organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o784-o785

Crystal structure of di­methyl 9H-carbazole-2,7-di­carb­­oxy­late

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry and Biochemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA, and bDepartment of Chemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
*Correspondence e-mail: dmanke@umassd.edu

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 9 September 2015; accepted 19 September 2015; online 26 September 2015)

In the title compound, C16H13NO4, the carbazole ring system is almost planar with non-H atoms possessing a mean deviation from planarity of 0.037 Å. The two ester groups are orientated trans to one another and tilted slightly from the mean plane of the carbazole ring system, making dihedral angles of 8.12 (6) and 8.21 (5)°. In the crystal, mol­ecules are linked by pairs of N—H⋯O hydrogen bonds forming inversion dimers. The dimers are linked by parallel slipped ππ inter­actions, forming slabs propagating along the b-axis direction [inter-centroid distance = 3.6042 (8) Å, inter-planar distance = 3.3437 (5) Å, slippage = 1.345 Å].

1. Related literature

For the synthesis of the title compound, see: Olkhovik et al. (2008[Olkhovik, V. K., Vasilevskii, D. A., Pap, A. A., Kalechyts, G. V., Matveienko, Y. V., Baran, A. G., Halinouski, N. A. & Petushok, V. G. (2008). Arkivoc. pp. 69-93.]). For the crystal structures of some carbazoles, see: Clarke & Spink (1969[Clarke, P. T. & Spink, J. M. (1969). Acta Cryst. B25, 162.]); Gajda et al. (2014[Gajda, K., Zarychta, B., Kopka, K., Daszkiewicz, Z. & Ejsmont, K. (2014). Acta Cryst. C70, 987-991.]). For the structure of 9H-carbazole-3,6-di­carb­oxy­lic acid, see: Weseliński et al. (2014[Weseliński, Ł. J., Luebke, R. & Eddaoudi, M. (2014). Synthesis, 46, 596-599.]). For coordination polymers featuring the di­carboxyl­ate of the parent compound, see: Yi et al. (2013[Yi, X.-C., Xi, F.-G., Wang, K., Su, Z. & Gao, E.-Q. (2013). J. Solid State Chem. 206, 293-299.], 2014[Yi, X.-C., Huang, M.-X., Qi, Y. & Gao, E.-Q. (2014). Dalton Trans. 43, 3691-3697.], 2015[Yi, X.-C., Xi, F.-G., Qi, Y. & Gao, E.-Q. (2015). RSC Adv. 5, 893-900.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C16H13NO4

  • Mr = 283.27

  • Monoclinic, C 2/c

  • a = 29.684 (2) Å

  • b = 5.8264 (4) Å

  • c = 15.4210 (11) Å

  • β = 96.252 (3)°

  • V = 2651.2 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.28 × 0.18 × 0.10 mm

2.2. Data collection

  • Bruker CMOS detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.972, Tmax = 0.990

  • 16278 measured reflections

  • 2716 independent reflections

  • 2141 reflections with I > 2σ(I)

  • Rint = 0.042

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.098

  • S = 1.03

  • 2716 reflections

  • 195 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3i 0.87 (1) 2.04 (1) 2.8834 (16) 164 (1)
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97, PLATON (Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Bi­phenyl-4,4'-di­carboxyl­ate and its derivatives are widely used in metal-organic frameworks (MOFs) as linkers. One derivative that is being explored in coordination polymers is 9H-carbazole-2,7-di­carboxyl­ate (Yi et al., 2013, 2014, 2015). Herein, we report on the crystal structure of the previously synthesized 9H-carbazole-2,7-di­carb­oxy­lic acid di­methyl ester (Olkhovik et al., 2008).

The molecular structure of the title compound is shown in Fig. 1. The bond distances and angles are similar to those observed in some carbazole derivatives (Clarke & Spink, 1969; Gajda et al., 2014,) and a structurally characterized carbazole di­carb­oxy­lic acid (Weseliński et al., 2014). The carbazole unit is nearly planar with a mean deviation from planarity of 0.037 Å. The carboxyl­ate groups are trans to one another and skewed slightly from the mean plane of the carbazole unit, with carbazole-ester dihedral angles of 8.12 (6) and 8.21 (5)°, involving ester groups O1/O2/C3/C13/C14 and O3/O4/C10/C15/C16, respectively.

In the crystal, molecules are linked by a pair of N—H···O hydrogen bonds forming inversion dimers (Fig. 2 and Table 1). The dimers are linked by parallel slipped π-π inter­actions forming slabs propagating along the b axis direction [Cg3···Cg3i = 3.6042 (8) Å, inter­planar distance = 3.3437 (5) Å, slippage 1.345 Å; Cg3 is the centroid of ring C7—C12; symmetry code: (i) -x+1/2, -y+1/2, -z+1].

Synthesis and crystallization top

The compound was prepared by a literature procedure (Olkhovik et al. 2008). Crystals suitable for X-ray diffraction analysis were grown by slow evaporation of a solution in ethanol.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. Hydrogen atom H1N was located in a difference Fourier map and refined with a distance restraint: N—H = 0.87 (2) Å with Uiso(H) = 1.2Ueq(N). The C-bound H atoms were placed in calculated positions and refined as riding: C—H = 0.95-0.98 Å with Uiso(H) =1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Related literature top

For the synthesis of the title compound, see: Olkhovik et al. (2008). For the crystal structures of some carbazoles, see: Clarke & Spink (1969); Gajda et al. (2014). For the structure of 9H-carbazole-3,6-dicarboxylic acid, see: Weseliński et al. (2014). For coordination polymers featuring the dicarboxylate of the parent compound, see: Yi et al. (2013, 2014, 2015). Scheme should show OCH3 (not OH)

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek (2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view along the b axis of the crystal packing of the title compound, with hydrogen bonds shown as dashed lines (ee Table 1).
Dimethyl 9H-carbazole-2,7-dicarboxylate top
Crystal data top
C16H13NO4F(000) = 1184
Mr = 283.27Dx = 1.419 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5867 reflections
a = 29.684 (2) Åθ = 3.1–26.3°
b = 5.8264 (4) ŵ = 0.10 mm1
c = 15.4210 (11) ÅT = 100 K
β = 96.252 (3)°Block, yellow
V = 2651.2 (3) Å30.28 × 0.18 × 0.10 mm
Z = 8
Data collection top
Bruker CMOS detector
diffractometer
2716 independent reflections
Radiation source: fine-focus sealed tube2141 reflections with I > 2σ(I)
Doubly curved mirrors monochromatorRint = 0.042
φ and ω scansθmax = 26.4°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 3636
Tmin = 0.972, Tmax = 0.990k = 77
16278 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0509P)2 + 1.5495P]
where P = (Fo2 + 2Fc2)/3
2716 reflections(Δ/σ)max = 0.001
195 parametersΔρmax = 0.22 e Å3
1 restraintΔρmin = 0.22 e Å3
Crystal data top
C16H13NO4V = 2651.2 (3) Å3
Mr = 283.27Z = 8
Monoclinic, C2/cMo Kα radiation
a = 29.684 (2) ŵ = 0.10 mm1
b = 5.8264 (4) ÅT = 100 K
c = 15.4210 (11) Å0.28 × 0.18 × 0.10 mm
β = 96.252 (3)°
Data collection top
Bruker CMOS detector
diffractometer
2716 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2141 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.990Rint = 0.042
16278 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0371 restraint
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.22 e Å3
2716 reflectionsΔρmin = 0.22 e Å3
195 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.46191 (4)0.66773 (19)0.82835 (7)0.0330 (3)
O20.47499 (4)0.3231 (2)0.88997 (8)0.0435 (3)
O30.15036 (3)0.56249 (18)0.46010 (7)0.0281 (3)
O40.12301 (3)0.23787 (18)0.51083 (7)0.0287 (3)
N10.31090 (4)0.5801 (2)0.63776 (8)0.0206 (3)
H1N0.3176 (5)0.703 (2)0.6095 (10)0.025*
C10.34155 (4)0.4608 (2)0.69505 (8)0.0193 (3)
C20.38361 (5)0.5315 (2)0.73472 (9)0.0214 (3)
H2A0.39580.67690.72210.026*
C30.40714 (5)0.3814 (2)0.79351 (9)0.0224 (3)
C40.38949 (5)0.1642 (3)0.81051 (10)0.0250 (3)
H4A0.40660.06290.84960.030*
C50.34764 (5)0.0959 (2)0.77109 (9)0.0217 (3)
H5A0.33580.05080.78310.026*
C60.32293 (5)0.2456 (2)0.71332 (9)0.0185 (3)
C70.27864 (5)0.2357 (2)0.66416 (8)0.0179 (3)
C80.24369 (5)0.0734 (2)0.65636 (9)0.0196 (3)
H8A0.24720.06840.68680.024*
C90.20400 (5)0.1208 (2)0.60415 (9)0.0195 (3)
H9A0.18020.01070.59820.023*
C100.19859 (4)0.3317 (2)0.55960 (9)0.0190 (3)
C110.23263 (4)0.4955 (2)0.56654 (9)0.0189 (3)
H11A0.22870.63760.53650.023*
C120.27267 (4)0.4461 (2)0.61861 (9)0.0183 (3)
C130.45135 (5)0.4484 (3)0.84215 (10)0.0271 (3)
C140.50435 (5)0.7491 (3)0.87314 (12)0.0371 (4)
H14A0.50760.91350.86200.056*
H14B0.52960.66550.85180.056*
H14C0.50460.72330.93600.056*
C150.15579 (5)0.3916 (2)0.50484 (9)0.0205 (3)
C160.08012 (5)0.2876 (3)0.46017 (11)0.0348 (4)
H16A0.05900.16090.46610.052*
H16B0.08490.30580.39860.052*
H16C0.06750.42980.48150.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0263 (6)0.0291 (6)0.0403 (7)0.0047 (5)0.0108 (5)0.0021 (5)
O20.0376 (7)0.0349 (7)0.0522 (8)0.0020 (5)0.0209 (6)0.0067 (6)
O30.0248 (6)0.0295 (6)0.0291 (6)0.0003 (4)0.0013 (4)0.0094 (5)
O40.0209 (5)0.0290 (6)0.0346 (6)0.0051 (4)0.0045 (5)0.0051 (5)
N10.0205 (6)0.0176 (6)0.0229 (6)0.0017 (5)0.0012 (5)0.0058 (5)
C10.0210 (7)0.0189 (7)0.0182 (7)0.0032 (5)0.0024 (5)0.0010 (5)
C20.0213 (7)0.0200 (7)0.0227 (7)0.0007 (6)0.0014 (6)0.0001 (6)
C30.0219 (7)0.0236 (7)0.0212 (7)0.0026 (6)0.0003 (6)0.0012 (6)
C40.0276 (8)0.0240 (7)0.0225 (7)0.0054 (6)0.0008 (6)0.0038 (6)
C50.0267 (8)0.0182 (7)0.0201 (7)0.0012 (6)0.0022 (6)0.0022 (6)
C60.0218 (7)0.0182 (7)0.0157 (7)0.0007 (5)0.0035 (5)0.0022 (5)
C70.0219 (7)0.0187 (7)0.0135 (6)0.0025 (5)0.0040 (5)0.0010 (5)
C80.0253 (7)0.0163 (6)0.0180 (7)0.0006 (5)0.0053 (6)0.0011 (5)
C90.0219 (7)0.0175 (7)0.0198 (7)0.0027 (5)0.0046 (6)0.0025 (5)
C100.0206 (7)0.0200 (7)0.0167 (7)0.0002 (6)0.0036 (5)0.0017 (6)
C110.0222 (7)0.0165 (6)0.0182 (7)0.0013 (5)0.0034 (5)0.0020 (5)
C120.0204 (7)0.0173 (6)0.0173 (6)0.0009 (5)0.0032 (5)0.0010 (5)
C130.0265 (8)0.0267 (8)0.0270 (8)0.0041 (6)0.0025 (6)0.0021 (6)
C140.0266 (9)0.0372 (9)0.0446 (10)0.0064 (7)0.0093 (7)0.0028 (8)
C150.0212 (7)0.0213 (7)0.0192 (7)0.0016 (6)0.0031 (6)0.0015 (6)
C160.0218 (8)0.0428 (10)0.0374 (9)0.0036 (7)0.0068 (7)0.0025 (8)
Geometric parameters (Å, º) top
O1—C131.3382 (19)C5—H5A0.9500
O1—C141.4490 (18)C6—C71.445 (2)
O2—C131.2070 (18)C7—C81.3992 (19)
O3—C151.2119 (17)C7—C121.4145 (19)
O4—C151.3333 (17)C8—C91.381 (2)
O4—C161.4487 (18)C8—H8A0.9500
N1—C121.3824 (17)C9—C101.409 (2)
N1—C11.3842 (17)C9—H9A0.9500
N1—H1N0.870 (13)C10—C111.3852 (19)
C1—C21.3915 (19)C10—C151.4884 (19)
C1—C61.4112 (19)C11—C121.3902 (19)
C2—C31.391 (2)C11—H11A0.9500
C2—H2A0.9500C14—H14A0.9800
C3—C41.406 (2)C14—H14B0.9800
C3—C131.491 (2)C14—H14C0.9800
C4—C51.381 (2)C16—H16A0.9800
C4—H4A0.9500C16—H16B0.9800
C5—C61.3963 (19)C16—H16C0.9800
C13—O1—C14116.30 (12)C8—C9—H9A119.9
C15—O4—C16115.68 (12)C10—C9—H9A119.9
C12—N1—C1108.67 (11)C11—C10—C9121.32 (13)
C12—N1—H1N125.6 (10)C11—C10—C15116.91 (12)
C1—N1—H1N124.2 (10)C9—C10—C15121.75 (12)
N1—C1—C2128.90 (13)C10—C11—C12118.22 (12)
N1—C1—C6109.20 (12)C10—C11—H11A120.9
C2—C1—C6121.84 (12)C12—C11—H11A120.9
C1—C2—C3117.59 (13)N1—C12—C11129.57 (12)
C1—C2—H2A121.2N1—C12—C7109.14 (12)
C3—C2—H2A121.2C11—C12—C7121.27 (12)
C2—C3—C4121.10 (13)O2—C13—O1122.98 (14)
C2—C3—C13121.01 (13)O2—C13—C3124.78 (14)
C4—C3—C13117.87 (13)O1—C13—C3112.24 (12)
C5—C4—C3120.86 (13)O1—C14—H14A109.5
C5—C4—H4A119.6O1—C14—H14B109.5
C3—C4—H4A119.6H14A—C14—H14B109.5
C4—C5—C6119.08 (13)O1—C14—H14C109.5
C4—C5—H5A120.5H14A—C14—H14C109.5
C6—C5—H5A120.5H14B—C14—H14C109.5
C5—C6—C1119.49 (13)O3—C15—O4122.58 (13)
C5—C6—C7133.96 (13)O3—C15—C10124.62 (13)
C1—C6—C7106.53 (12)O4—C15—C10112.79 (12)
C8—C7—C12119.44 (13)O4—C16—H16A109.5
C8—C7—C6134.08 (13)O4—C16—H16B109.5
C12—C7—C6106.46 (12)H16A—C16—H16B109.5
C9—C8—C7119.52 (13)O4—C16—H16C109.5
C9—C8—H8A120.2H16A—C16—H16C109.5
C7—C8—H8A120.2H16B—C16—H16C109.5
C8—C9—C10120.24 (13)
C12—N1—C1—C2177.05 (13)C8—C9—C10—C15178.18 (12)
C12—N1—C1—C60.08 (15)C9—C10—C11—C120.28 (19)
N1—C1—C2—C3177.00 (13)C15—C10—C11—C12178.78 (12)
C6—C1—C2—C30.2 (2)C1—N1—C12—C11177.91 (13)
C1—C2—C3—C41.5 (2)C1—N1—C12—C70.13 (15)
C1—C2—C3—C13176.94 (13)C10—C11—C12—N1178.41 (13)
C2—C3—C4—C51.8 (2)C10—C11—C12—C70.58 (19)
C13—C3—C4—C5176.68 (13)C8—C7—C12—N1178.58 (12)
C3—C4—C5—C60.4 (2)C6—C7—C12—N10.13 (15)
C4—C5—C6—C11.3 (2)C8—C7—C12—C110.35 (19)
C4—C5—C6—C7177.33 (14)C6—C7—C12—C11178.10 (12)
N1—C1—C6—C5178.98 (12)C14—O1—C13—O21.1 (2)
C2—C1—C6—C51.6 (2)C14—O1—C13—C3179.87 (13)
N1—C1—C6—C70.01 (14)C2—C3—C13—O2175.23 (15)
C2—C1—C6—C7177.37 (12)C4—C3—C13—O26.3 (2)
C5—C6—C7—C80.6 (3)C2—C3—C13—O16.0 (2)
C1—C6—C7—C8178.20 (14)C4—C3—C13—O1172.48 (13)
C5—C6—C7—C12178.69 (14)C16—O4—C15—O30.0 (2)
C1—C6—C7—C120.07 (14)C16—O4—C15—C10179.05 (12)
C12—C7—C8—C90.20 (19)C11—C10—C15—O37.1 (2)
C6—C7—C8—C9178.13 (14)C9—C10—C15—O3174.35 (13)
C7—C8—C9—C100.49 (19)C11—C10—C15—O4171.85 (12)
C8—C9—C10—C110.3 (2)C9—C10—C15—O46.65 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.87 (1)2.04 (1)2.8834 (16)164 (1)
Symmetry code: (i) x+1/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.872 (13)2.036 (14)2.8834 (16)163.6 (13)
Symmetry code: (i) x+1/2, y+3/2, z+1.
 

Acknowledgements

RLL thanks the Jean Dreyfus Boissevain Lectureship for Undergraduate Institutions, the UMass Dartmouth Office of Undergraduate Research Award and the UMass Dartmouth Honors Summer Research Grant for funding. DRM gratefully acknowledges support from the National Science Foundation (CHE-1229339 and CHE-1429086).

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClarke, P. T. & Spink, J. M. (1969). Acta Cryst. B25, 162.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationGajda, K., Zarychta, B., Kopka, K., Daszkiewicz, Z. & Ejsmont, K. (2014). Acta Cryst. C70, 987–991.  CSD CrossRef IUCr Journals Google Scholar
First citationOlkhovik, V. K., Vasilevskii, D. A., Pap, A. A., Kalechyts, G. V., Matveienko, Y. V., Baran, A. G., Halinouski, N. A. & Petushok, V. G. (2008). Arkivoc. pp. 69–93.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeseliński, Ł. J., Luebke, R. & Eddaoudi, M. (2014). Synthesis, 46, 596–599.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYi, X.-C., Huang, M.-X., Qi, Y. & Gao, E.-Q. (2014). Dalton Trans. 43, 3691–3697.  CSD CrossRef CAS PubMed Google Scholar
First citationYi, X.-C., Xi, F.-G., Qi, Y. & Gao, E.-Q. (2015). RSC Adv. 5, 893–900.  CrossRef CAS Google Scholar
First citationYi, X.-C., Xi, F.-G., Wang, K., Su, Z. & Gao, E.-Q. (2013). J. Solid State Chem. 206, 293–299.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o784-o785
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds