-benzoic acid and 2,4-di-chloro-benzoic acid (Smith, 2014) and 4-[1-(2-hydroxypropyl)-4,5-diphenyl-1H-imidazol-2-yl]benzoic acid (Jasinski et al., 2015) have also been reported. In the view of the importance of Tramadol, we report herein the crystal structure of the title compound 2-hydroxy-2-(3-methoxy-phenyl)-cyclohexylmethyl-dimethyl-ammonium benzoate.

In the title molecule (Fig. 1), the six membered cyclohexane ring (C9/C11–C15) adopts a slightly distorted chair conformation with ring puckering parameters Q, θ and φ of 0.5605 (16) Å, 5.06 (16)°, and 210.3 (6)°, respectively. An intramolecular C6—H6···O10 hydrogen bond (Fig 1, Table 1) is found in the cation. Bond lengths are within normal ranges.

The crystal structure is stabilized with weak intermolecular O—H···O, N—H···O and C—H···O hydrogen bonds and a weak intermolecular C23—H23···Cg1 interaction is also observed Table 1, Fig. 2.

For pharmaceutical applications of Tramadol and related analgesics, see: Scott & Perry (2000). For related structures, see: Tessler & Goldberg (2004); Arman et al. (2010); Hemamalini & Fun (2010); Siddaraju et al. (2011); Lin & Zhang (2013); Smith (2014); Jasinski et al. (2015); Sun et al. (2012).

Computing details top

Data collection: CrystalClear SM Expert (Rigaku, 2011); cell refinement: CrystalClear SM Expert (Rigaku, 2011); data reduction: CrystalClear SM Expert (Rigaku, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. A view of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level and an intramolecular hydrogen bond is drawn as a dashed line.
[Figure 2] Fig. 2. A viewed along the a axis of the crystal packing of the title compound. Hydrogen bonds are drawn as a dashed lines.
{[2-Hydroxy-2-(3-methoxyphenyl)cyclohexyl]methyl}dimethylammonium benzoate top
Crystal data top
C16H26NO2+·C7H5O2Z = 2
Mr = 385.49F(000) = 416
Triclinic, P1Dx = 1.219 Mg m3
a = 9.013 (4) ÅMo Kα radiation, λ = 0.71075 Å
b = 9.767 (4) ÅCell parameters from 5660 reflections
c = 12.726 (6) Åθ = 3.0–29.5°
α = 75.008 (16)°µ = 0.08 mm1
β = 89.79 (2)°T = 293 K
γ = 76.493 (16)°Block, colourless
V = 1050.3 (8) Å30.55 × 0.51 × 0.3 mm
Data collection top
Rigaku Saturn724+
diffractometer
5660 independent reflections
Radiation source: Sealed tube, Rotating Anode3504 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.029
Detector resolution: 28.5714 pixels mm-1θmax = 29.5°, θmin = 3.0°
profile data from ω–scansh = 1211
Absorption correction: multi-scan
(NUMABS; Rigaku 1999)
k = 1313
Tmin = 0.955, Tmax = 0.975l = 1714
11931 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.134 w = 1/[σ2(Fo2) + (0.0598P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
5660 reflectionsΔρmax = 0.17 e Å3
257 parametersΔρmin = 0.21 e Å3
0 restraints
Crystal data top
C16H26NO2+·C7H5O2γ = 76.493 (16)°
Mr = 385.49V = 1050.3 (8) Å3
Triclinic, P1Z = 2
a = 9.013 (4) ÅMo Kα radiation
b = 9.767 (4) ŵ = 0.08 mm1
c = 12.726 (6) ÅT = 293 K
α = 75.008 (16)°0.55 × 0.51 × 0.3 mm
β = 89.79 (2)°
Data collection top
Rigaku Saturn724+
diffractometer
5660 independent reflections
Absorption correction: multi-scan
(NUMABS; Rigaku 1999)
3504 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.975Rint = 0.029
11931 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.03Δρmax = 0.17 e Å3
5660 reflectionsΔρmin = 0.21 e Å3
257 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.51600 (17)0.30154 (17)0.58415 (12)0.0418 (4)
C20.39216 (17)0.38352 (18)0.62190 (13)0.0502 (4)
H20.29410.39590.59250.060*
C30.41457 (17)0.44717 (17)0.70353 (14)0.0520 (4)
H30.33140.50320.72900.062*
C40.56018 (16)0.42788 (16)0.74757 (13)0.0448 (4)
H40.57380.47080.80290.054*
C50.68653 (15)0.34553 (14)0.71072 (11)0.0332 (3)
C60.66294 (15)0.28320 (15)0.62715 (11)0.0366 (3)
H60.74590.22910.60010.044*
C80.6071 (2)0.1648 (2)0.45646 (15)0.0697 (5)
H8A0.56880.13110.40000.104*
H8B0.66590.08290.51110.104*
H8C0.67070.22970.42580.104*
C90.84766 (14)0.31719 (13)0.76345 (10)0.0310 (3)
C110.85527 (17)0.21038 (15)0.87622 (11)0.0406 (3)
H11A0.76880.24730.91520.049*
H11B0.84510.11740.86700.049*
C121.00060 (18)0.18474 (16)0.94543 (12)0.0465 (4)
H12A1.08650.13380.91300.056*
H12B0.99230.12391.01760.056*
C131.0282 (2)0.32939 (16)0.95426 (12)0.0491 (4)
H13A0.94710.37600.99290.059*
H13B1.12430.31180.99540.059*
C141.03296 (17)0.42967 (16)0.84145 (11)0.0417 (4)
H14A1.11710.38450.80440.050*
H14B1.05120.52100.84860.050*
C150.88435 (15)0.46093 (13)0.77334 (10)0.0317 (3)
H150.80160.51000.81070.038*
C160.88662 (16)0.56049 (14)0.65994 (10)0.0358 (3)
H16A0.97090.51440.62350.043*
H16B0.79290.56880.61900.043*
C180.77644 (17)0.79335 (16)0.70698 (14)0.0508 (4)
H18A0.68050.80040.67090.076*
H18B0.79050.88960.70050.076*
H18C0.77670.74340.78260.076*
C190.9145 (2)0.79324 (17)0.54203 (12)0.0572 (5)
H19A0.99850.73950.51120.086*
H19B0.93150.88700.54100.086*
H19C0.82150.80620.50010.086*
N170.90203 (13)0.71131 (11)0.65610 (9)0.0337 (3)
H170.99760.70130.69700.040*
O70.48324 (13)0.23977 (15)0.50425 (10)0.0642 (3)
O100.96103 (10)0.26098 (10)0.69699 (8)0.0372 (2)
H100.97740.17170.71330.056*
C200.38473 (18)0.75688 (18)0.88067 (13)0.0492 (4)
H200.35980.66680.89640.059*
C210.29160 (16)0.87614 (15)0.80738 (11)0.0376 (3)
C220.33245 (18)1.00897 (17)0.78461 (12)0.0471 (4)
H220.27061.09030.73620.056*
C230.4632 (2)1.0218 (2)0.83276 (14)0.0564 (4)
H230.49021.11100.81550.068*
C240.5540 (2)0.9031 (2)0.90636 (14)0.0595 (5)
H240.64170.91210.93960.071*
C250.51482 (19)0.7706 (2)0.93080 (13)0.0597 (5)
H250.57570.69030.98090.072*
C260.15086 (16)0.86086 (15)0.75316 (12)0.0385 (3)
O270.05139 (13)0.97122 (11)0.70637 (10)0.0600 (3)
O280.14406 (12)0.73144 (11)0.75774 (9)0.0529 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0387 (8)0.0477 (9)0.0414 (8)0.0137 (7)0.0007 (7)0.0132 (7)
C20.0321 (8)0.0561 (10)0.0601 (10)0.0087 (7)0.0010 (7)0.0132 (8)
C30.0344 (8)0.0496 (9)0.0740 (12)0.0053 (7)0.0125 (8)0.0245 (8)
C40.0378 (8)0.0443 (9)0.0602 (10)0.0115 (7)0.0102 (7)0.0262 (7)
C50.0323 (7)0.0281 (7)0.0405 (8)0.0102 (5)0.0069 (6)0.0088 (6)
C60.0330 (7)0.0382 (7)0.0400 (8)0.0092 (6)0.0056 (6)0.0123 (6)
C80.0581 (11)0.0930 (15)0.0678 (12)0.0084 (10)0.0036 (9)0.0474 (11)
C90.0315 (7)0.0276 (6)0.0357 (7)0.0079 (5)0.0060 (6)0.0110 (5)
C110.0485 (9)0.0320 (7)0.0422 (8)0.0154 (6)0.0049 (7)0.0066 (6)
C120.0566 (10)0.0363 (8)0.0421 (8)0.0103 (7)0.0034 (7)0.0031 (6)
C130.0608 (10)0.0446 (9)0.0418 (8)0.0145 (8)0.0104 (8)0.0094 (7)
C140.0459 (8)0.0378 (8)0.0459 (8)0.0181 (7)0.0024 (7)0.0117 (6)
C150.0373 (7)0.0265 (6)0.0340 (7)0.0107 (5)0.0048 (6)0.0103 (5)
C160.0453 (8)0.0308 (7)0.0353 (7)0.0145 (6)0.0059 (6)0.0109 (6)
C180.0457 (9)0.0358 (8)0.0688 (11)0.0039 (7)0.0084 (8)0.0157 (8)
C190.0827 (13)0.0446 (9)0.0448 (9)0.0267 (9)0.0087 (9)0.0026 (7)
N170.0359 (6)0.0283 (6)0.0367 (6)0.0095 (5)0.0029 (5)0.0068 (5)
O70.0439 (7)0.0989 (10)0.0628 (7)0.0173 (6)0.0012 (6)0.0441 (7)
O100.0351 (5)0.0303 (5)0.0485 (6)0.0063 (4)0.0100 (4)0.0159 (4)
C200.0484 (9)0.0480 (9)0.0520 (9)0.0139 (7)0.0082 (8)0.0130 (7)
C210.0389 (8)0.0382 (8)0.0414 (8)0.0117 (6)0.0102 (7)0.0181 (6)
C220.0516 (9)0.0422 (9)0.0537 (9)0.0166 (7)0.0031 (8)0.0189 (7)
C230.0552 (10)0.0590 (11)0.0692 (11)0.0273 (9)0.0082 (9)0.0298 (9)
C240.0468 (10)0.0835 (14)0.0627 (11)0.0240 (10)0.0060 (9)0.0373 (10)
C250.0486 (10)0.0716 (12)0.0551 (10)0.0090 (9)0.0020 (8)0.0146 (9)
C260.0404 (8)0.0322 (7)0.0480 (9)0.0109 (6)0.0092 (7)0.0180 (6)
O270.0577 (7)0.0345 (6)0.0870 (8)0.0044 (5)0.0161 (7)0.0205 (6)
O280.0441 (6)0.0321 (5)0.0852 (8)0.0119 (5)0.0046 (6)0.0178 (5)
Geometric parameters (Å, º) top
C1—C21.377 (2)C14—C151.5229 (19)
C1—C61.389 (2)C15—H150.9800
C1—O71.3739 (19)C15—C161.5204 (18)
C2—H20.9300C16—H16A0.9700
C2—C31.379 (2)C16—H16B0.9700
C3—H30.9300C16—N171.5000 (17)
C3—C41.381 (2)C18—H18A0.9600
C4—H40.9300C18—H18B0.9600
C4—C51.3881 (18)C18—H18C0.9600
C5—C61.3944 (19)C18—N171.4771 (17)
C5—C91.5359 (19)C19—H19A0.9600
C6—H60.9300C19—H19B0.9600
C8—H8A0.9600C19—H19C0.9600
C8—H8B0.9600C19—N171.4833 (18)
C8—H8C0.9600N17—H170.9800
C8—O71.4126 (19)O10—H100.8200
C9—C111.5314 (19)C20—H200.9300
C9—C151.5507 (18)C20—C211.385 (2)
C9—O101.4257 (15)C20—C251.386 (2)
C11—H11A0.9700C21—C221.389 (2)
C11—H11B0.9700C21—C261.502 (2)
C11—C121.515 (2)C22—H220.9300
C12—H12A0.9700C22—C231.376 (2)
C12—H12B0.9700C23—H230.9300
C12—C131.522 (2)C23—C241.376 (2)
C13—H13A0.9700C24—H240.9300
C13—H13B0.9700C24—C251.379 (2)
C13—C141.521 (2)C25—H250.9300
C14—H14A0.9700C26—O271.2412 (17)
C14—H14B0.9700C26—O281.2661 (17)
C2—C1—C6120.59 (14)C9—C15—H15107.9
O7—C1—C2115.75 (14)C14—C15—C9110.98 (11)
O7—C1—C6123.65 (14)C14—C15—H15107.9
C1—C2—H2120.2C16—C15—C9109.26 (10)
C1—C2—C3119.53 (14)C16—C15—C14112.67 (11)
C3—C2—H2120.2C16—C15—H15107.9
C2—C3—H3119.9C15—C16—H16A108.4
C2—C3—C4120.17 (15)C15—C16—H16B108.4
C4—C3—H3119.9H16A—C16—H16B107.5
C3—C4—H4119.4N17—C16—C15115.49 (10)
C3—C4—C5121.20 (14)N17—C16—H16A108.4
C5—C4—H4119.4N17—C16—H16B108.4
C4—C5—C6118.22 (13)H18A—C18—H18B109.5
C4—C5—C9121.36 (12)H18A—C18—H18C109.5
C6—C5—C9120.36 (12)H18B—C18—H18C109.5
C1—C6—C5120.28 (13)N17—C18—H18A109.5
C1—C6—H6119.9N17—C18—H18B109.5
C5—C6—H6119.9N17—C18—H18C109.5
H8A—C8—H8B109.5H19A—C19—H19B109.5
H8A—C8—H8C109.5H19A—C19—H19C109.5
H8B—C8—H8C109.5H19B—C19—H19C109.5
O7—C8—H8A109.5N17—C19—H19A109.5
O7—C8—H8B109.5N17—C19—H19B109.5
O7—C8—H8C109.5N17—C19—H19C109.5
C5—C9—C15111.34 (10)C16—N17—H17107.6
C11—C9—C5107.75 (10)C18—N17—C16112.99 (11)
C11—C9—C15110.47 (11)C18—N17—C19110.77 (12)
O10—C9—C5110.85 (11)C18—N17—H17107.6
O10—C9—C11111.47 (11)C19—N17—C16110.13 (10)
O10—C9—C15105.01 (10)C19—N17—H17107.6
C9—C11—H11A108.6C1—O7—C8117.87 (12)
C9—C11—H11B108.6C9—O10—H10109.5
H11A—C11—H11B107.6C21—C20—H20119.7
C12—C11—C9114.67 (12)C21—C20—C25120.58 (16)
C12—C11—H11A108.6C25—C20—H20119.7
C12—C11—H11B108.6C20—C21—C22118.47 (14)
C11—C12—H12A109.6C20—C21—C26120.42 (13)
C11—C12—H12B109.6C22—C21—C26121.10 (13)
C11—C12—C13110.42 (12)C21—C22—H22119.5
H12A—C12—H12B108.1C23—C22—C21120.94 (15)
C13—C12—H12A109.6C23—C22—H22119.5
C13—C12—H12B109.6C22—C23—H23119.9
C12—C13—H13A109.6C24—C23—C22120.10 (16)
C12—C13—H13B109.6C24—C23—H23119.9
H13A—C13—H13B108.1C23—C24—H24120.1
C14—C13—C12110.39 (12)C23—C24—C25119.87 (16)
C14—C13—H13A109.6C25—C24—H24120.1
C14—C13—H13B109.6C20—C25—H25120.0
C13—C14—H14A109.3C24—C25—C20120.03 (16)
C13—C14—H14B109.3C24—C25—H25120.0
C13—C14—C15111.70 (12)O27—C26—C21120.10 (13)
H14A—C14—H14B107.9O27—C26—O28124.15 (14)
C15—C14—H14A109.3O28—C26—C21115.75 (13)
C15—C14—H14B109.3
C1—C2—C3—C40.4 (2)C12—C13—C14—C1559.28 (17)
C2—C1—C6—C51.2 (2)C13—C14—C15—C956.84 (15)
C2—C1—O7—C8174.83 (15)C13—C14—C15—C16179.74 (12)
C2—C3—C4—C50.4 (2)C14—C15—C16—N1763.19 (16)
C3—C4—C5—C60.4 (2)C15—C9—C11—C1251.00 (15)
C3—C4—C5—C9176.79 (13)C15—C16—N17—C1859.79 (16)
C4—C5—C6—C11.23 (19)C15—C16—N17—C19175.76 (12)
C4—C5—C9—C1171.47 (15)O7—C1—C2—C3178.80 (14)
C4—C5—C9—C1549.81 (16)O7—C1—C6—C5177.88 (13)
C4—C5—C9—O10166.32 (11)O10—C9—C11—C1265.34 (15)
C5—C9—C11—C12172.82 (11)O10—C9—C15—C1468.97 (13)
C5—C9—C15—C14171.00 (10)O10—C9—C15—C1655.87 (13)
C5—C9—C15—C1664.15 (13)C20—C21—C22—C230.7 (2)
C6—C1—C2—C30.3 (2)C20—C21—C26—O27164.70 (14)
C6—C1—O7—C86.0 (2)C20—C21—C26—O2816.30 (19)
C6—C5—C9—C11105.71 (14)C21—C20—C25—C241.2 (2)
C6—C5—C9—C15133.01 (13)C21—C22—C23—C241.4 (2)
C6—C5—C9—O1016.51 (16)C22—C21—C26—O2716.0 (2)
C9—C5—C6—C1176.03 (12)C22—C21—C26—O28163.00 (13)
C9—C11—C12—C1353.62 (16)C22—C23—C24—C250.8 (2)
C9—C15—C16—N17172.96 (11)C23—C24—C25—C200.5 (2)
C11—C9—C15—C1451.32 (14)C25—C20—C21—C220.6 (2)
C11—C9—C15—C16176.17 (11)C25—C20—C21—C26179.94 (13)
C11—C12—C13—C1456.17 (17)C26—C21—C22—C23178.64 (13)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
C6—H6···O100.932.422.775 (2)102
C14—H14B···O28i0.972.413.251 (2)144
N17—H17···O28i0.981.652.6120 (18)165
O10—H10···O27ii0.821.942.7269 (17)161
C23—H23···Cg1iii0.932.833.684 (3)153
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1, z; (iii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
C6—H6···O100.932.422.775 (2)102
C14—H14B···O28i0.972.413.251 (2)144
N17—H17···O28i0.981.652.6120 (18)165
O10—H10···O27ii0.821.942.7269 (17)161
C23—H23···Cg1iii0.932.833.684 (3)153
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1, z; (iii) x, y+1, z.
 

Acknowledgements

The authors thank DST–PURSE, Mangalore University, Mangaluru, for providing the single-crystal X-ray diffraction facility. PN thanks Bharthi College, Maddur, for research facilities.

References

First citationArman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2813.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o479–o480.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJasinski, J. P., Mohamed, S. K., Akkurt, M., Abdelhamid, A. A. & Albayati, M. R. (2015). Acta Cryst. E71, o77–o78.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLin, H. & Zhang, Y.-P. (2013). Acta Cryst. E69, o77.  CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2011). CrystalClear SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationScott, L. J. & Perry, C. M. (2000). Drugs, 60, 139–176.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiddaraju, B. P., Jasinski, J. P., Golen, J. A., Yathirajan, H. S. & Raju, C. R. (2011). Acta Cryst. E67, o2351.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G. (2014). Acta Cryst. C70, 315–319.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSun, Z.-Q., Ding, Z.-Y. & Shao, Z.-Y. (2012). Acta Cryst. E68, o3029.  CSD CrossRef IUCr Journals Google Scholar
First citationTessler, L. & Goldberg, I. (2004). Acta Cryst. E60, o1868–o1869.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds