organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of fenclorim

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 660-701, Republic of Korea
*Correspondence e-mail: thkim@gnu.ac.kr, jekim@gnu.ac.kr

Edited by J. Simpson, University of Otago, New Zealand (Received 27 August 2015; accepted 31 August 2015; online 12 September 2015)

In the title compound, C10H6Cl2N2 (systematic name: 4,6-di­chloro-2-phenyl­pyrimidine), which is used commercially as the herbicide safener, fenclorim, the dihedral angle between the di­chloro­pyrimidyl and phenyl rings is 9.45 (10)°. In the crystal, C—H⋯N hydrogen bonds link adjacent mol­ecules, forming chains along the c-axis direction. In addition, weak inter­molecular C—Cl⋯π [3.6185 (10) Å] and ππ [3.8796 (11) Å] inter­actions are present, forming a three-dimensional network.

1. Related literature

For information on the herbicidal properties of the title compound, see: Wu et al. (1999[Wu, J., Cramer, C. L. & Hatzios, K. K. (1999). Physiol. Plant. 105, 102-108.]). For a related crystal structure, see: Leban & Polanc (1992[Leban, I. & Polanc, S. (1992). Acta Cryst. C48, 2227-2229.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C10H6Cl2N2

  • Mr = 225.07

  • Monoclinic, P 21 /c

  • a = 5.6210 (6) Å

  • b = 17.0659 (18) Å

  • c = 10.2582 (12) Å

  • β = 99.690 (6)°

  • V = 970.00 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.62 mm−1

  • T = 173 K

  • 0.16 × 0.06 × 0.04 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.690, Tmax = 0.746

  • 9071 measured reflections

  • 2212 independent reflections

  • 1750 reflections with I > 2σ(I)

  • Rint = 0.034

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.077

  • S = 1.07

  • 2212 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯N2i 0.95 2.46 3.317 (2) 151
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Fenclorim [systematic name: 4,6-dichloro-2-phenylpyrimidine] is a herbicide safener that is used in many rice-producing countries to protect rice plants from damage likely to be caused by the chloroacetanilide herbicide pretilachlor. (Wu et al., 1999). The dihedral angle between the dichloropyrimidyl and phenyl rings is 9.45 (10)°. All bond lengths and bond angles are normal and comparable to those observed in a similar crystal structure (Leban & Polanc, 1992).

In the crystal structure (Fig. 2), C–H···N hydrogen bonds (Table 1) link adjacent molecules, forming a one-dimensional chains along the c-axis. In addition, weak intermolecular C3–Cl2···Cg2iii [Cl2···Cg2 = 3.6185 (10) Å] (Cg2 is the centroid of the C5–C10 ring) and Cg1···Cg2iv [Cg1···Cg2 = 3.8796 (11) Å] interactions are present (Cg1 is the centroid of the N1,N2,C1–C4 ring), forming a three-dimensional network [symmetry codes: (ii), x - 1, y, z; (iii), x - 1, -y + 1/2, z - 1/2; (iv), -x + 1, -y + 1, -z].

Related literature top

For information on the herbicidal properties of the title compound, see: Wu et al. (1999). For a related crystal structure, see: Leban & Polanc (1992).

Experimental top

The title compound was purchased from the Dr. Ehrenstorfer GmbH Company. Slow evaporation of a solution in CH2Cl2 gave single crystals suitable for X-ray analysis.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.95 Å, Uiso = 1.2Ueq(C) for the aromatic C—H.

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Crystal packing viewed along the a axis. The intermolecular interactions are shown as dashed lines.
4,6-Dichloro-2-phenylpyrimidine top
Crystal data top
C10H6Cl2N2F(000) = 456
Mr = 225.07Dx = 1.541 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.6210 (6) ÅCell parameters from 2286 reflections
b = 17.0659 (18) Åθ = 2.3–25.9°
c = 10.2582 (12) ŵ = 0.62 mm1
β = 99.690 (6)°T = 173 K
V = 970.00 (19) Å3Plate, colourless
Z = 40.16 × 0.06 × 0.04 mm
Data collection top
Bruker APEXII CCD
diffractometer
1750 reflections with I > 2σ(I)
φ and ω scansRint = 0.034
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
θmax = 27.5°, θmin = 2.3°
Tmin = 0.690, Tmax = 0.746h = 67
9071 measured reflectionsk = 1922
2212 independent reflectionsl = 139
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0277P)2 + 0.269P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2212 reflectionsΔρmax = 0.28 e Å3
127 parametersΔρmin = 0.23 e Å3
Crystal data top
C10H6Cl2N2V = 970.00 (19) Å3
Mr = 225.07Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.6210 (6) ŵ = 0.62 mm1
b = 17.0659 (18) ÅT = 173 K
c = 10.2582 (12) Å0.16 × 0.06 × 0.04 mm
β = 99.690 (6)°
Data collection top
Bruker APEXII CCD
diffractometer
2212 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
1750 reflections with I > 2σ(I)
Tmin = 0.690, Tmax = 0.746Rint = 0.034
9071 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 1.07Δρmax = 0.28 e Å3
2212 reflectionsΔρmin = 0.23 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.65642 (9)0.34546 (3)0.36827 (4)0.04016 (15)
Cl20.00001 (9)0.21187 (3)0.11631 (4)0.03800 (15)
N10.6078 (2)0.37521 (8)0.12511 (13)0.0265 (3)
N20.3094 (2)0.31826 (8)0.01497 (13)0.0251 (3)
C10.5151 (3)0.33485 (10)0.23126 (16)0.0266 (4)
C20.3205 (3)0.28518 (10)0.24028 (16)0.0274 (4)
H20.25510.25800.31900.033*
C30.2296 (3)0.27863 (10)0.12406 (16)0.0258 (4)
C40.4978 (3)0.36583 (9)0.01979 (15)0.0239 (4)
C50.5944 (3)0.41068 (10)0.10104 (15)0.0248 (4)
C60.4715 (3)0.41288 (10)0.20807 (16)0.0294 (4)
H60.32400.38510.20440.035*
C70.5644 (4)0.45554 (11)0.31979 (17)0.0355 (4)
H70.48090.45660.39290.043*
C80.7773 (4)0.49654 (12)0.32573 (18)0.0381 (5)
H80.83950.52590.40260.046*
C90.9000 (3)0.49498 (12)0.22019 (19)0.0391 (5)
H91.04600.52360.22390.047*
C100.8099 (3)0.45159 (11)0.10867 (18)0.0332 (4)
H100.89640.44980.03670.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0519 (3)0.0482 (3)0.0248 (2)0.0100 (2)0.0192 (2)0.0056 (2)
Cl20.0424 (3)0.0384 (3)0.0344 (3)0.0145 (2)0.0099 (2)0.00277 (19)
N10.0314 (8)0.0280 (8)0.0213 (7)0.0007 (7)0.0077 (6)0.0002 (6)
N20.0290 (8)0.0250 (8)0.0217 (7)0.0008 (6)0.0056 (6)0.0012 (6)
C10.0352 (10)0.0268 (9)0.0194 (8)0.0042 (8)0.0095 (7)0.0021 (7)
C20.0346 (10)0.0265 (9)0.0210 (8)0.0003 (8)0.0042 (7)0.0027 (7)
C30.0296 (9)0.0234 (9)0.0244 (8)0.0008 (7)0.0043 (7)0.0021 (7)
C40.0278 (9)0.0240 (9)0.0200 (8)0.0047 (7)0.0046 (7)0.0033 (6)
C50.0307 (9)0.0226 (9)0.0209 (8)0.0032 (7)0.0035 (7)0.0011 (6)
C60.0375 (10)0.0264 (9)0.0253 (9)0.0013 (8)0.0080 (7)0.0005 (7)
C70.0500 (12)0.0366 (11)0.0206 (9)0.0080 (9)0.0078 (8)0.0013 (7)
C80.0442 (12)0.0383 (11)0.0276 (9)0.0086 (10)0.0063 (8)0.0079 (8)
C90.0323 (10)0.0415 (12)0.0406 (11)0.0028 (9)0.0019 (8)0.0081 (9)
C100.0316 (10)0.0375 (11)0.0311 (9)0.0021 (8)0.0073 (8)0.0037 (8)
Geometric parameters (Å, º) top
Cl1—C11.7362 (17)C5—C61.393 (2)
Cl2—C31.7333 (17)C6—C71.384 (2)
N1—C11.319 (2)C6—H60.9500
N1—C41.342 (2)C7—C81.379 (3)
N2—C31.320 (2)C7—H70.9500
N2—C41.342 (2)C8—C91.378 (3)
C1—C21.375 (2)C8—H80.9500
C2—C31.379 (2)C9—C101.385 (2)
C2—H20.9500C9—H90.9500
C4—C51.480 (2)C10—H100.9500
C5—C101.389 (2)
C1—N1—C4115.52 (14)C6—C5—C4120.90 (15)
C3—N2—C4115.88 (14)C7—C6—C5119.93 (17)
N1—C1—C2125.22 (15)C7—C6—H6120.0
N1—C1—Cl1116.28 (13)C5—C6—H6120.0
C2—C1—Cl1118.49 (13)C8—C7—C6120.49 (17)
C1—C2—C3113.49 (15)C8—C7—H7119.8
C1—C2—H2123.3C6—C7—H7119.8
C3—C2—H2123.3C9—C8—C7120.06 (17)
N2—C3—C2124.69 (16)C9—C8—H8120.0
N2—C3—Cl2116.58 (13)C7—C8—H8120.0
C2—C3—Cl2118.70 (13)C8—C9—C10119.83 (18)
N1—C4—N2125.13 (15)C8—C9—H9120.1
N1—C4—C5117.31 (15)C10—C9—H9120.1
N2—C4—C5117.55 (14)C9—C10—C5120.63 (17)
C10—C5—C6119.06 (16)C9—C10—H10119.7
C10—C5—C4120.04 (15)C5—C10—H10119.7
C4—N1—C1—C20.4 (2)N1—C4—C5—C108.8 (2)
C4—N1—C1—Cl1179.46 (12)N2—C4—C5—C10170.39 (16)
N1—C1—C2—C31.8 (3)N1—C4—C5—C6170.99 (15)
Cl1—C1—C2—C3177.25 (12)N2—C4—C5—C69.9 (2)
C4—N2—C3—C22.3 (2)C10—C5—C6—C70.1 (3)
C4—N2—C3—Cl2175.70 (12)C4—C5—C6—C7179.64 (15)
C1—C2—C3—N23.2 (3)C5—C6—C7—C80.5 (3)
C1—C2—C3—Cl2174.72 (13)C6—C7—C8—C90.3 (3)
C1—N1—C4—N21.6 (2)C7—C8—C9—C100.6 (3)
C1—N1—C4—C5179.38 (14)C8—C9—C10—C51.2 (3)
C3—N2—C4—N10.3 (2)C6—C5—C10—C91.0 (3)
C3—N2—C4—C5179.36 (14)C4—C5—C10—C9178.79 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N2i0.952.463.317 (2)151
Symmetry code: (i) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N2i0.952.463.317 (2)150.5
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2015R1D1A4A01020317).

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLeban, I. & Polanc, S. (1992). Acta Cryst. C48, 2227–2229.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWu, J., Cramer, C. L. & Hatzios, K. K. (1999). Physiol. Plant. 105, 102–108.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds