organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-cyano-1-methyl­pyridinium perchlorate

aDepartment of Chemistry, Loyola University, New Orleans, LA 70118, USA, and bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: joelt@tulane.edu

Edited by E. R. T. Tiekink, University of Malaya, Malaysia (Received 9 October 2015; accepted 10 October 2015; online 17 October 2015)

The asymmetric unit of the title salt, C7H7N2+·ClO4, comprises two independent formula units. The solid-state structure comprises corrugated layers of cations and of anions, approximately parallel to (010). The supra­molecular layers are stabilized and connected by C—H⋯O hydrogen bonding to consolidate a three-dimensional architecture. A close pyridin­ium–perchlorate N⋯O contact [2.867 (5) Å] is noted. The crystal was refined as an inversion twin.

1. Related literature

For structures of other salts of the 2-cyano-1-methyl­pyridinium cation, see: Koplitz et al. (2012[Koplitz, L. V., Mague, J. T., Kammer, M. N., McCormick, C. A., Renfro, H. E. & Vumbaco, D. J. (2012). Acta Cryst. E68, o1653.]); Kammer et al. (2013[Kammer, M. N., Koplitz, L. V. & Mague, J. T. (2013). Acta Cryst. E69, o1281.]); Vaccaro et al. (2015[Vaccaro, F. A., Koplitz, L. V. & Mague, J. T. (2015). Acta Cryst. E71, o697-o698.]). For structures of salts of the isomeric 2-cyano­anilinium cation, see: Zhang (2009[Zhang, Y. (2009). Acta Cryst. E65, o2373.]); Cui & Chen (2010[Cui, L.-J. & Chen, X.-Y. (2010). Acta Cryst. E66, o467.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C7H7N2+·ClO4

  • Mr = 218.60

  • Monoclinic, P 21

  • a = 8.0112 (12) Å

  • b = 7.7011 (12) Å

  • c = 14.742 (2) Å

  • β = 90.982 (2)°

  • V = 909.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 150 K

  • 0.19 × 0.14 × 0.13 mm

2.2. Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (TWINABS; Sheldrick, 2009[Sheldrick, G. M. (2009). TWINABS. University of Göttingen, Göttingen, Germany.]) Tmin = 0.93, Tmax = 0.95

  • 22843 measured reflections

  • 22843 independent reflections

  • 20913 reflections with I > 2σ(I)

  • Rint = 0.051

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.109

  • S = 1.00

  • 22843 reflections

  • 256 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.34 e Å−3

  • Absolute structure: Flack x determined using 1908 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])

  • Absolute structure parameter: 0.04 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O1i 0.98 2.53 3.441 (5) 154
C1—H1C⋯O3 0.98 2.52 3.164 (5) 123
C3—H3⋯O5ii 0.95 2.54 3.326 (5) 140
C5—H5⋯O8iii 0.95 2.66 3.262 (6) 122
C6—H6⋯O1i 0.95 2.55 3.415 (6) 152
C6—H6⋯O4i 0.95 2.65 3.534 (6) 155
C8—H8A⋯O1iv 0.98 2.55 3.294 (6) 132
C8—H8B⋯O7v 0.98 2.57 3.538 (6) 169
C8—H8C⋯O6 0.98 2.51 3.425 (5) 156
C10—H10⋯O2vi 0.95 2.51 3.367 (5) 150
C12—H12⋯O2vii 0.95 2.52 3.347 (5) 145
C13—H13⋯O6 0.95 2.35 3.247 (6) 156
Symmetry codes: (i) x-1, y, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+2]; (iii) [-x, y-{\script{1\over 2}}, -z+2]; (iv) x, y+1, z; (v) x+1, y, z; (vi) [-x+2, y+{\script{1\over 2}}, -z+1]; (vii) [-x+1, y+{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconson, USA.]); cell refinement: SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconson, USA.]); data reduction: SAINT and CELL_NOW (Sheldrick, 2008a[Sheldrick, G. M. (2008a). CELL_NOW. University of Göttingen, Göttingen, Germany.]); program(s) used to solve structure: SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The asymmetric unit comprises two independent formula units. A portion of the C—H···O hydrogen bonding network which aids the packing of the several ions is shown in Fig. 1 with a fuller depiction appearing in Figs 2 and 3. The solid state structure consists of corrugated layers of cations and anions formed by C—H···O hydrogen bonding between them and approximately parallel to (010). These layers are held to one another by additional C—H···O interactions. The overall structure is essentially the same as found for the tetrafluoroborate salt (Vaccaro et al., 2015).

Related literature top

For structures of other salts of the 2-cyano-1-methylpyridinium cation, see: Koplitz et al. (2012); Kammer et al. (2013); Vaccaro et al. (2015). For structures of salts of the isomeric 2-cyanoanilinium cation, see: Zhang (2009); Cui & Chen (2010).

Experimental top

2-Cyano-1-methylpyridinium iodide (0.42 g, 1.70 mmol; m.p. 146–150°) was dissolved in a solution of silver perchlorate previously prepared by reacting Ag2O (0.20 g, 0.86 mmol) with 1M aqueous HClO4 (1.8 ml) in 8.0 ml of H2O. After stirring, the precipitated AgI was removed by vacuum filtration. The filtrate was slowly evaporated to dryness in a freezer at about -5° over several months to form crystals suitable for single-crystal X-ray diffraction.

Refinement top

H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. The crystal was refined as a 2-component twin.

Structure description top

The asymmetric unit comprises two independent formula units. A portion of the C—H···O hydrogen bonding network which aids the packing of the several ions is shown in Fig. 1 with a fuller depiction appearing in Figs 2 and 3. The solid state structure consists of corrugated layers of cations and anions formed by C—H···O hydrogen bonding between them and approximately parallel to (010). These layers are held to one another by additional C—H···O interactions. The overall structure is essentially the same as found for the tetrafluoroborate salt (Vaccaro et al., 2015).

For structures of other salts of the 2-cyano-1-methylpyridinium cation, see: Koplitz et al. (2012); Kammer et al. (2013); Vaccaro et al. (2015). For structures of salts of the isomeric 2-cyanoanilinium cation, see: Zhang (2009); Cui & Chen (2010).

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014) and CELL_NOW (Sheldrick, 2008a); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).

Figures top
[Figure 1] Fig. 1. Perspective view of the asymmetric unit with 50% probability ellipsoids. C—H···O interactions are shown by dotted lines.
[Figure 2] Fig. 2. Packing viewed down the a axis showing an edge view of two corrugated layers and the C—H···O interaction (dotted line) holding them together.
[Figure 3] Fig. 3. Packing viewed down the b axis providing a plan view of the corrugated sheets with C—H···O interactions shown as dotted lines.
2-Cyano-1-methylpyridinium perchlorate top
Crystal data top
C7H7N2+·ClO4F(000) = 448
Mr = 218.60Dx = 1.597 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 8.0112 (12) ÅCell parameters from 9987 reflections
b = 7.7011 (12) Åθ = 2.5–29.2°
c = 14.742 (2) ŵ = 0.41 mm1
β = 90.982 (2)°T = 150 K
V = 909.4 (2) Å3Block, colourless
Z = 40.19 × 0.14 × 0.13 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
22843 independent reflections
Radiation source: fine-focus sealed tube20913 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 8.3660 pixels mm-1θmax = 29.2°, θmin = 2.5°
φ and ω scansh = 1010
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2009)
k = 1010
Tmin = 0.93, Tmax = 0.95l = 2020
22843 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0531P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
22843 reflectionsΔρmax = 0.30 e Å3
256 parametersΔρmin = 0.34 e Å3
1 restraintAbsolute structure: Flack x determined using 1908 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (3)
Crystal data top
C7H7N2+·ClO4V = 909.4 (2) Å3
Mr = 218.60Z = 4
Monoclinic, P21Mo Kα radiation
a = 8.0112 (12) ŵ = 0.41 mm1
b = 7.7011 (12) ÅT = 150 K
c = 14.742 (2) Å0.19 × 0.14 × 0.13 mm
β = 90.982 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
22843 independent reflections
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2009)
20913 reflections with I > 2σ(I)
Tmin = 0.93, Tmax = 0.95Rint = 0.051
22843 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.109Δρmax = 0.30 e Å3
S = 1.00Δρmin = 0.34 e Å3
22843 reflectionsAbsolute structure: Flack x determined using 1908 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
256 parametersAbsolute structure parameter: 0.04 (3)
1 restraint
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, collected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = -30.00 and 210.00°. The scan time was 15 sec/frame. Analysis of 3152 reflections having I/σ(I) > 13 and chosen from the full data set with CELL_NOW (Sheldrick, 2008a) showed the crystal to belong to the monoclinic system and to be twinned by a 180° rotation about c*. The raw data were processed using the multi-component version of SAINT under control of the two-component orientation file generated by CELL_NOW.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2547 (4)0.1723 (5)0.8742 (2)0.0186 (7)
N20.6652 (5)0.0531 (8)0.8975 (3)0.0424 (14)
C10.3149 (5)0.1871 (7)0.7797 (3)0.0268 (10)
H1A0.22550.23390.74060.040*
H1B0.34740.07210.75770.040*
H1C0.41150.26510.77850.040*
C20.3617 (5)0.1208 (6)0.9418 (3)0.0204 (10)
C30.3089 (5)0.1017 (7)1.0292 (3)0.0262 (11)
H30.38450.06581.07590.031*
C40.1425 (5)0.1359 (7)1.0482 (3)0.0261 (11)
H40.10330.12371.10830.031*
C50.0358 (5)0.1874 (7)0.9798 (3)0.0265 (11)
H50.07800.21060.99210.032*
C60.0947 (5)0.2053 (7)0.8927 (3)0.0237 (10)
H60.02080.24140.84530.028*
C70.5316 (5)0.0839 (8)0.9162 (3)0.0266 (11)
Cl10.77813 (11)0.34996 (12)0.68489 (7)0.0185 (2)
O10.9290 (4)0.2488 (5)0.6789 (3)0.0300 (8)
O20.7857 (4)0.4925 (4)0.6214 (2)0.0263 (7)
O30.6375 (4)0.2420 (5)0.6622 (3)0.0295 (9)
O40.7628 (4)0.4142 (5)0.7754 (2)0.0370 (9)
N30.7638 (4)0.8780 (5)0.6208 (3)0.0167 (8)
N41.1905 (4)0.9228 (7)0.6055 (3)0.0374 (12)
C80.8152 (5)0.8446 (7)0.7165 (3)0.0214 (9)
H8A0.85230.95340.74480.032*
H8B0.90700.76040.71810.032*
H8C0.72030.79790.74970.032*
C90.8788 (4)0.9197 (6)0.5573 (3)0.0187 (9)
C100.8332 (5)0.9575 (7)0.4697 (3)0.0232 (10)
H100.91520.98550.42630.028*
C110.6647 (5)0.9542 (7)0.4452 (3)0.0254 (10)
H110.62950.98160.38500.030*
C120.5499 (5)0.9103 (7)0.5099 (4)0.0253 (11)
H120.43450.90460.49420.030*
C130.6021 (4)0.8747 (6)0.5969 (3)0.0214 (10)
H130.52160.84720.64130.026*
C141.0526 (5)0.9217 (7)0.5867 (4)0.0259 (11)
Cl20.26845 (11)0.66595 (14)0.81449 (7)0.0213 (2)
O50.3040 (4)0.5521 (5)0.8898 (2)0.0329 (9)
O60.4209 (4)0.7202 (7)0.7750 (3)0.0629 (16)
O70.1683 (5)0.5742 (6)0.7490 (3)0.0436 (10)
O80.1756 (4)0.8134 (5)0.8449 (3)0.0405 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0224 (14)0.0147 (18)0.0187 (19)0.0010 (15)0.0002 (13)0.0016 (17)
N20.0285 (19)0.069 (4)0.030 (3)0.009 (2)0.0004 (17)0.009 (3)
C10.034 (2)0.026 (3)0.020 (2)0.004 (2)0.0063 (17)0.004 (2)
C20.0181 (16)0.018 (3)0.025 (3)0.0009 (15)0.0016 (15)0.003 (2)
C30.026 (2)0.030 (3)0.023 (3)0.0038 (19)0.0050 (17)0.001 (2)
C40.0295 (19)0.028 (3)0.021 (2)0.0039 (18)0.0058 (16)0.001 (2)
C50.0207 (18)0.027 (3)0.032 (3)0.0011 (19)0.0009 (16)0.000 (2)
C60.0229 (18)0.023 (3)0.025 (3)0.0020 (17)0.0027 (16)0.001 (2)
C70.026 (2)0.035 (3)0.019 (3)0.003 (2)0.0029 (17)0.004 (2)
Cl10.0208 (4)0.0165 (5)0.0182 (5)0.0004 (4)0.0004 (3)0.0003 (4)
O10.0220 (14)0.0215 (19)0.046 (2)0.0039 (12)0.0011 (14)0.0018 (18)
O20.0350 (15)0.0197 (18)0.0240 (18)0.0006 (13)0.0028 (13)0.0059 (15)
O30.0232 (14)0.026 (2)0.040 (2)0.0055 (13)0.0023 (13)0.0019 (17)
O40.056 (2)0.035 (2)0.0192 (17)0.0011 (18)0.0047 (16)0.0051 (16)
N30.0189 (14)0.0122 (19)0.019 (2)0.0020 (13)0.0013 (13)0.0005 (15)
N40.0229 (17)0.061 (4)0.028 (2)0.0016 (19)0.0012 (16)0.003 (2)
C80.0263 (17)0.022 (2)0.016 (2)0.0008 (19)0.0004 (15)0.001 (2)
C90.0162 (16)0.016 (2)0.024 (2)0.0016 (15)0.0018 (15)0.000 (2)
C100.0225 (18)0.027 (3)0.020 (2)0.0014 (17)0.0054 (16)0.001 (2)
C110.0272 (19)0.031 (3)0.017 (2)0.0028 (19)0.0008 (17)0.001 (2)
C120.0205 (17)0.031 (3)0.025 (3)0.0007 (17)0.0022 (17)0.006 (2)
C130.0180 (16)0.019 (3)0.027 (3)0.0033 (16)0.0034 (15)0.004 (2)
C140.0213 (19)0.033 (3)0.024 (3)0.0006 (18)0.0052 (17)0.000 (2)
Cl20.0207 (4)0.0245 (6)0.0188 (5)0.0032 (4)0.0023 (3)0.0007 (5)
O50.0409 (18)0.032 (2)0.026 (2)0.0075 (16)0.0042 (15)0.0064 (17)
O60.0260 (17)0.092 (4)0.071 (3)0.0020 (19)0.0140 (17)0.046 (3)
O70.058 (2)0.030 (2)0.042 (2)0.0098 (18)0.0241 (18)0.011 (2)
O80.058 (2)0.021 (2)0.043 (2)0.0024 (17)0.0123 (18)0.0073 (18)
Geometric parameters (Å, º) top
N1—C61.338 (5)N3—C131.337 (5)
N1—C21.363 (6)N3—C91.363 (5)
N1—C11.487 (5)N3—C81.486 (6)
N2—C71.135 (6)N4—C141.134 (5)
C1—H1A0.9800C8—H8A0.9800
C1—H1B0.9800C8—H8B0.9800
C1—H1C0.9800C8—H8C0.9800
C2—C31.370 (6)C9—C101.368 (6)
C2—C71.446 (6)C9—C141.451 (5)
C3—C41.392 (6)C10—C111.391 (5)
C3—H30.9500C10—H100.9500
C4—C51.370 (7)C11—C121.379 (7)
C4—H40.9500C11—H110.9500
C5—C61.383 (7)C12—C131.370 (7)
C5—H50.9500C12—H120.9500
C6—H60.9500C13—H130.9500
Cl1—O41.430 (3)Cl2—O61.425 (4)
Cl1—O31.435 (3)Cl2—O71.431 (4)
Cl1—O11.442 (3)Cl2—O81.434 (4)
Cl1—O21.444 (3)Cl2—O51.439 (4)
C6—N1—C2120.0 (4)C13—N3—C9119.2 (4)
C6—N1—C1120.2 (4)C13—N3—C8119.9 (4)
C2—N1—C1119.8 (3)C9—N3—C8120.9 (3)
N1—C1—H1A109.5N3—C8—H8A109.5
N1—C1—H1B109.5N3—C8—H8B109.5
H1A—C1—H1B109.5H8A—C8—H8B109.5
N1—C1—H1C109.5N3—C8—H8C109.5
H1A—C1—H1C109.5H8A—C8—H8C109.5
H1B—C1—H1C109.5H8B—C8—H8C109.5
N1—C2—C3121.2 (4)N3—C9—C10121.7 (3)
N1—C2—C7116.7 (4)N3—C9—C14117.0 (4)
C3—C2—C7122.1 (4)C10—C9—C14121.3 (4)
C2—C3—C4118.8 (4)C9—C10—C11119.0 (4)
C2—C3—H3120.6C9—C10—H10120.5
C4—C3—H3120.6C11—C10—H10120.5
C5—C4—C3119.6 (5)C12—C11—C10118.7 (5)
C5—C4—H4120.2C12—C11—H11120.7
C3—C4—H4120.2C10—C11—H11120.7
C4—C5—C6119.6 (4)C13—C12—C11120.0 (4)
C4—C5—H5120.2C13—C12—H12120.0
C6—C5—H5120.2C11—C12—H12120.0
N1—C6—C5120.8 (4)N3—C13—C12121.5 (4)
N1—C6—H6119.6N3—C13—H13119.3
C5—C6—H6119.6C12—C13—H13119.3
N2—C7—C2178.7 (6)N4—C14—C9176.8 (5)
O4—Cl1—O3109.8 (2)O6—Cl2—O7110.1 (3)
O4—Cl1—O1109.3 (2)O6—Cl2—O8110.4 (3)
O3—Cl1—O1109.2 (2)O7—Cl2—O8108.3 (2)
O4—Cl1—O2110.3 (2)O6—Cl2—O5109.5 (2)
O3—Cl1—O2109.3 (2)O7—Cl2—O5108.7 (3)
O1—Cl1—O2109.0 (2)O8—Cl2—O5109.8 (2)
C6—N1—C2—C30.0 (7)C13—N3—C9—C100.3 (7)
C1—N1—C2—C3178.3 (5)C8—N3—C9—C10177.4 (5)
C6—N1—C2—C7178.6 (5)C13—N3—C9—C14179.9 (4)
C1—N1—C2—C70.3 (7)C8—N3—C9—C142.8 (6)
N1—C2—C3—C40.1 (8)N3—C9—C10—C110.4 (8)
C7—C2—C3—C4178.5 (5)C14—C9—C10—C11179.8 (5)
C2—C3—C4—C50.1 (8)C9—C10—C11—C121.0 (8)
C3—C4—C5—C60.2 (8)C10—C11—C12—C131.5 (8)
C2—N1—C6—C50.1 (7)C9—N3—C13—C120.8 (7)
C1—N1—C6—C5178.2 (5)C8—N3—C13—C12178.0 (5)
C4—C5—C6—N10.3 (8)C11—C12—C13—N31.4 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O1i0.982.533.441 (5)154
C1—H1C···O30.982.523.164 (5)123
C3—H3···O5ii0.952.543.326 (5)140
C5—H5···O8iii0.952.663.262 (6)122
C6—H6···O1i0.952.553.415 (6)152
C6—H6···O4i0.952.653.534 (6)155
C8—H8A···O1iv0.982.553.294 (6)132
C8—H8B···O7v0.982.573.538 (6)169
C8—H8C···O60.982.513.425 (5)156
C10—H10···O2vi0.952.513.367 (5)150
C12—H12···O2vii0.952.523.347 (5)145
C13—H13···O60.952.353.247 (6)156
Symmetry codes: (i) x1, y, z; (ii) x+1, y1/2, z+2; (iii) x, y1/2, z+2; (iv) x, y+1, z; (v) x+1, y, z; (vi) x+2, y+1/2, z+1; (vii) x+1, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O1i0.982.533.441 (5)154
C1—H1C···O30.982.523.164 (5)123
C3—H3···O5ii0.952.543.326 (5)140
C5—H5···O8iii0.952.663.262 (6)122
C6—H6···O1i0.952.553.415 (6)152
C6—H6···O4i0.952.653.534 (6)155
C8—H8A···O1iv0.982.553.294 (6)132
C8—H8B···O7v0.982.573.538 (6)169
C8—H8C···O60.982.513.425 (5)156
C10—H10···O2vi0.952.513.367 (5)150
C12—H12···O2vii0.952.523.347 (5)145
C13—H13···O60.952.353.247 (6)156
Symmetry codes: (i) x1, y, z; (ii) x+1, y1/2, z+2; (iii) x, y1/2, z+2; (iv) x, y+1, z; (v) x+1, y, z; (vi) x+2, y+1/2, z+1; (vii) x+1, y+1/2, z+1.
 

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconson, USA.  Google Scholar
First citationCui, L.-J. & Chen, X.-Y. (2010). Acta Cryst. E66, o467.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKammer, M. N., Koplitz, L. V. & Mague, J. T. (2013). Acta Cryst. E69, o1281.  CSD CrossRef IUCr Journals Google Scholar
First citationKoplitz, L. V., Mague, J. T., Kammer, M. N., McCormick, C. A., Renfro, H. E. & Vumbaco, D. J. (2012). Acta Cryst. E68, o1653.  CSD CrossRef IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008a). CELL_NOW. University of Göttingen, Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2009). TWINABS. University of Göttingen, Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVaccaro, F. A., Koplitz, L. V. & Mague, J. T. (2015). Acta Cryst. E71, o697–o698.  CSD CrossRef IUCr Journals Google Scholar
First citationZhang, Y. (2009). Acta Cryst. E65, o2373.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds