research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a helical silver(I) coordination polymer based on an unsymmetrical di­pyridyl ligand: catena-poly[[silver(I)-μ-N-(pyridin-4-ylmeth­yl)pyridine-3-amine-κ2N:N′] tetra­fluorido­borate methanol hemisolvate]

aDepartment of Food and Nutrition, Kyungnam College of Information and, Technology, Busan 47011, South Korea, bDivision of Science Education, Kangwon National University, Chuncheon 24341, South Korea, and cResearch Institute of Natural Science, Gyeongsang National University, Jinju 52828, South Korea
*Correspondence e-mail: kangy@kangwon.ac.kr, kmpark@gnu.ac.kr

Edited by V. V. Chernyshev, Moscow State University, Russia (Received 23 September 2015; accepted 1 October 2015; online 7 October 2015)

The asymmetric unit of the title compound, {[AgL]·BF4·0.5CH3OH}n, L = N-(pyridin-4-ylmeth­yl)pyridine-3-amine, C11H11N3, contains one AgI ion, one ligand L, one tetra­fluorido­borate anion disordered over two orientations in a 0.669 (13):0.331 (13) ratio and one half of a methanol solvent mol­ecule situated on an inversion center. Each AgI ion is coordinated by two N atoms from two L ligands in a distorted linear geometry [N—Ag—N = 174.70 (19)°]. Each L ligand bridges two AgI ions, thus forming polymeric helical chains propagating in [010]. In the crystal, Ag⋯Ag [3.3369 (10) Å] and ππ inter­actions between the aromatic rings [centroid-to-centroid distance = 3.676 (4) Å] link these chains into layers parallel to (10-1). Ag⋯F and weak N(C)—H⋯F inter­actions further consolidate the crystal packing.

1. Chemical context

In supra­molecular chemistry and material science, infinite helical coordination polymers have attracted particular inter­est for the past two decades because of their fascinating architecture, their similarities to biological systems and their potential applications in catalysis and optical materials (Leong & Vittal, 2011[Leong, W. L. & Vittal, J. J. (2011). Chem. Rev. 111, 688-764.]; Wang et al., 2012[Wang, C., Zhang, T. & Lin, W. (2012). Chem. Rev. 112, 1084-1104.]; Zhang et al., 2009[Zhang, W., Ye, H. & Xiong, R. G. (2009). Coord. Chem. Rev. 253, 2980-2997.]). Despite numerous examples of helical coordination polymers, the rational strategy of construction of helical coordination polymers is still constrained by our poor understanding of the role of the metal ions and spacer ligands. Nevertheless, the combination of a silver ion with a linear coordination geometry and flexible unsymmetrical dipyridyl ligands composed of two terminal pyridines with different substituted-nitro­gen positions is one of the most promising strategies for achieving helical coordination polymers. Our group and that of Gao have already reported helical coordination polymers obtained through the reactions of silver salts and some unsymmetrical dipyridyl ligands such as N-(pyridin-3-ylmeth­yl)pyridine-2-amine (Moon & Park, 2013[Moon, S.-H. & Park, K.-M. (2013). Acta Cryst. E69, m414-m415.]), N-(pyridin-2-ylmeth­yl)pyridine-3-amine (Moon & Park, 2014[Moon, S.-H. & Park, K.-M. (2014). Acta Cryst. E70, m233.]) and N-(pyridin-4-ylmeth­yl)pyridine-3-amine (Moon et al., 2014[Moon, B., Jeon, Y., Moon, S.-H. & Park, K.-M. (2014). Acta Cryst. E70, 507-509.]; Lee et al., 2015[Lee, E., Ju, H., Moon, S.-H., Lee, S. S. & Park, K.-M. (2015). Bull. Korean Chem. Soc. 36, 1532-1535.]; Zhang et al., 2013[Zhang, Z.-Y., Deng, Z.-P., Huo, L.-H., Zhao, H. & Gao, S. (2013). Inorg. Chem. 52, 9514-5923.]). Herein, we report the crystal structure of the title compound prepared by the reaction of silver tetra­fluorido­borate with the unsymmetrical dipyridyl ligand, N-(pyridin-4-ylmeth­yl)pyridine-3-amine (L), synthesized according to the procedure described by Lee et al. (2013[Lee, E., Ryu, H., Moon, S.-H. & Park, K.-M. (2013). Bull. Korean Chem. Soc. 34, 3477-3480.]). The structure of the title compound is related to those of the AgI coordination polymers with three different counter-anions such as nitrate, perchlorate and tri­fluoro­methane­sulfonate (Moon et al., 2014[Moon, B., Jeon, Y., Moon, S.-H. & Park, K.-M. (2014). Acta Cryst. E70, 507-509.]; Lee et al., 2015[Lee, E., Ju, H., Moon, S.-H., Lee, S. S. & Park, K.-M. (2015). Bull. Korean Chem. Soc. 36, 1532-1535.]; Zhang et al., 2013[Zhang, Z.-Y., Deng, Z.-P., Huo, L.-H., Zhao, H. & Gao, S. (2013). Inorg. Chem. 52, 9514-5923.]).

[Scheme 1]

2. Structural commentary

The mol­ecular components of the title structure are shown in Fig. 1[link]. The asymmetric unit consists of one AgI ion, one L ligand, one tetra­fluorido­borate anion and one half of a methanol mol­ecule. Each AgI ion is coordinated by two pyridine N atoms from two symmetry-related ligands in a geometry which is slightly distorted from linear [N1—Ag1—N3 = 174.70 (19)°], forming an infinite helical coordination polymer. The helical chain propagates along [010] (Fig. 2[link]) with a pitch length of 15.6485 (14) Å, shorter than that [16.7871 (8) Å] of the nitrate-containing AgI coordination polymer reported by Moon et al. (2014[Moon, B., Jeon, Y., Moon, S.-H. & Park, K.-M. (2014). Acta Cryst. E70, 507-509.]). The two pyridine rings coordinating the AgI ion are tilted by 13.8 (3)° with respect to each other. The two pyridine rings in the L ligand are almost perpendicular, the dihedral angle between their mean planes being 89.34 (15)°.

[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound with the atom numbering. Displacement ellipsoids are drawn at the 30% probability level. The F atoms of the tetra­fluorido­borate group are disordered over two sets of sites with refined site-occupancy factors of 0.669 (13) (part A) and 0.331 (13) (part B). The disordered methanol solvent mol­ecule is omitted for clarity. [Symmetry codes: (i) − x + [{3\over 2}], y − [{1\over 2}], − z + [{3\over 2}]; (ii) − x + [{3\over 2}], y + [{1\over 2}], − z + [{3\over 2}].]
[Figure 2]
Figure 2
The two-dimensional supra­molecular network formed through Ag⋯Ag (yellow dashed lines) and ππ (black dashed lines) inter­actions. The disordered methanol mol­ecules and tetra­fluorido­borate anions are omitted for clarity.

3. Supra­molecular features

In the crystal structure, symmetry-related right- and left-handed helical chains are arranged alternately through Ag⋯Ag [3.3369 (10) Å] and Ag⋯F inter­actions [Ag1⋯F1A = 2.84 (2), Ag1⋯F1B = 2.815 (15) and Ag1⋯F4B (−x + 1, −y, −z + 1) = 2.879 (10) Å] and ππ inter­actions between the pyridine rings of adjacent helical chains [centroid-to-centroid distance = 3.676 (4) Å], resulting in the formation of a two-dimensional supra­molecular network parallel to the (10[\overline{1}]) plane (Fig. 2[link]). Furthermore, several N—H⋯F and C—H⋯F hydrogen bonds (Table 1[link]) between the helical chains and the anions contribute to stabilization of the crystal structure.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯F2Ai 0.88 2.10 2.887 (9) 148
N2—H2⋯F2Bi 0.88 2.58 3.357 (17) 148
C6—H6A⋯F4Aii 0.99 2.39 3.259 (12) 146
C10—H10⋯F4Aiii 0.95 2.41 3.318 (19) 159
C12—H12B⋯F1A 0.98 2.14 3.08 (4) 160
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x+1, y, z; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

4. Database survey

The non-solvated structures of the silver(I) nitrate and perchlorate complexes of the same ligand have been reported by Zhang et al. (2013[Zhang, Z.-Y., Deng, Z.-P., Huo, L.-H., Zhao, H. & Gao, S. (2013). Inorg. Chem. 52, 9514-5923.]). Our group has reported the solvated form of the silver nitrate complex with an L ligand (Moon et al., 2014[Moon, B., Jeon, Y., Moon, S.-H. & Park, K.-M. (2014). Acta Cryst. E70, 507-509.]). These complexes adopt single-stranded helical structures. Our group has also reported the silver tri­fluorido­methane­sulfonate complex with an L ligand, which displays a double-stranded helical structure (Lee et al., 2015[Lee, E., Ju, H., Moon, S.-H., Lee, S. S. & Park, K.-M. (2015). Bull. Korean Chem. Soc. 36, 1532-1535.]).

5. Synthesis and crystallization

The N-(pyridin-4-ylmeth­yl)pyridine-3-amine ligand was synthesized according to a literature method (Lee et al., 2013[Lee, E., Ryu, H., Moon, S.-H. & Park, K.-M. (2013). Bull. Korean Chem. Soc. 34, 3477-3480.]). X-ray quality single crystals of the title compound were obtained by slow evaporation of a methanol solution of the ligand with AgBF4 in the molar ratio 1:1.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The methanol solvent mol­ecule resides on an inversion centre. Therefore the C12/O12 atoms were refined at the same sites with site occupancy factors of 0.5 using EXYZ/EADP constraints. All H atoms were positioned geometrically and refined using a riding model, with d(C—H) = 0.95 Å for Csp2—H, 0.88 Å for amine N—H, 0.84 Å for hydroxyl O—H, 0.98 Å for methyl C—H and 0.99 Å for methyl­ene C—H. For all H atoms Uiso(H) = 1.2–1.5Ueq of the parent atom.

Table 2
Experimental details

Crystal data
Chemical formula [Ag(C11H11N3)](BF4)·0.5CH4O
Mr 395.93
Crystal system, space group Monoclinic, P21/n
Temperature (K) 173
a, b, c (Å) 9.2597 (8), 15.6485 (14), 10.3574 (10)
β (°) 107.185 (2)
V3) 1433.8 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.45
Crystal size (mm) 0.50 × 0.40 × 0.40
 
Data collection
Diffractometer Bruker SMART CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2000[Bruker. (2000). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.531, 0.595
No. of measured, independent and observed [I > 2σ(I)] reflections 8014, 2821, 1883
Rint 0.077
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.167, 1.02
No. of reflections 2821
No. of parameters 227
No. of restraints 31
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.18, −0.70
Computer programs: SMART and SAINT-Plus (Bruker, 2000[Bruker. (2000). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact GBR, Germany.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2000); data reduction: SAINT-Plus (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

catena-Poly[[silver(I)-µ-N-(pyridine-4-ylmethyl)pyridine-3-amine-κ2N:N'] tetrafluoridoborate methanol hemisolvate] top
Crystal data top
[Ag(C11H11N3)](BF4)·0.5CH4OF(000) = 780
Mr = 395.93Dx = 1.834 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2696 reflections
a = 9.2597 (8) Åθ = 2.4–24.7°
b = 15.6485 (14) ŵ = 1.45 mm1
c = 10.3574 (10) ÅT = 173 K
β = 107.185 (2)°Block, colorless
V = 1433.8 (2) Å30.50 × 0.40 × 0.40 mm
Z = 4
Data collection top
Bruker SMART CCD area detector
diffractometer
2821 independent reflections
Radiation source: fine-focus sealed tube1883 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.077
φ and ω scansθmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1011
Tmin = 0.531, Tmax = 0.595k = 1719
8014 measured reflectionsl = 1012
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.167H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.1027P)2]
where P = (Fo2 + 2Fc2)/3
2821 reflections(Δ/σ)max = 0.001
227 parametersΔρmax = 1.18 e Å3
31 restraintsΔρmin = 0.70 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ag10.67175 (6)0.04405 (3)0.54637 (6)0.0593 (3)
B10.6447 (9)0.1230 (5)0.8147 (8)0.077 (3)
F1A0.733 (3)0.0831 (17)0.751 (3)0.217 (10)0.669 (13)
F2A0.7295 (8)0.1786 (5)0.9050 (9)0.094 (3)0.669 (13)
F3A0.6034 (13)0.0671 (7)0.9030 (10)0.127 (4)0.669 (13)
F4A0.5186 (12)0.1597 (13)0.7407 (16)0.197 (8)0.669 (13)
F1B0.735 (2)0.0733 (11)0.762 (2)0.072 (5)0.331 (13)
F2B0.6706 (19)0.2035 (7)0.7697 (18)0.095 (6)0.331 (13)
F3B0.680 (3)0.1190 (19)0.9487 (12)0.143 (9)0.331 (13)
F4B0.533 (2)0.0941 (12)0.7100 (13)0.103 (8)0.331 (13)
N10.7799 (6)0.0402 (3)0.4442 (6)0.0510 (13)
N21.1086 (8)0.1806 (4)0.5210 (8)0.0774 (19)
H21.16360.20660.47650.093*
N30.9214 (6)0.3630 (3)0.8522 (6)0.0556 (13)
C10.8958 (7)0.0881 (4)0.5113 (7)0.0515 (15)
H10.92100.09010.60710.062*
C20.9820 (7)0.1356 (4)0.4482 (7)0.0554 (16)
C30.9445 (10)0.1342 (5)0.3107 (8)0.070 (2)
H31.00180.16600.26500.083*
C40.8219 (11)0.0860 (5)0.2380 (8)0.077 (2)
H40.79340.08510.14200.092*
C50.7414 (9)0.0390 (4)0.3067 (8)0.0639 (19)
H50.65800.00530.25720.077*
C61.1541 (8)0.1869 (4)0.6647 (10)0.071 (2)
H6A1.26130.20490.69470.085*
H6B1.14910.12900.70150.085*
C71.0659 (7)0.2468 (4)0.7280 (8)0.0576 (17)
C80.9678 (8)0.3085 (4)0.6527 (8)0.0617 (18)
H80.94860.31190.55760.074*
C90.8995 (7)0.3642 (4)0.7187 (8)0.0585 (17)
H90.83290.40590.66660.070*
C101.0124 (8)0.3026 (4)0.9239 (8)0.0656 (19)
H101.02740.29921.01860.079*
C111.0858 (8)0.2446 (4)0.8627 (8)0.0621 (18)
H111.15090.20280.91650.074*
C121.022 (2)0.0409 (10)0.980 (3)0.256 (12)0.50
H12A1.02640.08291.05140.385*0.50
H12B0.94770.05940.89610.385*0.50
H12C1.12170.03620.96580.385*0.50
O121.022 (2)0.0409 (10)0.980 (3)0.256 (12)0.50
H121.11010.03770.97350.385*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0566 (4)0.0409 (3)0.0845 (5)0.0059 (2)0.0271 (3)0.0069 (2)
B10.081 (6)0.077 (6)0.064 (6)0.011 (5)0.010 (5)0.004 (5)
F1A0.237 (13)0.226 (13)0.203 (13)0.004 (9)0.088 (9)0.034 (9)
F2A0.090 (5)0.079 (5)0.120 (8)0.025 (4)0.043 (5)0.053 (5)
F3A0.138 (9)0.147 (9)0.090 (7)0.053 (7)0.026 (6)0.008 (6)
F4A0.102 (9)0.28 (2)0.173 (12)0.070 (12)0.014 (8)0.009 (14)
F1B0.112 (9)0.053 (7)0.066 (7)0.005 (6)0.050 (6)0.034 (5)
F2B0.108 (10)0.057 (7)0.113 (10)0.006 (6)0.022 (7)0.013 (6)
F3B0.148 (12)0.155 (13)0.125 (11)0.010 (9)0.037 (9)0.024 (9)
F4B0.154 (19)0.090 (12)0.057 (9)0.039 (12)0.015 (10)0.029 (8)
N10.049 (3)0.035 (3)0.069 (4)0.007 (2)0.018 (3)0.001 (2)
N20.074 (4)0.048 (3)0.127 (6)0.000 (3)0.054 (4)0.002 (4)
N30.051 (3)0.038 (3)0.078 (4)0.004 (2)0.018 (3)0.004 (3)
C10.057 (4)0.038 (3)0.062 (4)0.013 (3)0.022 (3)0.001 (3)
C20.058 (4)0.035 (3)0.081 (5)0.011 (3)0.032 (4)0.003 (3)
C30.092 (6)0.049 (4)0.079 (5)0.025 (4)0.042 (4)0.021 (4)
C40.115 (7)0.061 (5)0.060 (5)0.025 (5)0.034 (5)0.013 (4)
C50.073 (5)0.047 (4)0.067 (5)0.015 (3)0.014 (4)0.003 (3)
C60.051 (4)0.045 (4)0.111 (7)0.006 (3)0.014 (4)0.019 (4)
C70.046 (3)0.036 (3)0.085 (5)0.004 (3)0.011 (3)0.001 (3)
C80.056 (4)0.048 (4)0.074 (5)0.013 (3)0.009 (3)0.008 (3)
C90.047 (3)0.044 (3)0.078 (5)0.006 (3)0.011 (3)0.001 (3)
C100.072 (4)0.042 (4)0.074 (5)0.008 (3)0.008 (4)0.010 (3)
C110.054 (4)0.035 (3)0.092 (6)0.002 (3)0.013 (4)0.008 (3)
C120.145 (14)0.29 (3)0.36 (3)0.016 (16)0.106 (15)0.01 (2)
O120.145 (14)0.29 (3)0.36 (3)0.016 (16)0.106 (15)0.01 (2)
Geometric parameters (Å, º) top
Ag1—N12.118 (5)C2—C31.362 (11)
Ag1—N3i2.121 (5)C3—C41.386 (12)
Ag1—Ag1ii3.3369 (10)C3—H30.9500
B1—F4A1.324 (8)C4—C51.384 (11)
B1—F3B1.330 (10)C4—H40.9500
B1—F4B1.336 (9)C5—H50.9500
B1—F2A1.348 (11)C6—C71.514 (9)
B1—F1A1.349 (10)C6—H6A0.9900
B1—F1B1.367 (9)C6—H6B0.9900
B1—F2B1.388 (9)C7—C111.352 (10)
B1—F3A1.398 (8)C7—C81.396 (9)
N1—C11.325 (9)C8—C91.371 (10)
N1—C51.363 (10)C8—H80.9500
N2—C21.385 (9)C9—H90.9500
N2—C61.425 (11)C10—C111.394 (10)
N2—H20.8800C10—H100.9500
N3—C101.336 (8)C11—H110.9500
N3—C91.337 (9)C12—C12iv1.44 (3)
N3—Ag1iii2.121 (5)C12—H12A0.9800
C1—C21.388 (9)C12—H12B0.9800
C1—H10.9500C12—H12C0.9800
N1—Ag1—N3i174.70 (19)N1—C1—H1118.5
N1—Ag1—Ag1ii98.63 (14)C2—C1—H1118.5
N3i—Ag1—Ag1ii86.18 (14)C3—C2—N2119.4 (7)
F4A—B1—F3B121.9 (14)C3—C2—C1118.6 (7)
F4A—B1—F4B48.5 (9)N2—C2—C1121.9 (7)
F3B—B1—F4B136.5 (18)C2—C3—C4119.5 (7)
F4A—B1—F2A110.8 (11)C2—C3—H3120.3
F3B—B1—F2A52.5 (14)C4—C3—H3120.3
F4B—B1—F2A159.0 (12)C5—C4—C3119.3 (7)
F4A—B1—F1A118.5 (16)C5—C4—H4120.4
F3B—B1—F1A119.4 (17)C3—C4—H4120.4
F4B—B1—F1A83.3 (16)N1—C5—C4121.0 (7)
F2A—B1—F1A109.0 (14)N1—C5—H5119.5
F4A—B1—F1B123.6 (14)C4—C5—H5119.5
F3B—B1—F1B113.5 (15)N2—C6—C7117.7 (6)
F4B—B1—F1B84.3 (15)N2—C6—H6A107.9
F2A—B1—F1B110.2 (10)C7—C6—H6A107.9
F1A—B1—F1B8 (2)N2—C6—H6B107.9
F4A—B1—F2B67.8 (10)C7—C6—H6B107.9
F3B—B1—F2B112.2 (17)H6A—C6—H6B107.2
F4B—B1—F2B101.7 (11)C11—C7—C8117.5 (7)
F2A—B1—F2B61.5 (9)C11—C7—C6120.3 (6)
F1A—B1—F2B93.7 (15)C8—C7—C6122.1 (8)
F1B—B1—F2B101.3 (12)C9—C8—C7118.7 (7)
F4A—B1—F3A106.6 (11)C9—C8—H8120.6
F3B—B1—F3A47.1 (14)C7—C8—H8120.6
F4B—B1—F3A91.4 (10)N3—C9—C8123.8 (6)
F2A—B1—F3A99.5 (7)N3—C9—H9118.1
F1A—B1—F3A110.8 (14)C8—C9—H9118.1
F1B—B1—F3A102.9 (12)N3—C10—C11121.3 (7)
F2B—B1—F3A153.5 (11)N3—C10—H10119.3
C1—N1—C5118.6 (6)C11—C10—H10119.3
C1—N1—Ag1121.3 (5)C7—C11—C10121.1 (6)
C5—N1—Ag1119.8 (5)C7—C11—H11119.5
C2—N2—C6123.0 (6)C10—C11—H11119.5
C2—N2—H2118.5C12iv—C12—H12A109.5
C6—N2—H2118.5C12iv—C12—H12B109.5
C10—N3—C9117.5 (6)H12A—C12—H12B109.5
C10—N3—Ag1iii119.4 (5)C12iv—C12—H12C109.5
C9—N3—Ag1iii122.9 (4)H12A—C12—H12C109.5
N1—C1—C2123.0 (7)H12B—C12—H12C109.5
N3i—Ag1—N1—C187 (2)C3—C4—C5—N10.7 (10)
Ag1ii—Ag1—N1—C1117.9 (4)C2—N2—C6—C775.9 (9)
N3i—Ag1—N1—C586 (2)N2—C6—C7—C11168.5 (6)
Ag1ii—Ag1—N1—C569.4 (5)N2—C6—C7—C814.7 (10)
C5—N1—C1—C21.5 (9)C11—C7—C8—C91.2 (10)
Ag1—N1—C1—C2171.4 (4)C6—C7—C8—C9175.7 (6)
C6—N2—C2—C3178.6 (6)C10—N3—C9—C81.6 (10)
C6—N2—C2—C14.6 (10)Ag1iii—N3—C9—C8175.0 (5)
N1—C1—C2—C31.2 (9)C7—C8—C9—N30.0 (10)
N1—C1—C2—N2175.6 (6)C9—N3—C10—C112.0 (9)
N2—C2—C3—C4177.0 (6)Ag1iii—N3—C10—C11174.7 (5)
C1—C2—C3—C40.2 (10)C8—C7—C11—C100.8 (10)
C2—C3—C4—C51.0 (11)C6—C7—C11—C10176.1 (6)
C1—N1—C5—C40.6 (9)N3—C10—C11—C70.8 (10)
Ag1—N1—C5—C4172.4 (5)
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+1, y, z+1; (iii) x+3/2, y+1/2, z+3/2; (iv) x+2, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···F2Av0.882.102.887 (9)148
N2—H2···F2Bv0.882.583.357 (17)148
C6—H6A···F4Avi0.992.393.259 (12)146
C10—H10···F4Avii0.952.413.318 (19)159
C12—H12B···F1A0.982.143.08 (4)160
Symmetry codes: (v) x+1/2, y+1/2, z1/2; (vi) x+1, y, z; (vii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by NRF projects 2015R1D1A3A01020410 and 2011–0010518.

References

First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GBR, Germany.  Google Scholar
First citationBruker. (2000). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLee, E., Ju, H., Moon, S.-H., Lee, S. S. & Park, K.-M. (2015). Bull. Korean Chem. Soc. 36, 1532–1535.  Web of Science CrossRef CAS Google Scholar
First citationLee, E., Ryu, H., Moon, S.-H. & Park, K.-M. (2013). Bull. Korean Chem. Soc. 34, 3477–3480.  Web of Science CSD CrossRef CAS Google Scholar
First citationLeong, W. L. & Vittal, J. J. (2011). Chem. Rev. 111, 688–764.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMoon, B., Jeon, Y., Moon, S.-H. & Park, K.-M. (2014). Acta Cryst. E70, 507–509.  CSD CrossRef IUCr Journals Google Scholar
First citationMoon, S.-H. & Park, K.-M. (2013). Acta Cryst. E69, m414–m415.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationMoon, S.-H. & Park, K.-M. (2014). Acta Cryst. E70, m233.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, C., Zhang, T. & Lin, W. (2012). Chem. Rev. 112, 1084–1104.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhang, Z.-Y., Deng, Z.-P., Huo, L.-H., Zhao, H. & Gao, S. (2013). Inorg. Chem. 52, 9514–5923.  Google Scholar
First citationZhang, W., Ye, H. & Xiong, R. G. (2009). Coord. Chem. Rev. 253, 2980–2997.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds