organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o729-o730

Crystal structure of methyl (3RS,4SR,4aRS,11aRS,11bSR)-5-oxo-3,4,4a,5,7,8,9,10,11,11a-deca­hydro-3,11b-ep­­oxy­azepino[2,1-a]iso­indole-4-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Douala, Faculty of Sciences, PO Box 24157, Douala, Republic of Cameroon, bDepartment of Organic Chemistry, Peoples' Friendship University of Russia, 6 Miklukho-Maklay St, Moscow 117198, Russian Federation, cDepartment of Chemistry & Biology, New Mexico Highlands University, 803 University Ave, Las Vegas, NM 87701, USA, and dDepartment of Inorganic Chemistry, Peoples' Friendship University of Russia, 6 Miklukho-Maklay St, Moscow 117198, Russian Federation
*Correspondence e-mail: flavien@mail.ru, vkh@xray.ineos.ac.ru

Edited by E. R. T. Tiekink, University of Malaya, Malaysia (Received 2 September 2015; accepted 7 September 2015; online 12 September 2015)

The title compound, C15H19NO4, is the a product of the esterification of the corresponding carbonic acid with methanol. The mol­ecule comprises a fused tetra­cyclic system containing three five-membered rings (2-pyrrolidinone, tetra­hydro­furan and di­hydro­furan) and one seven-membered ring (azepane). The five-membered rings have the usual envelope conformations, with the quaternary C atom being the flap atom for the 2-pyrrolidinone ring, and the ether O atom being the common flap atom for the remaining rings. The seven-membered azepane ring adopts a chair conformation with the methine and middle methyl­ene C atoms lying above and below the mean plane defined by the remaining five atoms. The carboxyl­ate substituent is rotated by 77.56 (5)° with respect to the base plane of the tetra­hydro­furan ring. In the crystal, the mol­ecules are bound by weak C—H⋯O hydrogen-bonding inter­actions into puckered layers parallel to (001).

1. Related literature

For the synthesis of 2-(furan-2-yl)azepane, see: Asher et al. (1981[Asher, V., Becu, C., Anteunis, M. J. O. & Callens, R. (1981). Tetrahedron Lett. 22, 141-144.]); Shono et al. (1981[Shono, T., Matsumura, Y., Tsubata, K. O. & Takata, J. (1981). Chem. Lett. pp. 1121-1124.]); Nikolic & Beak (1997[Nikolic, N. A. & Beak, P. (1997). Org. Synth. 74, 23-32.]). For intra­molecular cyclo­addition reactions of α,β-unsaturated acid anhydrides to α-furyl­amines (IMDAF reactions), see: Vogel et al. (1999[Vogel, P., Cossy, J., Plumet, J. & Arjona, O. (1999). Tetrahedron, 55, 13521-13642.]); Zubkov et al. (2005[Zubkov, F. I., Nikitina, E. V. & Varlamov, A. V. (2005). Russ. Chem. Rev. 74, 639-669.]). For related compounds, see: Zylber et al. (1995[Zylber, J., Tubul, A. & Brun, P. (1995). Tetrahedron Asymmetry, 6, 377-380.]); Evans et al. (1999[Evans, D. A., Barnes, D. M., Johnson, J. S., Lectka, T., von Matt, P., Miller, S. J., Murry, J. A., Norcross, R. D., Shaughnessy, E. A. & Campos, K. R. (1999). J. Am. Chem. Soc. 121, 7582-7594.]); Kachkovskyi & Kolodiazhnyi (2007[Kachkovskyi, G. O. & Kolodiazhnyi, O. I. (2007). Tetrahedron, 63, 12576-12582.]); Kharitonov et al. (2009[Kharitonov, Y. V., Shults, E. E., Shakirov, M. M. & Tolstikov, G. A. (2009). Russ. J. Org. Chem. 45, 637-649.]); Aabid et al. (2010[Aabid, A. M., Vinata, V. M. & Trivedi, G. K. (2010). J. Heterocycl. Chem. 47, 214-218.]); Zubkov et al. (2010[Zubkov, F. I., Zaitsev, V. P., Piskareva, A. M., Eliseeva, M. N., Nikitina, E. V., Mikhailova, N. M. & Varlamov, A. V. (2010). Russ. J. Org. Chem. 46, 1192-1206.], 2011[Zubkov, F. I., Zaytsev, V. P., Nikitina, E. V., Khrustalev, V. N., Gozun, S. V., Boltukhina, E. V. & Varlamov, A. V. (2011). Tetrahedron, 67, 9148-9163.], 2014[Zubkov, F. I., Nikitina, E. V., Galeev, T. R., Zaytsev, V. P., Khrustalev, V. N., Novikov, R. A., Orlova, D. N. & Varlamov, A. V. (2014). Tetrahedron, 70, 1659-1690.]); Toze et al. (2011[Toze, F. A. A., Airiyan, I. K., Nikitina, E. V., Sorokina, E. A. & Khrustalev, V. N. (2011). Acta Cryst. E67, o2852-o2853.]); Wang & Li (2012[Wang, C.-C. & Li, W.-D. Z. (2012). J. Org. Chem. 77, 4217-4225.]); Zaytsev, Mikhailova et al. (2012[Zaytsev, V. P., Mikhailova, N. M., Airiyan, I. K., Galkina, E. V., Golubev, V. D., Nikitina, E. V., Zubkov, F. I. & Varlamov, A. V. (2012). Chem. Heterocycl. Compd, 48, 505-513.]); Zaytsev, Zubkov et al. 2012[Zaytsev, V. P., Zubkov, F. I., Motorygina, E. L., Gorbacheva, M. G., Nikitina, E. V. & Varlamov, A. V. (2012). Chem. Heterocycl. C. 47, 1603-1606.]); Zaytsev et al. (2013[Zaytsev, V. P., Zubkov, F. I., Toze, F. A. A., Orlova, D. N., Eliseeva, M. N., Grudinin, D. G., Nikitina, E. V. & Varlamov, A. V. (2013). J. Heterocycl. Chem. 50, E18-E38.]); Chen et al. (2013[Chen, C., Yellol, G. S., Tsai, C., Dalvi, P. B. & Sun, C. (2013). J. Org. Chem. 78, 9738-9747.]); Hizartzidis et al. (2014[Hizartzidis, L., Tarleton, M., Gordon, C. P. & McCluskey, A. (2014). RSC Adv. 4, 9709-9722.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C15H19NO4

  • Mr = 277.31

  • Triclinic, [P \overline 1]

  • a = 7.5460 (8) Å

  • b = 9.6984 (10) Å

  • c = 10.2894 (10) Å

  • α = 103.857 (2)°

  • β = 94.745 (2)°

  • γ = 106.620 (2)°

  • V = 691.24 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 290 K

  • 0.30 × 0.25 × 0.25 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS. Bruker AXS, Madison, Wisconsin, USA.]) Tmin = 0.959, Tmax = 0.969

  • 9699 measured reflections

  • 3268 independent reflections

  • 2613 reflections with I > 2σ(I)

  • Rint = 0.018

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.141

  • S = 1.03

  • 3268 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O5i 0.93 2.59 3.4576 (19) 156
C3—H3⋯O13ii 0.98 2.55 3.5259 (19) 174
C4A—H4A⋯O14iii 0.98 2.51 3.4190 (17) 154
C14—H14A⋯O5iv 0.96 2.56 3.279 (2) 132
Symmetry codes: (i) x-1, y, z; (ii) -x+2, -y, -z+2; (iii) -x+2, -y+1, -z+2; (iv) -x+3, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Structural commentary top

In the last decade our synthetic group has published some effective strategies for the synthesis of 3,6a-ep­oxy­iso­indoles annulated with various heterocycles (Zubkov et al. 2010, 2011, 2014; Zaytsev, Mikhailova et al. 2012; Zaytsev, Zubkov et al. 2012; Zaytsev et al. 2013). These strategies were based on the intra­molecular cyclo­addition reaction of α,β-unsaturated acid anhydrides to the heterocycles containing an α-furfuryl­amine fragment (IMDAF reaction) (Vogel et al., 1999; Zubkov et al., 2005). Therefore, within the scope of this investigation, the initial carb­oxy­lic acid was easily synthesized by the treatment of 2-(2-furyl)perhydro­azepine (Asher et al., 1981; Shono et al., 1981; Nikolic et al., 1997) with maleic anhydride.

This work reports the structural characterization of 3,6a-ep­oxy­iso­indole annulated with perhydro­azepine ring. The esterification of the initial carb­oxy­lic acid obtained as fine-crystalline powder is due to its poor solubility in most common organic solvents (Fig. 1).

The molecule of the title compound, C15H19NO4, (I) comprises a fused tetra­cyclic system containing three five-membered rings (2-pyrrolidinone, tetra­hydro­furan and di­hydro­furan) and one seven-membered ring (1,4-diazepine) (Fig. 2). The 2-pyrrolidinone, tetra­hydro­furan and di­hydro­furan five-membered rings have the usual envelope conformations (Zylber et al., 1995; Evans et al., 1999; Kachkovskyi et al., 2007; Kharitonov et al., 2009; Aabid et al., 2010; Toze et al., 2011; Wang et al., 2012; Chen et al., 2013; Hizartzidis et al., 2014). The seven-membered diazepine ring adopts a chair conformation. The nitro­gen N6 atom has the slightly pyramidalized geometry (sum of the bond angles is 359.7 (4)°). The dihedral angle between the basal plane of the diazepine ring (C8—C9/C11—C11A) and the base plane of the pyrrolidinone ring (C4—C5—N6—C11A) is 66.55 (9)°). The carboxyl­ate substituent is rotated by 77.56 (5)° to the base plane of the tetra­hydro­furan ring.

The molecule of (I) possesses five asymmetric centers at the C3, C4, C4A, C11A and C11B carbon atoms and can have potentially numerous diastereomers. The crystal of (I) is racemic and consists of enanti­omeric pairs with the following relative configuration of the centers: rac-3R*,4S*,4AR*,11AR*,11BS*.

In the crystal, the molecules of (I) are bound by the weak inter­molecular C—H···O hydrogen bonding inter­actions into puckered layers parallel to (001) (Fig. 3, Table 1).

Synthesis and crystallization top

A solution of the initial acid – (3R*,4S*,4aR*,11aR*,11bS*)-5-oxo-3,4,4a,5,7,8,9,10,11,11a-deca­hydro-3,11b-ep­oxy­azepino[2,1-a]iso­indole-4-carb­oxy­lic acid (0.5 g, 1.8 mmol) in methanol (30 mL) was refluxed for 3 h in the presence of catalytic amount of concentrated H2SO4 (monitoring by TLC until disappearance of the starting compound (eluent – EtOAc:hexane (1:3), Sorbfil). Then the solvent was evaporated. The residual oil was passed through a thin layer of aluminum oxide (eluent – chloro­form). Chloro­form was removed under reduced pressure. The crude ester was recrystallized from a mixture of EtOAc-EtOH to give the target compound I as white crystals. Yield is 0.31 g (58%). Single-crystals were isolated as fine needles by slow re-crystallization from EtOAc-EtOH. M.pt = 388–389 K. IR (KBr), ν/cm-1: 1741 (C=O), 1693 (C=O). Mass spectrum, EI–MS (70 eV), m/z (Ir(%)): 230 (5), 189 (52), 146 (96), 118 (19), 96 (100), 91 (17), 77 (18), 70 (17), 44 (33), 42 (25), 41 (18). 1H NMR (CDCl3, 400 MHz, 300 K): δ = 1.64–1.25 (m, 3H, H9B, H10A, H10B), 2.00–1.92 (m, 4H, H11B, H8A, H8B, H9A), 2.25–2.22 (m, 1H, H11A), 2.71 (d, 1H, H4, J4,4a = 9.0), 2.86 (d, 1H, H4a, J4a,4 = 9.0), 3.18–3.14 (m, 1H, H7B), 3.78–3.73 (m, 1H, H11A), 3.79 (s, 3H, CO2Me), 3.96 (m, 1H, H7A), 5.15 (d, 1H, H3, J3,2 = 1.7), 6.47 (dd, 1H, H2, J2,1 = 6.5, J2,3 = 1.7), 6.53 (d, 1H, H1, J1,2 = 6.5). 13C NMR (CDCl3, 100 MHz, 300 K): δ = 26.6, 27.6, 29.2, 33.6 (C8, C9, C10, C11), 43.5, 45.4, 49.6, 52.1 (C7, C4A, C13, C4), 59.6 (C11A), 81.2 (C3), 92.1 (C11B), 135.2, 137.4 (C1, C2), 170.5, 172.5 (CO2Me, NCO).

Refinement top

The hydrogen atoms were placed in calculated positions with C—H = 0.93–0.98 Å and refined in the riding model with fixed isotropic displacement parameters [Uiso(H) = 1.5Ueq(C) for CH3 and Uiso(H) = 1.2Ueq(C) for remaining H].

Related literature top

For the synthesis of 2-(furan-2-yl)azepane, see: Asher et al. (1981); Shono et al. (1981); Nikolic & Beak (1997). For intramolecular cycloaddition reactions of α,β-unsaturated acid anhydrides to α-furylamines (IMDAF reactions), see: Vogel et al. (1999); Zubkov et al. (2005). For related compounds, see: Zylber et al. (1995); Evans et al. (1999); Kachkovskyi & Kolodiazhnyi (2007); Kharitonov et al. (2009); Aabid et al. (2010); Zubkov et al. (2010, 2011, 2014); Toze et al. (2011); Wang & Li (2012); Zaytsev, Mikhailova et al. (2012); Zaytsev, Zubkov et al. 2012); Zaytsev et al. (2013); Chen et al. (2013); Hizartzidis et al. (2014).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Esterification of 5-oxo-3,4,4a,5,7,8,9,10,11,11a-decahydro-3,11b-epoxyazepino[2,1-a]isoindole-4-carboxylic acid with methanol.
[Figure 2] Fig. 2. Molecular structure of (I). Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 3] Fig. 3. Crystal packing of (I) along the a axis demonstrating the H-bonded puckered layers parallel to (001). Dashed lines indicate the weak intermolecular C—H···O hydrogen-bonding interactions.
Methyl (3RS,4SR,4aRS,11aRS,11bSR)-5-oxo-3,4,4a,5,7,8,9,10,11,11a-decahydro-3,11b-epoxyazepino[2,1-a]isoindole-4-carboxylate top
Crystal data top
C15H19NO4Z = 2
Mr = 277.31F(000) = 296
Triclinic, P1Dx = 1.332 Mg m3
a = 7.5460 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.6984 (10) ÅCell parameters from 4971 reflections
c = 10.2894 (10) Åθ = 2.3–29.5°
α = 103.857 (2)°µ = 0.10 mm1
β = 94.745 (2)°T = 290 K
γ = 106.620 (2)°Prism, colourless
V = 691.24 (12) Å30.30 × 0.25 × 0.25 mm
Data collection top
Bruker APEXII CCD
diffractometer
2613 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.018
φ and ω scansθmax = 28.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 99
Tmin = 0.959, Tmax = 0.969k = 1212
9699 measured reflectionsl = 1313
3268 independent reflections
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0765P)2 + 0.153P]
where P = (Fo2 + 2Fc2)/3
3268 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C15H19NO4γ = 106.620 (2)°
Mr = 277.31V = 691.24 (12) Å3
Triclinic, P1Z = 2
a = 7.5460 (8) ÅMo Kα radiation
b = 9.6984 (10) ŵ = 0.10 mm1
c = 10.2894 (10) ÅT = 290 K
α = 103.857 (2)°0.30 × 0.25 × 0.25 mm
β = 94.745 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3268 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
2613 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.969Rint = 0.018
9699 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.03Δρmax = 0.37 e Å3
3268 reflectionsΔρmin = 0.24 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.55178 (19)0.17386 (17)0.75675 (18)0.0471 (4)
H10.45150.20090.72440.056*
C20.5710 (2)0.12672 (19)0.86511 (18)0.0491 (4)
H20.48660.11360.92550.059*
C30.7587 (2)0.09790 (16)0.87191 (15)0.0403 (3)
H30.77230.02810.92400.048*
C40.91211 (19)0.25575 (15)0.91807 (14)0.0356 (3)
H40.87350.32210.98990.043*
C4A0.89714 (17)0.30474 (14)0.78642 (13)0.0320 (3)
H4A0.87200.40060.80280.038*
C51.04722 (18)0.29945 (15)0.69682 (14)0.0352 (3)
O51.21692 (14)0.35060 (14)0.73347 (12)0.0513 (3)
N60.96070 (17)0.23177 (15)0.56738 (12)0.0414 (3)
C71.0663 (3)0.2066 (3)0.45696 (19)0.0663 (5)
H7A1.09310.11340.45060.080*
H7B1.18520.28640.47880.080*
C80.9697 (5)0.1996 (3)0.3221 (2)0.0920 (8)
H8A0.87760.10110.28610.110*
H8B1.06160.20890.26150.110*
C90.8730 (4)0.3136 (3)0.3181 (2)0.0914 (8)
H9A0.95260.40880.37780.110*
H9B0.86370.32460.22680.110*
C100.6832 (4)0.2847 (3)0.3564 (2)0.0873 (8)
H10A0.60300.19130.29410.105*
H10B0.63530.36320.34110.105*
C110.6606 (3)0.2749 (2)0.4981 (2)0.0620 (5)
H11A0.52770.23890.50170.074*
H11B0.71030.37510.55920.074*
C11A0.7550 (2)0.17431 (17)0.55118 (15)0.0423 (3)
H11C0.70810.07190.49140.051*
C11B0.72833 (18)0.17475 (15)0.69564 (14)0.0353 (3)
O120.76978 (13)0.05080 (10)0.73010 (10)0.0362 (2)
C131.1022 (2)0.24951 (16)0.96810 (14)0.0369 (3)
O131.15577 (16)0.14282 (13)0.93999 (12)0.0503 (3)
O141.20359 (16)0.38062 (13)1.05547 (12)0.0547 (3)
C141.3882 (3)0.3891 (3)1.1134 (2)0.0785 (7)
H14A1.44320.48231.18230.118*
H14B1.46490.38311.04370.118*
H14C1.37930.30761.15280.118*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0251 (7)0.0436 (8)0.0698 (11)0.0131 (6)0.0051 (7)0.0090 (7)
C20.0352 (8)0.0505 (9)0.0634 (10)0.0136 (6)0.0208 (7)0.0147 (7)
C30.0389 (7)0.0414 (8)0.0462 (8)0.0148 (6)0.0143 (6)0.0171 (6)
C40.0346 (7)0.0389 (7)0.0350 (7)0.0170 (6)0.0074 (5)0.0063 (5)
C4A0.0276 (6)0.0300 (6)0.0393 (7)0.0131 (5)0.0028 (5)0.0074 (5)
C50.0299 (6)0.0378 (7)0.0428 (7)0.0134 (5)0.0052 (5)0.0169 (6)
O50.0271 (5)0.0681 (8)0.0603 (7)0.0106 (5)0.0047 (5)0.0266 (6)
N60.0388 (7)0.0508 (7)0.0387 (6)0.0172 (6)0.0076 (5)0.0158 (5)
C70.0728 (13)0.0911 (15)0.0516 (10)0.0372 (11)0.0287 (9)0.0299 (10)
C80.153 (3)0.0921 (17)0.0439 (11)0.0550 (17)0.0284 (13)0.0186 (11)
C90.135 (3)0.0910 (17)0.0566 (12)0.0335 (16)0.0119 (14)0.0391 (12)
C100.105 (2)0.0797 (15)0.0733 (14)0.0216 (14)0.0235 (14)0.0358 (12)
C110.0454 (9)0.0690 (12)0.0734 (12)0.0160 (8)0.0107 (8)0.0323 (10)
C11A0.0372 (7)0.0424 (8)0.0424 (8)0.0088 (6)0.0039 (6)0.0109 (6)
C11B0.0273 (6)0.0330 (7)0.0450 (7)0.0113 (5)0.0011 (5)0.0093 (5)
O120.0351 (5)0.0309 (5)0.0438 (5)0.0132 (4)0.0073 (4)0.0085 (4)
C130.0395 (7)0.0419 (7)0.0327 (7)0.0179 (6)0.0056 (5)0.0105 (5)
O130.0452 (6)0.0456 (6)0.0635 (7)0.0234 (5)0.0030 (5)0.0123 (5)
O140.0458 (6)0.0534 (7)0.0541 (7)0.0215 (5)0.0103 (5)0.0062 (5)
C140.0509 (11)0.0831 (15)0.0813 (14)0.0250 (10)0.0251 (10)0.0073 (11)
Geometric parameters (Å, º) top
C1—C21.315 (3)C8—C91.495 (4)
C1—C11B1.5182 (19)C8—H8A0.9700
C1—H10.9300C8—H8B0.9700
C2—C31.519 (2)C9—C101.484 (4)
C2—H20.9300C9—H9A0.9700
C3—O121.4380 (18)C9—H9B0.9700
C3—C41.567 (2)C10—C111.504 (3)
C3—H30.9800C10—H10A0.9700
C4—C131.5062 (19)C10—H10B0.9700
C4—C4A1.5450 (19)C11—C11A1.531 (2)
C4—H40.9800C11—H11A0.9700
C4A—C51.5226 (18)C11—H11B0.9700
C4A—C11B1.5508 (18)C11A—C11B1.515 (2)
C4A—H4A0.9800C11A—H11C0.9800
C5—O51.2228 (17)C11B—O121.4386 (16)
C5—N61.3502 (19)C13—O131.1972 (17)
N6—C71.454 (2)C13—O141.3389 (18)
N6—C11A1.4718 (19)O14—C141.440 (2)
C7—C81.490 (3)C14—H14A0.9600
C7—H7A0.9700C14—H14B0.9600
C7—H7B0.9700C14—H14C0.9600
C2—C1—C11B105.23 (13)C10—C9—C8117.5 (2)
C2—C1—H1127.4C10—C9—H9A107.9
C11B—C1—H1127.4C8—C9—H9A107.9
C1—C2—C3106.25 (13)C10—C9—H9B107.9
C1—C2—H2126.9C8—C9—H9B107.9
C3—C2—H2126.9H9A—C9—H9B107.2
O12—C3—C2100.98 (12)C9—C10—C11118.87 (19)
O12—C3—C4101.71 (10)C9—C10—H10A107.6
C2—C3—C4106.12 (12)C11—C10—H10A107.6
O12—C3—H3115.4C9—C10—H10B107.6
C2—C3—H3115.4C11—C10—H10B107.6
C4—C3—H3115.4H10A—C10—H10B107.0
C13—C4—C4A115.38 (11)C10—C11—C11A116.12 (18)
C13—C4—C3112.85 (12)C10—C11—H11A108.3
C4A—C4—C3100.04 (11)C11A—C11—H11A108.3
C13—C4—H4109.4C10—C11—H11B108.3
C4A—C4—H4109.4C11A—C11—H11B108.3
C3—C4—H4109.4H11A—C11—H11B107.4
C5—C4A—C4119.20 (10)N6—C11A—C11B100.81 (11)
C5—C4A—C11B100.41 (11)N6—C11A—C11112.40 (13)
C4—C4A—C11B101.76 (10)C11B—C11A—C11112.17 (14)
C5—C4A—H4A111.4N6—C11A—H11C110.4
C4—C4A—H4A111.4C11B—C11A—H11C110.4
C11B—C4A—H4A111.4C11—C11A—H11C110.4
O5—C5—N6125.20 (13)O12—C11B—C11A111.09 (11)
O5—C5—C4A126.66 (13)O12—C11B—C1101.52 (11)
N6—C5—C4A108.11 (11)C11A—C11B—C1126.86 (12)
C5—N6—C7121.55 (14)O12—C11B—C4A99.30 (10)
C5—N6—C11A114.43 (12)C11A—C11B—C4A105.24 (11)
C7—N6—C11A123.77 (14)C1—C11B—C4A109.56 (11)
N6—C7—C8114.54 (19)C3—O12—C11B96.06 (10)
N6—C7—H7A108.6O13—C13—O14123.64 (13)
C8—C7—H7A108.6O13—C13—C4126.23 (13)
N6—C7—H7B108.6O14—C13—C4110.07 (11)
C8—C7—H7B108.6C13—O14—C14115.86 (13)
H7A—C7—H7B107.6O14—C14—H14A109.5
C7—C8—C9117.0 (2)O14—C14—H14B109.5
C7—C8—H8A108.0H14A—C14—H14B109.5
C9—C8—H8A108.0O14—C14—H14C109.5
C7—C8—H8B108.0H14A—C14—H14C109.5
C9—C8—H8B108.0H14B—C14—H14C109.5
H8A—C8—H8B107.3
C11B—C1—C2—C30.09 (17)C10—C11—C11A—N665.8 (2)
C1—C2—C3—O1232.37 (16)C10—C11—C11A—C11B178.61 (16)
C1—C2—C3—C473.37 (16)N6—C11A—C11B—O1276.52 (13)
O12—C3—C4—C1391.15 (13)C11—C11A—C11B—O12163.70 (12)
C2—C3—C4—C13163.64 (12)N6—C11A—C11B—C1159.66 (13)
O12—C3—C4—C4A32.02 (12)C11—C11A—C11B—C139.9 (2)
C2—C3—C4—C4A73.20 (13)N6—C11A—C11B—C4A30.01 (13)
C13—C4—C4A—C517.25 (17)C11—C11A—C11B—C4A89.77 (14)
C3—C4—C4A—C5104.12 (13)C2—C1—C11B—O1232.57 (15)
C13—C4—C4A—C11B126.38 (12)C2—C1—C11B—C11A160.29 (14)
C3—C4—C4A—C11B5.01 (12)C2—C1—C11B—C4A71.75 (15)
C4—C4A—C5—O549.29 (19)C5—C4A—C11B—O1282.53 (11)
C11B—C4A—C5—O5159.17 (14)C4—C4A—C11B—O1240.49 (11)
C4—C4A—C5—N6132.54 (12)C5—C4A—C11B—C11A32.47 (12)
C11B—C4A—C5—N622.66 (13)C4—C4A—C11B—C11A155.48 (11)
O5—C5—N6—C73.1 (2)C5—C4A—C11B—C1171.63 (11)
C4A—C5—N6—C7178.69 (14)C4—C4A—C11B—C165.35 (13)
O5—C5—N6—C11A177.51 (13)C2—C3—O12—C11B50.39 (12)
C4A—C5—N6—C11A4.29 (16)C4—C3—O12—C11B58.82 (11)
C5—N6—C7—C8152.76 (19)C11A—C11B—O12—C3171.91 (11)
C11A—N6—C7—C833.4 (3)C1—C11B—O12—C350.81 (12)
N6—C7—C8—C943.2 (3)C4A—C11B—O12—C361.51 (11)
C7—C8—C9—C1081.4 (3)C4A—C4—C13—O1391.08 (18)
C8—C9—C10—C1162.4 (3)C3—C4—C13—O1323.1 (2)
C9—C10—C11—C11A48.4 (3)C4A—C4—C13—O1491.77 (14)
C5—N6—C11A—C11B16.60 (16)C3—C4—C13—O14154.06 (12)
C7—N6—C11A—C11B157.66 (15)O13—C13—O14—C141.6 (2)
C5—N6—C11A—C11103.02 (16)C4—C13—O14—C14178.86 (16)
C7—N6—C11A—C1182.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O5i0.932.593.4576 (19)156
C3—H3···O13ii0.982.553.5259 (19)174
C4A—H4A···O14iii0.982.513.4190 (17)154
C14—H14A···O5iv0.962.563.279 (2)132
Symmetry codes: (i) x1, y, z; (ii) x+2, y, z+2; (iii) x+2, y+1, z+2; (iv) x+3, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O5i0.932.593.4576 (19)156
C3—H3···O13ii0.982.553.5259 (19)174
C4A—H4A···O14iii0.982.513.4190 (17)154
C14—H14A···O5iv0.962.563.279 (2)132
Symmetry codes: (i) x1, y, z; (ii) x+2, y, z+2; (iii) x+2, y+1, z+2; (iv) x+3, y+1, z+2.
 

Acknowledgements

Funding from the US National Science Foundation (PREM DMR-0934212 and EPSCoR IIA-1301346) is gratefully acknowledged.

References

First citationAabid, A. M., Vinata, V. M. & Trivedi, G. K. (2010). J. Heterocycl. Chem. 47, 214–218.  Google Scholar
First citationAsher, V., Becu, C., Anteunis, M. J. O. & Callens, R. (1981). Tetrahedron Lett. 22, 141–144.  CrossRef CAS Google Scholar
First citationBruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SADABS. Bruker AXS, Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, C., Yellol, G. S., Tsai, C., Dalvi, P. B. & Sun, C. (2013). J. Org. Chem. 78, 9738–9747.  CSD CrossRef CAS PubMed Google Scholar
First citationEvans, D. A., Barnes, D. M., Johnson, J. S., Lectka, T., von Matt, P., Miller, S. J., Murry, J. A., Norcross, R. D., Shaughnessy, E. A. & Campos, K. R. (1999). J. Am. Chem. Soc. 121, 7582–7594.  Web of Science CrossRef CAS Google Scholar
First citationHizartzidis, L., Tarleton, M., Gordon, C. P. & McCluskey, A. (2014). RSC Adv. 4, 9709–9722.  CrossRef CAS Google Scholar
First citationKachkovskyi, G. O. & Kolodiazhnyi, O. I. (2007). Tetrahedron, 63, 12576–12582.  Web of Science CSD CrossRef CAS Google Scholar
First citationKharitonov, Y. V., Shults, E. E., Shakirov, M. M. & Tolstikov, G. A. (2009). Russ. J. Org. Chem. 45, 637–649.  CrossRef CAS Google Scholar
First citationNikolic, N. A. & Beak, P. (1997). Org. Synth. 74, 23–32.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShono, T., Matsumura, Y., Tsubata, K. O. & Takata, J. (1981). Chem. Lett. pp. 1121–1124.  CrossRef Google Scholar
First citationToze, F. A. A., Airiyan, I. K., Nikitina, E. V., Sorokina, E. A. & Khrustalev, V. N. (2011). Acta Cryst. E67, o2852–o2853.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVogel, P., Cossy, J., Plumet, J. & Arjona, O. (1999). Tetrahedron, 55, 13521–13642.  Web of Science CrossRef CAS Google Scholar
First citationWang, C.-C. & Li, W.-D. Z. (2012). J. Org. Chem. 77, 4217–4225.  CSD CrossRef CAS PubMed Google Scholar
First citationZaytsev, V. P., Mikhailova, N. M., Airiyan, I. K., Galkina, E. V., Golubev, V. D., Nikitina, E. V., Zubkov, F. I. & Varlamov, A. V. (2012). Chem. Heterocycl. Compd, 48, 505–513.  CrossRef CAS Google Scholar
First citationZaytsev, V. P., Zubkov, F. I., Motorygina, E. L., Gorbacheva, M. G., Nikitina, E. V. & Varlamov, A. V. (2012). Chem. Heterocycl. C. 47, 1603–1606.  CrossRef CAS Google Scholar
First citationZaytsev, V. P., Zubkov, F. I., Toze, F. A. A., Orlova, D. N., Eliseeva, M. N., Grudinin, D. G., Nikitina, E. V. & Varlamov, A. V. (2013). J. Heterocycl. Chem. 50, E18–E38.  CrossRef CAS Google Scholar
First citationZubkov, F. I., Nikitina, E. V., Galeev, T. R., Zaytsev, V. P., Khrustalev, V. N., Novikov, R. A., Orlova, D. N. & Varlamov, A. V. (2014). Tetrahedron, 70, 1659–1690.  Web of Science CSD CrossRef CAS Google Scholar
First citationZubkov, F. I., Nikitina, E. V. & Varlamov, A. V. (2005). Russ. Chem. Rev. 74, 639–669.  CrossRef CAS Google Scholar
First citationZubkov, F. I., Zaitsev, V. P., Piskareva, A. M., Eliseeva, M. N., Nikitina, E. V., Mikhailova, N. M. & Varlamov, A. V. (2010). Russ. J. Org. Chem. 46, 1192–1206.  Web of Science CrossRef CAS Google Scholar
First citationZubkov, F. I., Zaytsev, V. P., Nikitina, E. V., Khrustalev, V. N., Gozun, S. V., Boltukhina, E. V. & Varlamov, A. V. (2011). Tetrahedron, 67, 9148–9163.  CSD CrossRef CAS Google Scholar
First citationZylber, J., Tubul, A. & Brun, P. (1995). Tetrahedron Asymmetry, 6, 377–380.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o729-o730
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds