organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-bromo-4,6-di­nitroaniline

aDepartment of Chemistry and Research Institute of Natural Sciences, Gyeongsang, National University, Jinju 52828, Republic of Korea, bResearch Center at Kyung-In Synthetic Corporation (KISCO), Yangcheon-ro 75-69, Gangseo-gu, Seoul 07517, Republic of Korea, and cDivision of Applied Life Science and PMBBRC, Gyeongsang, National University, Jinju 52828, Republic of Korea
*Correspondence e-mail: thkim@gnu.ac.kr, jacobgnu69@gnu.ac.kr

Edited by J. Simpson, University of Otago, New Zealand (Received 18 September 2015; accepted 25 September 2015; online 3 October 2015)

In the title compound, C6H4BrN3O4, the dihedral angles between the nitro groups and the aniline ring are 2.04 (3) and 1.18 (4)°, respectively. In the crystal, N—H⋯O and C—H⋯O hydrogen bonds and weak side-on C—Br⋯π inter­actions [3.5024 (12) Å] link adjacent mol­ecules, forming a three-dimensional network. A close O⋯Br contact [3.259 (2) Å] may also add additional stability.

1. Related literature

For information on the title compound, see: Yadav & Sharma (2010[Yadav, M. K. & Sharma, B. (2010). Der Pharma Chem. 2. 368-377.]). For a related crystal structure, see: Glidewell et al. (2002[Glidewell, C., Low, J. N., McWilliam, S. A., Skakle, J. M. S. & Wardell, J. L. (2002). Acta Cryst. C58, o100-o102.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C6H4BrN3O4

  • Mr = 262.03

  • Monoclinic P 21 /n

  • a = 6.6955 (2) Å

  • b = 7.7720 (2) Å

  • c = 16.0608 (4) Å

  • β = 95.4182 (14)°

  • V = 832.03 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.93 mm−1

  • T = 173 K

  • 0.20 × 0.15 × 0.08 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.534, Tmax = 0.746

  • 12322 measured reflections

  • 1892 independent reflections

  • 1648 reflections with I > 2σ(I)

  • Rint = 0.030

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.083

  • S = 1.06

  • 1892 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.85 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.88 2.16 2.893 (3) 141
N1—H1B⋯O4ii 0.88 2.36 3.139 (4) 148
C5—H5⋯O1iii 0.95 2.55 3.209 (4) 127
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x-1, -y+2, -z+2; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The title compound, C6H4BrN3O4, is an aniline derivative with additional bromine and nitro substituents. Aniline is the simplest of the primary aromatic amines an organic base used, as are its derivatives, to make dyes, drugs, explosives, plastics and chemicals for the rubber industry (Yadav & Sharma, 2010). Its crystal structure is reported herein. In this compound (Fig. 1), the dihedral angles between the nitro groups and the aniline ring are 2.04 (3) and 1.18 (4)°, respectively. All bond lengths and bond angles are normal and comparable to those observed in the crystal structure of a similar compound (Glidewell et al., 2002).

The crystal structure (Fig. 2) is stabilized by N—H···O and C—H···O hydrogen bonds (Table 1), as well as an intermolecular side-on C2—Br1···Cg1iv interaction [Br1···Cg = 3.5024 (12) Å, C2—Br1···Cg = 96.90 (9) °] (Cg1 is the centroid of the C1–C6 ring) [symmetry code: (iv), -x, -y + 1, -z + 2]. A close O3···Br1iv contact, 3.259 (2) Å may also contribute, iv = -1/2+x,1.5-y, -1/2+z. These contacts result in a three-dimensional network.

Related literature top

For information on the title compound, see: Yadav & Sharma (2010). For a related crystal structure, see: Glidewell et al. (2002).

Experimental top

The title compound was supplied by the Kyung In Synthetic Corporation. Slow evaporation of a solution in CH2Cl2 gave single crystals suitable for X-ray analysis.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(N—H) = 0.88 Å, Uiso = 1.2Ueq(C) for amine group, d(C—H) = 0.95 Å, Uiso = 1.2Ueq(C) for aromatic C—H.

Structure description top

The title compound, C6H4BrN3O4, is an aniline derivative with additional bromine and nitro substituents. Aniline is the simplest of the primary aromatic amines an organic base used, as are its derivatives, to make dyes, drugs, explosives, plastics and chemicals for the rubber industry (Yadav & Sharma, 2010). Its crystal structure is reported herein. In this compound (Fig. 1), the dihedral angles between the nitro groups and the aniline ring are 2.04 (3) and 1.18 (4)°, respectively. All bond lengths and bond angles are normal and comparable to those observed in the crystal structure of a similar compound (Glidewell et al., 2002).

The crystal structure (Fig. 2) is stabilized by N—H···O and C—H···O hydrogen bonds (Table 1), as well as an intermolecular side-on C2—Br1···Cg1iv interaction [Br1···Cg = 3.5024 (12) Å, C2—Br1···Cg = 96.90 (9) °] (Cg1 is the centroid of the C1–C6 ring) [symmetry code: (iv), -x, -y + 1, -z + 2]. A close O3···Br1iv contact, 3.259 (2) Å may also contribute, iv = -1/2+x,1.5-y, -1/2+z. These contacts result in a three-dimensional network.

For information on the title compound, see: Yadav & Sharma (2010). For a related crystal structure, see: Glidewell et al. (2002).

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Crystal packing viewed along the a axis. The intermolecular interactions are shown as dashed lines.
2-Bromo-4,6-dinitroaniline top
Crystal data top
C6H4BrN3O4F(000) = 512
Mr = 262.03Dx = 2.092 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.6955 (2) ÅCell parameters from 6099 reflections
b = 7.7720 (2) Åθ = 2.6–27.1°
c = 16.0608 (4) ŵ = 4.93 mm1
β = 95.4182 (14)°T = 173 K
V = 832.03 (4) Å3Block, yellow
Z = 40.20 × 0.15 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
1648 reflections with I > 2σ(I)
φ and ω scansRint = 0.030
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
θmax = 27.5°, θmin = 2.6°
Tmin = 0.534, Tmax = 0.746h = 88
12322 measured reflectionsk = 1010
1892 independent reflectionsl = 2020
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0334P)2 + 1.6027P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.002
1892 reflectionsΔρmax = 0.85 e Å3
127 parametersΔρmin = 0.51 e Å3
Crystal data top
C6H4BrN3O4V = 832.03 (4) Å3
Mr = 262.03Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.6955 (2) ŵ = 4.93 mm1
b = 7.7720 (2) ÅT = 173 K
c = 16.0608 (4) Å0.20 × 0.15 × 0.08 mm
β = 95.4182 (14)°
Data collection top
Bruker APEXII CCD
diffractometer
1892 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
1648 reflections with I > 2σ(I)
Tmin = 0.534, Tmax = 0.746Rint = 0.030
12322 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.06Δρmax = 0.85 e Å3
1892 reflectionsΔρmin = 0.51 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.19258 (6)0.64018 (4)1.10024 (2)0.04116 (14)
O10.4575 (4)0.6238 (3)0.79915 (19)0.0484 (7)
O20.2420 (4)0.7493 (4)0.71047 (15)0.0544 (8)
O30.3569 (3)0.9745 (3)0.79238 (13)0.0379 (5)
O40.4360 (3)0.9614 (3)0.91874 (15)0.0397 (6)
N10.1949 (4)0.8183 (4)1.03776 (15)0.0327 (6)
H1A0.15310.78371.08860.039*
H1B0.31200.86961.02820.039*
N20.2978 (4)0.6977 (4)0.78113 (17)0.0348 (6)
N30.3276 (3)0.9358 (3)0.86609 (13)0.0212 (5)
C10.0806 (4)0.7930 (4)0.97511 (16)0.0230 (6)
C20.1093 (4)0.7101 (4)0.98987 (17)0.0256 (6)
C30.2302 (4)0.6777 (4)0.92827 (19)0.0277 (6)
H30.35510.62080.94040.033*
C40.1671 (4)0.7299 (4)0.84695 (18)0.0263 (6)
C50.0114 (4)0.8115 (4)0.82743 (17)0.0233 (6)
H50.05130.84560.77150.028*
C60.1333 (4)0.8435 (3)0.89051 (16)0.0214 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0571 (2)0.0375 (2)0.02593 (18)0.01145 (16)0.01191 (14)0.00718 (13)
O10.0422 (14)0.0411 (14)0.0655 (18)0.0096 (11)0.0239 (13)0.0063 (12)
O20.0471 (15)0.094 (2)0.0241 (12)0.0027 (15)0.0165 (11)0.0089 (13)
O30.0415 (13)0.0450 (14)0.0268 (11)0.0051 (11)0.0004 (10)0.0036 (10)
O40.0329 (12)0.0438 (14)0.0437 (14)0.0057 (10)0.0111 (11)0.0000 (11)
N10.0409 (15)0.0416 (15)0.0168 (11)0.0026 (12)0.0096 (11)0.0002 (11)
N20.0351 (15)0.0381 (15)0.0340 (15)0.0082 (12)0.0174 (12)0.0124 (12)
N30.0269 (12)0.0220 (11)0.0147 (10)0.0105 (9)0.0011 (9)0.0003 (9)
C10.0323 (15)0.0214 (13)0.0156 (12)0.0095 (11)0.0051 (11)0.0032 (10)
C20.0339 (15)0.0246 (14)0.0175 (13)0.0095 (12)0.0025 (11)0.0019 (11)
C30.0274 (14)0.0242 (14)0.0308 (15)0.0045 (11)0.0010 (12)0.0003 (12)
C40.0290 (15)0.0289 (15)0.0224 (13)0.0054 (12)0.0100 (12)0.0058 (11)
C50.0276 (14)0.0274 (14)0.0153 (12)0.0069 (11)0.0046 (11)0.0009 (10)
C60.0257 (13)0.0218 (13)0.0170 (12)0.0045 (11)0.0031 (10)0.0019 (10)
Geometric parameters (Å, º) top
Br1—C21.887 (3)N3—C61.505 (4)
O1—N21.224 (4)C1—C21.425 (4)
O2—N21.228 (4)C1—C61.426 (4)
O3—N31.219 (3)C2—C31.360 (4)
O4—N31.182 (3)C3—C41.395 (4)
N1—C11.335 (4)C3—H30.9500
N1—H1A0.8800C4—C51.363 (4)
N1—H1B0.8800C5—C61.382 (4)
N2—C41.456 (4)C5—H50.9500
C1—N1—H1A120.0C1—C2—Br1117.8 (2)
C1—N1—H1B120.0C2—C3—C4118.6 (3)
H1A—N1—H1B120.0C2—C3—H3120.7
O1—N2—O2123.7 (3)C4—C3—H3120.7
O1—N2—C4118.7 (3)C5—C4—C3122.2 (3)
O2—N2—C4117.6 (3)C5—C4—N2119.1 (3)
O4—N3—O3126.8 (3)C3—C4—N2118.7 (3)
O4—N3—C6117.9 (2)C4—C5—C6118.7 (3)
O3—N3—C6115.3 (2)C4—C5—H5120.6
N1—C1—C2120.5 (3)C6—C5—H5120.6
N1—C1—C6124.7 (3)C5—C6—C1122.6 (3)
C2—C1—C6114.8 (2)C5—C6—N3116.8 (2)
C3—C2—C1123.1 (3)C1—C6—N3120.6 (2)
C3—C2—Br1119.1 (2)
N1—C1—C2—C3178.6 (3)C3—C4—C5—C60.1 (4)
C6—C1—C2—C31.3 (4)N2—C4—C5—C6179.2 (3)
N1—C1—C2—Br10.5 (4)C4—C5—C6—C10.7 (4)
C6—C1—C2—Br1179.52 (19)C4—C5—C6—N3179.3 (2)
C1—C2—C3—C40.9 (4)N1—C1—C6—C5178.7 (3)
Br1—C2—C3—C4180.0 (2)C2—C1—C6—C51.3 (4)
C2—C3—C4—C50.2 (4)N1—C1—C6—N31.3 (4)
C2—C3—C4—N2179.1 (3)C2—C1—C6—N3178.7 (2)
O1—N2—C4—C5179.7 (3)O4—N3—C6—C5178.5 (3)
O2—N2—C4—C51.4 (4)O3—N3—C6—C50.6 (3)
O1—N2—C4—C31.0 (4)O4—N3—C6—C11.5 (4)
O2—N2—C4—C3177.9 (3)O3—N3—C6—C1179.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.882.162.893 (3)141
N1—H1B···O4ii0.882.363.139 (4)148
C5—H5···O1iii0.952.553.209 (4)127
Symmetry codes: (i) x1/2, y+3/2, z+1/2; (ii) x1, y+2, z+2; (iii) x+1/2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.882.162.893 (3)141.0
N1—H1B···O4ii0.882.363.139 (4)147.6
C5—H5···O1iii0.952.553.209 (4)126.8
Symmetry codes: (i) x1/2, y+3/2, z+1/2; (ii) x1, y+2, z+2; (iii) x+1/2, y+1/2, z+3/2.
 

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2015R1D1A4A01020317).

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGlidewell, C., Low, J. N., McWilliam, S. A., Skakle, J. M. S. & Wardell, J. L. (2002). Acta Cryst. C58, o100–o102.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYadav, M. K. & Sharma, B. (2010). Der Pharma Chem. 2. 368–377.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds