research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of two unusual, high oxidation state, 16-electron irida­benzenes

aDepartment of Chemistry & Biochemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253, USA, and bCAMCOR, University of Oregon, 1443 East 13th Avenue, Eugene, Oregon 97403, USA
*Correspondence e-mail: haley@uoregon.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 8 September 2015; accepted 7 October 2015; online 14 October 2015)

Treatment of carbon­yl(1,2-diphenylpenta-1,3-dien-1-yl-5-yl­idene)bis­(tri­phenyl­phosphane)iridium, [IrCO(—C(Ph)=C(Ph)—CH=CH—CH=)(PPh3)2], with either bromine or iodine produced di­bromido­(1,2-diphenylpenta-1,3-dien-1-yl-5-yl­idene)(tri­phenyl­phosphine)iridium(III), [IrBr2{—C(Ph)=C(Ph)—CH=CH—CH=}(PPh3)], (I), and (1,2-diphenylpenta-1,3-dien-1-yl-5-yl­idene)di­iodido­(tri­phenyl­phosphane)iridium(III), [IrI2{—C(Ph)=C(Ph)—CH=CH—CH=}(PPh3)], (II), respectively, which are two rare examples of 16-electron metalla­benzenes. Structural elucidation of (I) and (II) reveals that these isotypic irida­benzenes are unusual, not only in their electron count, but also in their coordination sphere of the IrIII atom where they contain an apparent open coordination site. The crystal structures of (I) and (II) confirm that the mol­ecules are complexes containing five-coordinated IrIII with only one tri­phenyl­phosphine group bound to the iridium atom, unambiguously proving that the mol­ecules are indeed 16-electron, high-oxidation-state irida­benzenes. The coordination geometry of the IrIII atom in both structures can be best described as a distorted square pyramid with the P, two Br (or I) and one C atom in the basal plane and another C atom in the apical position.

1. Chemical context

Metalla­benzenes are a rare class of organometallic compounds in which a CH unit is isolobally substituted with a transition metal fragment (Bleeke, 2001[Bleeke, J. R. (2001). Chem. Rev. 101, 1205-1228.]; Wright, 2006[Wright, J. L. (2006). Dalton Trans. pp. 1821-1827.]). Postulated in a seminal paper in 1979 (Thorn & Hoffmann, 1979[Thorn, D. L. & Hoffmann, R. (1979). Nouv. J. Chim. 3, 39-45.]), metalla­benzenes have been shown to be feasible through numerous synthetic methodologies and now claim residence in the third and second row transition metals. Our research has focused on the synthesis and properties of metalla­benzenes and their valence isomers using 3-vinyl-1-cyclo­propenes as the source for the five-carbon backbone (Landorf & Haley, 2006[Landorf, C. W. & Haley, M. M. (2006). Angew. Chem. Int. Ed. 45, 3914-3936.]). In certain instances, the metalla­benzenes can undergo reductive elimination to afford η5-Cp complexes (Wu et al., 2007[Wu, H.-P., Ess, D. H., Lanza, S., Weakley, T. J. R., Houk, K. N., Baldridge, K. K. & Haley, M. M. (2007). Organometallics, 26, 3957-3968.]). Although such a pathway has potential synthetic utility, for our studies this represents a deleterious side reaction that hinders an effective, detailed examination of metalla­benzenes. Computational work by van der Boom and coworkers suggests that metalla­benzenes containing metal atoms with higher oxidation states may be resistant toward the reductive elimination pathway (Iron et al., 2003[Iron, M. A., Martin, J. M. L. & van der Boom, M. E. (2003). J. Am. Chem. Soc. 125, 13020-13021.]). This prediction inter­ested us as prior studies have shown that IrI irida­benzenes can be readily oxidized with AgI salts or halogens to generate high oxidation state IrIII irida­benzenes; hence, we sought to synthesize neutral irida­benzenes of higher oxidation state as initially demonstrated by Bleeke and coworkers (Bleeke et al., 1997[Bleeke, J. R., Behm, R., Xie, Y.-F., Chiang, M. Y., Robinson, K. D. & Beatty, A. M. (1997). Organometallics, 16, 606-623.]). Herein we report the synthesis and structures of irida­benzenes (I)[link] and (II)[link], two rare examples of high oxidation yet coordinatively unsaturated 16-electron IrIII irida­benzenes.

[Scheme 1]

2. Structural commentary

Compounds (I)[link], [IrBr2(C17H13)(C18H15P)], and (II)[link], [IrI2(C17H13)(C18H15P)], are isotypic. The mol­ecular structures of (I)[link] (Fig. 1[link]) and (II)[link] (Fig. 2[link]) confirm that IrIII is five-coordinated in these complexes with only one tri­phenyl­phosphine group bound to the iridium atom, unambiguously proving that the mol­ecules are indeed 16-electron, high-oxidation-state irida­benzenes. The coordination geometry of the IrIII atom in both structures can be best described as a distorted square pyramid with the P1, Br1(I1), Br2(I2) and C1 atoms in the basal plane and the C5 atom in the apical position. The Br1(I1), Br2(I2), P1, C1 fragments are planar within 0.17 Å (Br) and 0.21 Å (I)[link] and the Ir atom is out on 0.22 Å (Br) and 0.24 Å (I)[link] from the average planes of this fragment. The C—C bond lengths in the benzene rings in both structures range from 1.360 (15) to 1.402 (16) Å [average 1.387 and 1.382 Å in (I)[link] and (II)[link], respectively], indicative of bond homogenization and electron delocalization. Both Ir—C bond lengths [1.958 (5), 1.903 (5) Å, and 1.963 (11), 1.913 (12) Å, respectively, for Ir—C1 and Ir—C5 in (I)[link] and (II)] are shorter than typical IrI irida­benzenes (2.01–2.05 Å), reflecting the higher IrIII oxidation state (Fernández & Frenking, 2007[Fernández, I. & Frenking, G. (2007). Chem. Eur. J. 13, 5873-5884.]).

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of (II)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Additionally, the irida­benzene ring in both structures significantly deviates from planarity (Zhu et al., 2007[Zhu, J., Jia, G. & Lin, Z. (2007). Organometallics, 26, 1986-1995.]); the dihedral angle between the C1–C5 fragments [which are planar within 0.03 and 0.04 Å, respectively, in (I)[link] and (II)] and the C1—Ir1—C5 plane is 17.2 (3)° in (I)[link] and 14.9 (7)° in (II)[link]. In both structures the open coordination site is located equatorially to the iridium atom, as manifested by the extremely large Br1(I1)—Ir—C1 bond angle of 158.5 (2) [156.0 (3)]° {cf, Br1(I1)—Ir—C5, 110.5 (2) [113.6 (4)°]}. This site is typically occupied by CO in all of our previous irida­benzene studies, such as (III) (Fig. 3[link]). The steric bulk of the two halogen atoms, the tri­phenyl­phosphine group, and the phenyl moiety located on C1 all contribute to the presence of the apparent open coordination site. We did consider the possibility of an H atom or H2 mol­ecule occupying the open coordination site. The distance Ir1⋯H29A (one of the H atoms on the closest phenyl group) in (I)[link] is ca 3.18 Å. This H29A atom is on the opposite side from the C5 atom (the C5—Ir1⋯H29A angle is 147°). If present, the Ir—H distance would be around 1.5–1.6 Å. In such a case, the distance between this H atom and the H29A atom from the phenyl ring should be 1.6–1.7 Å. This distance is too short as a typical H⋯H contact is 2.4 Å. It follows then that if one H atom does not fit, H2 will not either. The displacement parameters of most C atoms in the phenyl rings are elongated perpendicular to the average plane of the Ph rings showing their flexibility or statistical disorder.

[Figure 3]
Figure 3
Scheme of irida­benzene (III) employed as an educt

3. Supra­molecular features

Compounds (I)[link] and (II)[link] are typical mol­ecular crystals without specific supra­molecular features. Additionally to van der Waals forces, in these structures there are some weak C—H⋯X (X = Br, I) inter­actions with C⋯X distances in the ranges of 3.533 (7)– 3.717 (5) and 3.699 (17)–3.707 (12) Å, respectively, for Br and I (Tables 1[link] and 2[link]). A fragment of the crystal structure of (I)[link] is given in Fig. 4[link], illustrating one such weak inter­action.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯Br1i 0.95 2.87 3.717 (5) 149
C7—H7A⋯Br2 0.95 2.85 3.609 (7) 137
C23—H23A⋯Br1 0.95 2.79 3.533 (7) 135
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯I2 0.95 2.94 3.707 (12) 138
C23—H23A⋯I1 0.95 2.84 3.699 (17) 152
[Figure 4]
Figure 4
A fragment of the crystal structure of (I)[link] in a view along [100], showing association of the mol­ecules in the crystal packing by weak C—H⋯Br inter­actions (dashed lines). Atom labels are omitted for clarity. The crystal of (II)[link] is isostructural with the crystal of (I)[link].

4. Synthesis and crystallization

Reaction of irida­benzene (Gilbertson et al., 1999[Gilbertson, R. D., Weakley, T. J. R. & Haley, M. M. (1999). J. Am. Chem. Soc. 121, 2597-2598.]), (III) (Fig. 3[link]) with one equivalent of bromine at 195 K produced a dark-brown solution that was warmed to 273 K over a period of 30 min. Recrystallization from acetone at 243 K afforded bluish brown crystals of (I)[link]. Similarly, reaction of (III) with iodine at 195 K also produced a dark-brown solution containing (II)[link] which was crystallized in similar conditions to give bluish brown crystals. While (I)[link] and (II)[link] were stable in the solid state for weeks at 243 K without noticeable decomposition, solutions of either of the irida­benzenes degraded rapidly and thus made their complete characterization extremely challenging.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were positioned geometrically and refined in a rigid-group model with C—H = 0.95 Å, Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula [IrBr2(C17H13)(C18H15P)] [Ir(C17H13)I2(C18H15P)]
Mr 831.56 925.54
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 173 173
a, b, c (Å) 10.6200 (8), 11.6901 (8), 23.8782 (17) 10.5973 (14), 11.9431 (16), 24.457 (3)
β (°) 95.094 (2) 93.331 (3)
V3) 2952.7 (4) 3090.1 (7)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 7.31 6.39
Crystal size (mm) 0.09 × 0.07 × 0.04 0.07 × 0.06 × 0.05
 
Data collection
Diffractometer Bruker APEX CCD Bruker APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.822, 1.000 0.844, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 32559, 6439, 5040 29241, 5435, 3440
Rint 0.063 0.132
(sin θ/λ)max−1) 0.639 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.079, 1.02 0.056, 0.115, 1.00
No. of reflections 6439 5435
No. of parameters 352 352
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.06, −0.65 1.16, −1.15
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Supporting information


Computing details top

For both compounds, data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(I) Dibromido(1,2-diphenylpenta-1,3-dien-1-yl-5-ylidene)(triphenylphosphane)iridium(III) top
Crystal data top
[IrBr2(C17H13)(C18H15P)]F(000) = 1600
Mr = 831.56Dx = 1.871 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.6200 (8) ÅCell parameters from 3916 reflections
b = 11.6901 (8) Åθ = 2.4–22.0°
c = 23.8782 (17) ŵ = 7.31 mm1
β = 95.094 (2)°T = 173 K
V = 2952.7 (4) Å3Cut-block, blue
Z = 40.09 × 0.07 × 0.04 mm
Data collection top
Bruker APEX CCD
diffractometer
5040 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.063
phi and ω scansθmax = 27.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1313
Tmin = 0.822, Tmax = 1.000k = 1414
32559 measured reflectionsl = 3030
6439 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.0341P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.003
6439 reflectionsΔρmax = 1.06 e Å3
352 parametersΔρmin = 0.65 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ir10.10176 (2)0.13179 (2)0.85083 (2)0.02518 (7)
Br10.22033 (5)0.05824 (5)0.85942 (2)0.03303 (14)
Br20.09573 (6)0.01646 (5)0.82570 (3)0.04562 (17)
P10.28971 (13)0.22577 (11)0.87771 (6)0.0256 (3)
C10.0134 (5)0.2540 (4)0.8696 (2)0.0263 (12)
C20.0869 (5)0.3252 (5)0.8329 (2)0.0286 (12)
C30.0730 (5)0.3229 (5)0.7752 (2)0.0342 (13)
H3A0.13050.36750.75160.041*
C40.0175 (5)0.2611 (5)0.7493 (2)0.0355 (14)
H4A0.01710.26630.70960.043*
C50.1068 (5)0.1935 (4)0.7773 (2)0.0299 (13)
H5A0.17890.17540.75820.036*
C60.0148 (5)0.2567 (5)0.9317 (2)0.0289 (12)
C70.0513 (5)0.1597 (5)0.9599 (3)0.0378 (14)
H7A0.08380.09530.93920.045*
C80.0404 (6)0.1568 (6)1.0184 (3)0.0461 (17)
H8A0.06580.09071.03760.055*
C90.0069 (6)0.2492 (6)1.0481 (3)0.0461 (17)
H9A0.01570.24631.08800.055*
C100.0424 (6)0.3469 (5)1.0209 (2)0.0400 (15)
H10A0.07620.41021.04220.048*
C110.0287 (5)0.3527 (4)0.9628 (2)0.0282 (12)
H11A0.04870.42120.94420.034*
C120.1768 (5)0.4095 (5)0.8531 (2)0.0306 (13)
C130.2696 (6)0.3785 (5)0.8876 (3)0.0470 (17)
H13A0.27290.30180.90060.056*
C140.3575 (6)0.4567 (6)0.9036 (3)0.0538 (19)
H14A0.42150.43310.92650.065*
C150.3523 (6)0.5686 (6)0.8863 (3)0.0522 (18)
H15A0.41290.62230.89690.063*
C160.2586 (7)0.6027 (6)0.8534 (3)0.0549 (19)
H16A0.25350.68030.84210.066*
C170.1716 (6)0.5231 (5)0.8368 (3)0.0436 (16)
H17A0.10770.54710.81400.052*
C180.4083 (5)0.2172 (5)0.8265 (2)0.0317 (13)
C190.4459 (7)0.3103 (6)0.7980 (3)0.060 (2)
H19A0.40960.38280.80470.072*
C200.5357 (7)0.3019 (8)0.7595 (3)0.079 (3)
H20A0.56000.36800.74000.094*
C210.5881 (7)0.2004 (7)0.7499 (3)0.070 (2)
H21A0.64720.19370.72250.085*
C220.5567 (8)0.1074 (7)0.7793 (5)0.109 (4)
H22A0.59660.03620.77370.131*
C230.4670 (8)0.1157 (6)0.8173 (4)0.093 (3)
H23A0.44560.04970.83760.111*
C240.3671 (5)0.1769 (4)0.9445 (2)0.0315 (13)
C250.4976 (6)0.1792 (5)0.9555 (3)0.0409 (15)
H25A0.54940.19780.92630.049*
C260.5528 (6)0.1543 (5)1.0092 (3)0.0518 (19)
H26A0.64210.15611.01690.062*
C270.4770 (8)0.1269 (5)1.0513 (3)0.057 (2)
H27A0.51470.10971.08790.068*
C280.3482 (7)0.1243 (5)1.0410 (3)0.0508 (18)
H28A0.29690.10641.07040.061*
C290.2929 (6)0.1479 (5)0.9874 (2)0.0363 (14)
H29A0.20360.14420.98010.044*
C300.2706 (5)0.3799 (4)0.8877 (2)0.0246 (11)
C310.3186 (5)0.4357 (5)0.9360 (2)0.0311 (13)
H31A0.36020.39340.96620.037*
C320.3061 (5)0.5530 (5)0.9405 (3)0.0389 (15)
H32A0.33890.59080.97380.047*
C330.2464 (6)0.6157 (5)0.8970 (3)0.0410 (15)
H33A0.23990.69640.90020.049*
C340.1966 (5)0.5618 (5)0.8493 (3)0.0369 (15)
H34A0.15400.60470.81960.044*
C350.2082 (5)0.4438 (4)0.8444 (2)0.0290 (12)
H35A0.17340.40650.81130.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.02630 (12)0.02190 (11)0.02676 (12)0.00155 (9)0.00084 (8)0.00056 (9)
Br10.0366 (3)0.0245 (3)0.0364 (3)0.0044 (2)0.0057 (3)0.0009 (2)
Br20.0350 (4)0.0346 (3)0.0655 (5)0.0047 (3)0.0057 (3)0.0103 (3)
P10.0256 (8)0.0216 (7)0.0292 (8)0.0029 (6)0.0012 (6)0.0005 (6)
C10.022 (3)0.024 (3)0.032 (3)0.002 (2)0.003 (2)0.002 (2)
C20.020 (3)0.030 (3)0.035 (3)0.002 (2)0.001 (2)0.002 (3)
C30.034 (3)0.037 (3)0.031 (3)0.002 (3)0.001 (3)0.004 (3)
C40.045 (4)0.035 (3)0.025 (3)0.006 (3)0.002 (3)0.001 (3)
C50.034 (3)0.030 (3)0.026 (3)0.003 (2)0.003 (2)0.005 (2)
C60.025 (3)0.033 (3)0.030 (3)0.011 (2)0.008 (2)0.007 (3)
C70.037 (3)0.031 (3)0.046 (4)0.010 (3)0.010 (3)0.006 (3)
C80.057 (4)0.046 (4)0.038 (4)0.017 (3)0.017 (3)0.015 (3)
C90.059 (4)0.053 (4)0.028 (3)0.023 (4)0.015 (3)0.007 (3)
C100.050 (4)0.040 (4)0.032 (3)0.014 (3)0.010 (3)0.002 (3)
C110.030 (3)0.024 (3)0.031 (3)0.010 (2)0.006 (2)0.003 (2)
C120.022 (3)0.035 (3)0.033 (3)0.007 (2)0.002 (2)0.006 (3)
C130.030 (3)0.038 (4)0.074 (5)0.004 (3)0.010 (3)0.013 (3)
C140.032 (4)0.062 (5)0.070 (5)0.015 (3)0.017 (3)0.009 (4)
C150.045 (4)0.063 (5)0.049 (4)0.026 (4)0.004 (3)0.003 (4)
C160.074 (5)0.038 (4)0.054 (4)0.022 (4)0.012 (4)0.013 (3)
C170.049 (4)0.040 (4)0.044 (4)0.013 (3)0.014 (3)0.013 (3)
C180.024 (3)0.031 (3)0.040 (3)0.002 (2)0.006 (3)0.012 (3)
C190.076 (5)0.049 (4)0.060 (5)0.021 (4)0.039 (4)0.017 (4)
C200.081 (6)0.092 (7)0.071 (6)0.035 (5)0.048 (5)0.028 (5)
C210.053 (5)0.084 (6)0.080 (6)0.006 (5)0.041 (4)0.035 (5)
C220.088 (7)0.057 (6)0.198 (11)0.014 (5)0.099 (8)0.061 (6)
C230.089 (6)0.033 (4)0.169 (10)0.012 (4)0.090 (7)0.022 (5)
C240.035 (3)0.020 (3)0.036 (3)0.007 (2)0.012 (3)0.006 (2)
C250.038 (4)0.024 (3)0.058 (4)0.001 (3)0.012 (3)0.001 (3)
C260.043 (4)0.033 (4)0.072 (5)0.005 (3)0.034 (4)0.011 (3)
C270.079 (6)0.036 (4)0.048 (4)0.020 (4)0.037 (4)0.008 (3)
C280.070 (5)0.045 (4)0.036 (4)0.024 (4)0.006 (3)0.002 (3)
C290.037 (3)0.040 (4)0.030 (3)0.012 (3)0.005 (3)0.003 (3)
C300.024 (3)0.021 (3)0.030 (3)0.002 (2)0.007 (2)0.000 (2)
C310.036 (3)0.025 (3)0.032 (3)0.004 (2)0.001 (3)0.002 (2)
C320.043 (4)0.031 (3)0.043 (4)0.004 (3)0.007 (3)0.012 (3)
C330.045 (4)0.027 (3)0.054 (4)0.001 (3)0.020 (3)0.004 (3)
C340.029 (3)0.025 (3)0.059 (4)0.003 (3)0.012 (3)0.013 (3)
C350.027 (3)0.025 (3)0.034 (3)0.000 (2)0.001 (2)0.003 (2)
Geometric parameters (Å, º) top
Ir1—C51.903 (5)C16—C171.393 (8)
Ir1—C11.958 (5)C16—H16A0.9500
Ir1—P12.3185 (14)C17—H17A0.9500
Ir1—Br22.5205 (6)C18—C191.362 (8)
Ir1—Br12.5528 (6)C18—C231.367 (8)
P1—C241.819 (5)C19—C201.387 (9)
P1—C301.831 (5)C19—H19A0.9500
P1—C181.833 (5)C20—C211.339 (10)
C1—C21.396 (7)C20—H20A0.9500
C1—C61.486 (7)C21—C221.351 (12)
C2—C31.399 (7)C21—H21A0.9500
C2—C121.482 (7)C22—C231.376 (10)
C3—C41.389 (8)C22—H22A0.9500
C3—H3A0.9500C23—H23A0.9500
C4—C51.363 (7)C24—C251.388 (7)
C4—H4A0.9500C24—C291.390 (8)
C5—H5A0.9500C25—C261.394 (8)
C6—C71.391 (7)C25—H25A0.9500
C6—C111.402 (7)C26—C271.379 (10)
C7—C81.391 (8)C26—H26A0.9500
C7—H7A0.9500C27—C281.368 (9)
C8—C91.363 (9)C27—H27A0.9500
C8—H8A0.9500C28—C291.387 (8)
C9—C101.382 (8)C28—H28A0.9500
C9—H9A0.9500C29—H29A0.9500
C10—C111.384 (7)C30—C311.383 (7)
C10—H10A0.9500C30—C351.395 (7)
C11—H11A0.9500C31—C321.383 (7)
C12—C171.387 (8)C31—H31A0.9500
C12—C131.388 (8)C32—C331.378 (8)
C13—C141.384 (8)C32—H32A0.9500
C13—H13A0.9500C33—C341.366 (8)
C14—C151.374 (9)C33—H33A0.9500
C14—H14A0.9500C34—C351.390 (7)
C15—C161.379 (9)C34—H34A0.9500
C15—H15A0.9500C35—H35A0.9500
C5—Ir1—C190.2 (2)C15—C16—C17119.9 (6)
C5—Ir1—P188.94 (17)C15—C16—H16A120.0
C1—Ir1—P197.51 (15)C17—C16—H16A120.0
C5—Ir1—Br294.26 (16)C12—C17—C16121.0 (6)
C1—Ir1—Br285.49 (15)C12—C17—H17A119.5
P1—Ir1—Br2175.61 (4)C16—C17—H17A119.5
C5—Ir1—Br1110.50 (16)C19—C18—C23117.1 (6)
C1—Ir1—Br1158.47 (15)C19—C18—P1122.5 (4)
P1—Ir1—Br189.07 (4)C23—C18—P1120.3 (5)
Br2—Ir1—Br187.01 (2)C18—C19—C20121.6 (7)
C24—P1—C30104.0 (2)C18—C19—H19A119.2
C24—P1—C18106.4 (3)C20—C19—H19A119.2
C30—P1—C18103.4 (2)C21—C20—C19119.8 (8)
C24—P1—Ir1113.86 (19)C21—C20—H20A120.1
C30—P1—Ir1113.56 (17)C19—C20—H20A120.1
C18—P1—Ir1114.52 (18)C20—C21—C22119.9 (7)
C2—C1—C6124.0 (5)C20—C21—H21A120.1
C2—C1—Ir1128.2 (4)C22—C21—H21A120.1
C6—C1—Ir1107.8 (3)C21—C22—C23120.2 (7)
C1—C2—C3120.3 (5)C21—C22—H22A119.9
C1—C2—C12122.2 (5)C23—C22—H22A119.9
C3—C2—C12117.5 (5)C18—C23—C22121.3 (8)
C4—C3—C2125.8 (5)C18—C23—H23A119.3
C4—C3—H3A117.1C22—C23—H23A119.3
C2—C3—H3A117.1C25—C24—C29119.1 (5)
C5—C4—C3124.2 (5)C25—C24—P1121.7 (5)
C5—C4—H4A117.9C29—C24—P1118.8 (4)
C3—C4—H4A117.9C24—C25—C26120.1 (6)
C4—C5—Ir1126.6 (4)C24—C25—H25A119.9
C4—C5—H5A116.7C26—C25—H25A119.9
Ir1—C5—H5A116.7C27—C26—C25119.6 (6)
C7—C6—C11119.2 (5)C27—C26—H26A120.2
C7—C6—C1119.6 (5)C25—C26—H26A120.2
C11—C6—C1121.0 (5)C28—C27—C26120.9 (6)
C8—C7—C6120.3 (6)C28—C27—H27A119.6
C8—C7—H7A119.9C26—C27—H27A119.6
C6—C7—H7A119.9C27—C28—C29119.7 (7)
C9—C8—C7119.8 (6)C27—C28—H28A120.2
C9—C8—H8A120.1C29—C28—H28A120.2
C7—C8—H8A120.1C28—C29—C24120.5 (6)
C8—C9—C10121.0 (6)C28—C29—H29A119.7
C8—C9—H9A119.5C24—C29—H29A119.7
C10—C9—H9A119.5C31—C30—C35118.8 (5)
C9—C10—C11120.1 (6)C31—C30—P1122.4 (4)
C9—C10—H10A120.0C35—C30—P1118.8 (4)
C11—C10—H10A120.0C32—C31—C30120.1 (5)
C10—C11—C6119.6 (5)C32—C31—H31A120.0
C10—C11—H11A120.2C30—C31—H31A120.0
C6—C11—H11A120.2C33—C32—C31120.7 (6)
C17—C12—C13117.7 (5)C33—C32—H32A119.6
C17—C12—C2120.2 (5)C31—C32—H32A119.6
C13—C12—C2122.1 (5)C34—C33—C32120.0 (6)
C14—C13—C12121.5 (6)C34—C33—H33A120.0
C14—C13—H13A119.2C32—C33—H33A120.0
C12—C13—H13A119.2C33—C34—C35119.8 (6)
C15—C14—C13119.9 (6)C33—C34—H34A120.1
C15—C14—H14A120.0C35—C34—H34A120.1
C13—C14—H14A120.0C34—C35—C30120.6 (5)
C14—C15—C16119.8 (6)C34—C35—H35A119.7
C14—C15—H15A120.1C30—C35—H35A119.7
C16—C15—H15A120.1
C6—C1—C2—C3175.3 (5)Ir1—P1—C18—C2369.8 (7)
Ir1—C1—C2—C37.5 (8)C23—C18—C19—C202.8 (12)
C6—C1—C2—C121.5 (8)P1—C18—C19—C20180.0 (6)
Ir1—C1—C2—C12175.8 (4)C18—C19—C20—C210.4 (13)
C1—C2—C3—C45.7 (9)C19—C20—C21—C222.5 (14)
C12—C2—C3—C4171.1 (5)C20—C21—C22—C232.8 (16)
C2—C3—C4—C50.3 (10)C19—C18—C23—C222.4 (13)
C3—C4—C5—Ir119.7 (9)P1—C18—C23—C22179.7 (8)
C2—C1—C6—C7119.0 (6)C21—C22—C23—C180.3 (17)
Ir1—C1—C6—C758.8 (6)C30—P1—C24—C2586.5 (5)
C2—C1—C6—C1165.7 (7)C18—P1—C24—C2522.3 (5)
Ir1—C1—C6—C11116.5 (4)Ir1—P1—C24—C25149.4 (4)
C11—C6—C7—C82.2 (8)C30—P1—C24—C2986.7 (5)
C1—C6—C7—C8173.1 (5)C18—P1—C24—C29164.5 (4)
C6—C7—C8—C90.4 (9)Ir1—P1—C24—C2937.4 (5)
C7—C8—C9—C101.1 (10)C29—C24—C25—C260.9 (8)
C8—C9—C10—C110.8 (9)P1—C24—C25—C26172.3 (4)
C9—C10—C11—C63.4 (8)C24—C25—C26—C270.2 (9)
C7—C6—C11—C104.1 (8)C25—C26—C27—C280.2 (10)
C1—C6—C11—C10171.2 (5)C26—C27—C28—C290.9 (10)
C1—C2—C12—C17127.5 (6)C27—C28—C29—C241.6 (9)
C3—C2—C12—C1749.3 (8)C25—C24—C29—C281.6 (8)
C1—C2—C12—C1353.7 (8)P1—C24—C29—C28171.8 (4)
C3—C2—C12—C13129.5 (6)C24—P1—C30—C314.5 (5)
C17—C12—C13—C142.5 (10)C18—P1—C30—C31106.5 (5)
C2—C12—C13—C14176.3 (6)Ir1—P1—C30—C31128.8 (4)
C12—C13—C14—C151.5 (11)C24—P1—C30—C35177.2 (4)
C13—C14—C15—C160.5 (11)C18—P1—C30—C3571.8 (5)
C14—C15—C16—C171.4 (11)Ir1—P1—C30—C3552.9 (4)
C13—C12—C17—C161.6 (10)C35—C30—C31—C321.0 (8)
C2—C12—C17—C16177.2 (6)P1—C30—C31—C32177.3 (4)
C15—C16—C17—C120.4 (11)C30—C31—C32—C330.3 (9)
C24—P1—C18—C19120.2 (6)C31—C32—C33—C341.4 (9)
C30—P1—C18—C1911.0 (6)C32—C33—C34—C351.2 (8)
Ir1—P1—C18—C19113.1 (5)C33—C34—C35—C300.1 (8)
C24—P1—C18—C2356.9 (7)C31—C30—C35—C341.2 (8)
C30—P1—C18—C23166.1 (6)P1—C30—C35—C34177.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···Br1i0.952.873.717 (5)149
C7—H7A···Br20.952.853.609 (7)137
C23—H23A···Br10.952.793.533 (7)135
Symmetry code: (i) x, y+1/2, z+3/2.
(II) (1,2-Diphenylpenta-1,3-dien-1-yl-5-ylidene)diiodido(triphenylphosphane)iridium(III) top
Crystal data top
[Ir(C17H13)I2(C18H15P)]F(000) = 1744
Mr = 925.54Dx = 1.989 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.5973 (14) ÅCell parameters from 1109 reflections
b = 11.9431 (16) Åθ = 2.4–15.6°
c = 24.457 (3) ŵ = 6.39 mm1
β = 93.331 (3)°T = 173 K
V = 3090.1 (7) Å3Cut-block, dark-blue
Z = 40.07 × 0.06 × 0.05 mm
Data collection top
Bruker APEX CCD
diffractometer
3440 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.132
phi and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1212
Tmin = 0.844, Tmax = 1.000k = 1414
29241 measured reflectionsl = 2929
5435 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0386P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
5435 reflectionsΔρmax = 1.16 e Å3
352 parametersΔρmin = 1.15 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ir10.40123 (5)0.36174 (4)0.34947 (2)0.03406 (16)
I10.28307 (8)0.56344 (7)0.36052 (3)0.0458 (3)
I20.61957 (8)0.47400 (8)0.32615 (4)0.0570 (3)
P10.2104 (3)0.2721 (3)0.37148 (13)0.0336 (8)
C110.4688 (10)0.1454 (11)0.4604 (5)0.041 (3)
H11A0.45020.07790.44190.050*
C10.5134 (10)0.2398 (10)0.3700 (5)0.033 (3)
C100.4524 (11)0.1491 (10)0.5169 (5)0.041 (3)
H10A0.42000.08580.53660.049*
C300.2297 (10)0.1210 (9)0.3839 (5)0.029 (3)
C340.3021 (11)0.0577 (10)0.3495 (6)0.044 (4)
H34A0.34300.10170.32130.053*
C60.5110 (11)0.2361 (10)0.4302 (5)0.034 (3)
C350.2876 (11)0.0583 (10)0.3421 (5)0.041 (3)
H35A0.31710.09310.30880.049*
C180.0961 (10)0.2767 (10)0.3184 (5)0.033 (3)
C20.5829 (10)0.1661 (10)0.3362 (5)0.034 (3)
C80.5280 (12)0.3357 (11)0.5153 (5)0.045 (4)
H8A0.55060.40130.53450.055*
C70.5417 (10)0.3354 (10)0.4595 (5)0.040 (3)
H7A0.57130.40030.44030.048*
C30.5726 (11)0.1673 (10)0.2803 (5)0.042 (3)
H3A0.62880.12040.25910.050*
C40.4867 (12)0.2312 (12)0.2520 (5)0.048 (4)
H4A0.48920.22560.21320.058*
C120.6710 (11)0.0827 (11)0.3586 (5)0.037 (3)
C240.1286 (11)0.3182 (9)0.4345 (5)0.035 (3)
C290.1961 (12)0.3438 (10)0.4792 (5)0.045 (3)
H29A0.28580.34500.47510.054*
C320.1985 (11)0.0448 (10)0.4383 (6)0.043 (3)
H32A0.16880.07940.47160.051*
C330.2572 (12)0.1074 (11)0.3972 (6)0.050 (4)
H33A0.26680.18590.40190.060*
C90.4831 (12)0.2454 (13)0.5447 (5)0.055 (4)
H9A0.47310.24850.58360.066*
C310.1832 (11)0.0687 (10)0.4310 (5)0.040 (3)
H31A0.13970.11150.45900.048*
C130.7630 (12)0.1105 (11)0.3941 (5)0.047 (4)
H13A0.76770.18510.40740.057*
C50.4000 (11)0.3009 (10)0.2771 (5)0.043 (3)
H5A0.33080.32190.25640.051*
C270.0060 (15)0.3660 (11)0.5353 (7)0.065 (5)
H27A0.03610.37950.57000.078*
C170.6678 (13)0.0281 (11)0.3407 (5)0.052 (4)
H17A0.60640.05050.31610.062*
C250.0029 (12)0.3220 (10)0.4405 (6)0.054 (4)
H25A0.05130.30900.40960.064*
C280.1381 (15)0.3680 (12)0.5297 (5)0.061 (4)
H28A0.18670.38570.56000.073*
C190.0389 (15)0.1850 (13)0.3015 (7)0.085 (6)
H19A0.05820.11530.31780.102*
C260.0632 (14)0.3444 (12)0.4903 (7)0.068 (5)
H26A0.15290.34510.49400.082*
C140.8483 (12)0.0316 (14)0.4106 (6)0.064 (5)
H14A0.91060.05320.43490.077*
C210.0780 (14)0.2803 (14)0.2371 (7)0.072 (5)
H21A0.13390.28160.20810.087*
C150.8452 (14)0.0770 (14)0.3927 (6)0.061 (4)
H15A0.90500.13050.40380.073*
C160.7538 (15)0.1058 (13)0.3586 (6)0.066 (4)
H16A0.74860.18130.34660.079*
C200.0480 (19)0.1864 (14)0.2609 (7)0.120 (9)
H20A0.08620.11830.25040.144*
C230.0627 (17)0.3737 (13)0.2939 (8)0.118 (8)
H23A0.10180.44180.30370.142*
C220.0258 (17)0.3751 (14)0.2555 (9)0.123 (9)
H22A0.05150.44510.24140.148*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.0342 (3)0.0343 (3)0.0334 (3)0.0003 (3)0.0009 (2)0.0000 (3)
I10.0508 (6)0.0394 (5)0.0467 (6)0.0009 (4)0.0024 (4)0.0016 (4)
I20.0433 (6)0.0551 (6)0.0717 (7)0.0108 (5)0.0057 (5)0.0114 (5)
P10.0322 (19)0.0320 (19)0.0368 (19)0.0022 (15)0.0017 (15)0.0011 (16)
C110.028 (7)0.057 (9)0.040 (8)0.013 (7)0.015 (6)0.008 (7)
C10.023 (6)0.041 (8)0.031 (7)0.003 (6)0.013 (5)0.001 (6)
C100.053 (8)0.034 (8)0.036 (8)0.017 (7)0.008 (6)0.005 (7)
C300.020 (6)0.030 (7)0.038 (7)0.001 (5)0.003 (5)0.004 (6)
C340.041 (8)0.038 (8)0.056 (9)0.014 (7)0.028 (7)0.013 (7)
C60.036 (7)0.034 (8)0.034 (7)0.003 (6)0.008 (6)0.014 (6)
C350.046 (8)0.041 (8)0.036 (8)0.003 (7)0.002 (6)0.003 (6)
C180.027 (7)0.033 (7)0.041 (8)0.004 (6)0.004 (6)0.006 (6)
C20.030 (7)0.037 (8)0.033 (7)0.010 (6)0.003 (6)0.005 (6)
C80.052 (9)0.039 (9)0.047 (9)0.019 (7)0.013 (7)0.022 (7)
C70.031 (7)0.046 (9)0.044 (8)0.009 (6)0.003 (6)0.006 (7)
C30.045 (8)0.040 (8)0.038 (8)0.009 (6)0.008 (7)0.004 (6)
C40.049 (9)0.079 (11)0.016 (7)0.004 (8)0.002 (6)0.007 (7)
C120.039 (8)0.045 (8)0.027 (7)0.013 (7)0.005 (6)0.005 (6)
C240.040 (8)0.019 (6)0.044 (8)0.014 (6)0.015 (6)0.002 (6)
C290.045 (8)0.042 (9)0.049 (9)0.006 (7)0.002 (7)0.002 (7)
C320.043 (8)0.032 (8)0.054 (9)0.001 (6)0.006 (7)0.007 (7)
C330.059 (10)0.034 (8)0.061 (10)0.001 (7)0.033 (8)0.003 (8)
C90.053 (9)0.079 (12)0.035 (8)0.011 (9)0.012 (7)0.005 (9)
C310.037 (8)0.040 (8)0.045 (8)0.005 (6)0.004 (6)0.005 (7)
C130.047 (8)0.049 (9)0.046 (9)0.003 (7)0.003 (7)0.007 (7)
C50.040 (8)0.053 (9)0.035 (8)0.003 (7)0.004 (6)0.011 (7)
C270.078 (12)0.042 (9)0.071 (12)0.013 (9)0.042 (10)0.001 (9)
C170.061 (10)0.057 (10)0.037 (8)0.013 (8)0.000 (7)0.016 (7)
C250.039 (8)0.039 (8)0.080 (11)0.017 (7)0.021 (8)0.008 (8)
C280.084 (12)0.070 (11)0.027 (8)0.017 (9)0.012 (8)0.007 (8)
C190.114 (14)0.050 (10)0.099 (13)0.000 (10)0.084 (12)0.005 (9)
C260.046 (9)0.064 (11)0.091 (13)0.001 (8)0.032 (9)0.003 (10)
C140.023 (8)0.092 (13)0.077 (12)0.022 (9)0.002 (7)0.016 (10)
C210.051 (10)0.073 (12)0.095 (13)0.008 (9)0.029 (9)0.003 (11)
C150.057 (10)0.083 (12)0.043 (9)0.027 (9)0.001 (8)0.012 (9)
C160.082 (12)0.062 (11)0.053 (10)0.024 (9)0.007 (9)0.012 (8)
C200.20 (2)0.055 (12)0.123 (16)0.059 (13)0.114 (16)0.036 (11)
C230.121 (15)0.038 (10)0.21 (2)0.015 (10)0.127 (16)0.031 (12)
C220.108 (16)0.054 (12)0.22 (2)0.019 (11)0.089 (17)0.064 (14)
Geometric parameters (Å, º) top
Ir1—C51.913 (12)C24—C291.375 (16)
Ir1—C11.963 (11)C24—C251.393 (15)
Ir1—P12.324 (3)C29—C281.378 (16)
Ir1—I22.7061 (10)C29—H29A0.9500
Ir1—I12.7211 (10)C32—C331.373 (16)
P1—C181.826 (11)C32—C311.377 (15)
P1—C301.843 (11)C32—H32A0.9500
P1—C241.810 (11)C33—H33A0.9500
C11—C101.384 (15)C9—H9A0.9500
C11—C61.370 (16)C31—H31A0.9500
C11—H11A0.9500C13—C141.381 (17)
C1—C21.389 (15)C13—H13A0.9500
C1—C61.473 (15)C5—H5A0.9500
C10—C91.384 (17)C27—C281.399 (19)
C10—H10A0.9500C27—C261.38 (2)
C30—C311.377 (15)C27—H27A0.9500
C30—C351.383 (14)C17—C161.389 (17)
C34—C331.370 (17)C17—H17A0.9500
C34—C351.408 (15)C25—C261.370 (17)
C34—H34A0.9500C25—H25A0.9500
C6—C71.434 (15)C28—H28A0.9500
C35—H35A0.9500C19—C201.392 (18)
C18—C191.330 (16)C19—H19A0.9500
C18—C231.361 (17)C26—H26A0.9500
C2—C31.376 (15)C14—C151.370 (19)
C2—C121.493 (15)C14—H14A0.9500
C8—C71.364 (16)C21—C201.313 (19)
C8—C91.367 (17)C21—C221.35 (2)
C8—H8A0.9500C21—H21A0.9500
C7—H7A0.9500C15—C161.358 (18)
C3—C41.402 (16)C15—H15A0.9500
C3—H3A0.9500C16—H16A0.9500
C4—C51.360 (15)C20—H20A0.9500
C4—H4A0.9500C23—C221.37 (2)
C12—C131.383 (16)C23—H23A0.9500
C12—C171.394 (16)C22—H22A0.9500
C5—Ir1—C189.5 (5)C24—C29—C28122.2 (13)
C5—Ir1—P189.2 (4)C24—C29—H29A118.9
C1—Ir1—P197.5 (3)C28—C29—H29A118.9
C5—Ir1—I292.6 (3)C33—C32—C31119.6 (13)
C1—Ir1—I284.2 (3)C33—C32—H32A120.2
P1—Ir1—I2177.54 (8)C31—C32—H32A120.2
C5—Ir1—I1113.6 (4)C32—C33—C34120.5 (12)
C1—Ir1—I1156.0 (3)C32—C33—H33A119.7
P1—Ir1—I189.75 (8)C34—C33—H33A119.7
I2—Ir1—I188.01 (3)C8—C9—C10118.8 (12)
C18—P1—C30103.4 (5)C8—C9—H9A120.6
C18—P1—C24106.9 (6)C10—C9—H9A120.6
C30—P1—C24102.1 (5)C30—C31—C32121.0 (12)
C18—P1—Ir1115.2 (4)C30—C31—H31A119.5
C30—P1—Ir1112.7 (4)C32—C31—H31A119.5
C24—P1—Ir1115.1 (4)C14—C13—C12121.0 (13)
C10—C11—C6122.0 (12)C14—C13—H13A119.5
C10—C11—H11A119.0C12—C13—H13A119.5
C6—C11—H11A119.0C4—C5—Ir1127.6 (10)
C2—C1—C6123.6 (11)C4—C5—H5A116.2
C2—C1—Ir1128.7 (9)Ir1—C5—H5A116.2
C6—C1—Ir1107.6 (8)C28—C27—C26120.0 (13)
C11—C10—C9119.9 (13)C28—C27—H27A120.0
C11—C10—H10A120.0C26—C27—H27A120.0
C9—C10—H10A120.0C16—C17—C12120.4 (13)
C31—C30—C35119.7 (11)C16—C17—H17A119.8
C31—C30—P1123.0 (9)C12—C17—H17A119.8
C35—C30—P1117.2 (9)C26—C25—C24120.8 (14)
C33—C34—C35120.1 (12)C26—C25—H25A119.6
C33—C34—H34A120.0C24—C25—H25A119.6
C35—C34—H34A120.0C27—C28—C29118.5 (14)
C11—C6—C1123.3 (11)C27—C28—H28A120.8
C11—C6—C7117.5 (11)C29—C28—H28A120.8
C1—C6—C7118.9 (11)C18—C19—C20123.0 (15)
C30—C35—C34119.0 (12)C18—C19—H19A118.5
C30—C35—H35A120.5C20—C19—H19A118.5
C34—C35—H35A120.5C25—C26—C27120.3 (14)
C19—C18—C23115.4 (12)C25—C26—H26A119.9
C19—C18—P1122.0 (10)C27—C26—H26A119.9
C23—C18—P1122.6 (10)C13—C14—C15121.6 (14)
C3—C2—C1121.0 (11)C13—C14—H14A119.2
C3—C2—C12117.4 (11)C15—C14—H14A119.2
C1—C2—C12121.7 (11)C20—C21—C22117.0 (16)
C7—C8—C9122.5 (12)C20—C21—H21A121.5
C7—C8—H8A118.7C22—C21—H21A121.5
C9—C8—H8A118.7C14—C15—C16117.8 (14)
C8—C7—C6119.2 (12)C14—C15—H15A121.1
C8—C7—H7A120.4C16—C15—H15A121.1
C6—C7—H7A120.4C17—C16—C15121.9 (15)
C2—C3—C4126.0 (11)C17—C16—H16A119.1
C2—C3—H3A117.0C15—C16—H16A119.1
C4—C3—H3A117.0C21—C20—C19121.0 (17)
C5—C4—C3123.4 (11)C21—C20—H20A119.5
C5—C4—H4A118.3C19—C20—H20A119.5
C3—C4—H4A118.3C18—C23—C22121.4 (14)
C13—C12—C17117.1 (12)C18—C23—H23A119.3
C13—C12—C2123.4 (12)C22—C23—H23A119.3
C17—C12—C2119.4 (12)C21—C22—C23122.1 (15)
C29—C24—C25118.3 (12)C21—C22—H22A119.0
C29—C24—P1119.9 (9)C23—C22—H22A119.0
C25—C24—P1121.7 (11)
C6—C11—C10—C92.3 (18)C30—P1—C24—C2984.2 (10)
C18—P1—C30—C31108.7 (10)Ir1—P1—C24—C2938.2 (11)
C24—P1—C30—C312.2 (11)C18—P1—C24—C2516.5 (12)
Ir1—P1—C30—C31126.3 (9)C30—P1—C24—C2591.7 (11)
C18—P1—C30—C3567.5 (10)Ir1—P1—C24—C25145.9 (9)
C24—P1—C30—C35178.4 (9)C25—C24—C29—C283.0 (19)
Ir1—P1—C30—C3557.5 (9)P1—C24—C29—C28173.1 (10)
C10—C11—C6—C1171.6 (11)C31—C32—C33—C341.0 (19)
C10—C11—C6—C71.9 (17)C35—C34—C33—C320.4 (19)
C2—C1—C6—C1160.9 (17)C7—C8—C9—C101 (2)
Ir1—C1—C6—C11118.0 (11)C11—C10—C9—C80.7 (19)
C2—C1—C6—C7125.8 (12)C35—C30—C31—C323.1 (18)
Ir1—C1—C6—C755.4 (12)P1—C30—C31—C32179.2 (9)
C31—C30—C35—C342.5 (17)C33—C32—C31—C302.4 (18)
P1—C30—C35—C34178.8 (9)C17—C12—C13—C140.5 (19)
C33—C34—C35—C301.2 (18)C2—C12—C13—C14175.2 (12)
C30—P1—C18—C196.2 (14)C3—C4—C5—Ir118.9 (19)
C24—P1—C18—C19101.1 (13)C13—C12—C17—C160.4 (19)
Ir1—P1—C18—C19129.5 (12)C2—C12—C17—C16176.3 (12)
C30—P1—C18—C23174.5 (14)C29—C24—C25—C263.8 (19)
C24—P1—C18—C2378.2 (15)P1—C24—C25—C26172.3 (10)
Ir1—P1—C18—C2351.1 (15)C26—C27—C28—C292 (2)
C6—C1—C2—C3174.1 (11)C24—C29—C28—C270 (2)
Ir1—C1—C2—C34.5 (17)C23—C18—C19—C201 (3)
C6—C1—C2—C125.7 (17)P1—C18—C19—C20179.7 (15)
Ir1—C1—C2—C12175.6 (8)C24—C25—C26—C271 (2)
C9—C8—C7—C61.5 (19)C28—C27—C26—C252 (2)
C11—C6—C7—C80.0 (17)C12—C13—C14—C150 (2)
C1—C6—C7—C8173.8 (11)C13—C14—C15—C161 (2)
C1—C2—C3—C46.4 (19)C12—C17—C16—C152 (2)
C12—C2—C3—C4173.5 (12)C14—C15—C16—C172 (2)
C2—C3—C4—C51 (2)C22—C21—C20—C193 (3)
C3—C2—C12—C13129.0 (13)C18—C19—C20—C210 (3)
C1—C2—C12—C1351.1 (17)C19—C18—C23—C221 (3)
C3—C2—C12—C1746.6 (16)P1—C18—C23—C22178.0 (17)
C1—C2—C12—C17133.3 (12)C20—C21—C22—C236 (3)
C18—P1—C24—C29167.6 (9)C18—C23—C22—C215 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···I20.952.943.707 (12)138
C23—H23A···I10.952.843.699 (17)152
 

Acknowledgements

We thank the National Science Foundation (CHE-0647252) for support of this research.

References

First citationBleeke, J. R. (2001). Chem. Rev. 101, 1205–1228.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBleeke, J. R., Behm, R., Xie, Y.-F., Chiang, M. Y., Robinson, K. D. & Beatty, A. M. (1997). Organometallics, 16, 606–623.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFernández, I. & Frenking, G. (2007). Chem. Eur. J. 13, 5873–5884.  Web of Science PubMed Google Scholar
First citationGilbertson, R. D., Weakley, T. J. R. & Haley, M. M. (1999). J. Am. Chem. Soc. 121, 2597–2598.  Web of Science CSD CrossRef CAS Google Scholar
First citationIron, M. A., Martin, J. M. L. & van der Boom, M. E. (2003). J. Am. Chem. Soc. 125, 13020–13021.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLandorf, C. W. & Haley, M. M. (2006). Angew. Chem. Int. Ed. 45, 3914–3936.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThorn, D. L. & Hoffmann, R. (1979). Nouv. J. Chim. 3, 39–45.  CAS Google Scholar
First citationWright, J. L. (2006). Dalton Trans. pp. 1821–1827.  Web of Science CrossRef Google Scholar
First citationWu, H.-P., Ess, D. H., Lanza, S., Weakley, T. J. R., Houk, K. N., Baldridge, K. K. & Haley, M. M. (2007). Organometallics, 26, 3957–3968.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhu, J., Jia, G. & Lin, Z. (2007). Organometallics, 26, 1986–1995.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds