research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1-[(2,3-di­hydro-1H-naphtho­[1,2-e][1,3]oxazin-2-yl)meth­yl]naphthalen-2-ol: a possible candidate for new polynaphthoxazine materials

CROSSMARK_Color_square_no_text.svg

aUniversidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Química, Cra 30 No. 45-03, Bogotá, Código Postal 111321, Colombia, and bInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von Laue-Str. 7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: ariverau@unal.edu.co

Edited by H. Ishida, Okayama University, Japan (Received 7 August 2015; accepted 19 August 2015; online 26 August 2015)

In the title compound, C23H19NO2, an oxazine Mannich base derivative, the oxazine ring has a half-chair conformation. The 2-hy­droxy­naphthalen-1-yl substituent is placed in an axial position. There is an intra­molecular O—H⋯N hydrogen bond, forming an S(6) graph-set motif. In the crystal, mol­ecules are connected by a pair of C—H⋯π inter­actions into an inversion dimer, which is reinforced by another pair of weak C—H⋯π inter­actions. The dimers are linked by a ππ inter­action [centroid-centroid distance = 3.6268 (17) Å], consolidating a column along the a axis. Furthermore, the columns inter­act with each other by a weak C—H⋯π inter­action, generating a three-dimensional network.

1. Chemical context

Benzoxazines and naphthoxazines have been shown to polymerize via a thermally induced ring-opening reaction of the oxazine ring to form a phenolic structure associated with traditional phenolic resins (Ishida & Sanders, 2001[Ishida, H. & Sanders, D. P. (2001). Polymer, 42, 3115-3125.]). Polybenzoxazines, polynaphthoxazines and their derivatives are a class of phenolic resins which are alternative to the traditional resins (Yildirim et al., 2006[Yildirim, A., Kiskan, B., Demirel, A. L. & Yagci, Y. (2006). Eur. Polym. J. 42, 3006-3014.]). So far the main contribution to the chemistry of these compounds has been the work of Burke (Burke, 1949[Burke, W. J. (1949). J. Am. Chem. Soc. 71, 609-612.]; Burke et al., 1952[Burke, W. J., Kolbezen, M. J. & Stephens, C. W. (1952). J. Am. Chem. Soc. 74, 3601-3605.]), who was the first to show that aromatic oxazines could be obtained via Mannich-type condensation–cyclization reactions of certain phenols or naphtols with formaldehyde and primary amines in the molar ratio of 1:2:1. Various methods have been reported for the synthesis of di­hydro-1,3-oxazines including the reaction under neat conditions via Mannich-type condensation–cyclization reaction of phenols or naphthols with formaldehyde and primary amines (Mathew et al., 2010[Mathew, B. P., Kumar, A., Sharma, S., Shukla, P. K. & Nath, M. (2010). Eur. J. Med. Chem. 45, 1502-1507.]). Our current research includes synthesis and characterization of monofunctional benzoxazines using aminals as performed Mannich electrophiles instead of formaldehyde and primary amines. Earlier (Rivera et al., 2005[Rivera, A., Ríos, J., Quevedo, R. & Joseph-Nathan, P. (2005). Rev. Colomb. Quim. 34, 105-115.]), we have reported an inter­esting behaviour of the macrocyclic aminal 1,3,6,8-tetra­aza­tri­cyclo[4.4.1.13,8]dodecane (TATD) with hindered meta-disubstituted phenols affording 3,3-ethyl­ene-bis­(3,4-di­hydro-2H-1,3-benzo­xazines) with good yields by a Mannich-type reaction in basic media. Recently, we synthesized the title compound by a reaction between the cyclic aminal 1,3,6,8-tetra­aza­tri­cyclo­[4.3.1.1.3,8]undecane (TATU) with 2-naphthol solvent-free at low temperature. Because a wide range of cured properties can be obtained (Uyar et al., 2008[Uyar, T., Koyuncu, Z., Ishida, H. & Hacaloglu, J. (2008). Polym. Degrad. Stab. 93, 2096-2103.]) depending on the structure of aryl­oxazine monomers, initiators and the curing conditions, the title compound is a very good candidate as a monomer for the investigation of the polymerization of this class of compounds.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The six-membered oxazine ring adopts a half-chair conformation with atoms N1 and C1 displaced by 0.323 (2) and 0.292 (3) Å, respectively, from the mean plane composed of atoms O1, C11, C12 and C2. The puckering parameters are Q = 0.479 (3) Å, θ = 50.0 (3)° and φ = 98.3 (4)° for the ring O1/C1/N1/C2/C12/C11. The (2-hy­droxy­naphthalen-1-yl)methyl group bonded to atom N1 of the oxazine ring is placed in an axial position. The pendant naphthyl group (C21–C30) makes a dihedral angle of 59.94 (4)° with the oxazine ring plane defined by atoms C11, C12 and O1. The bond lengths, N1—C1 and O1—C1, are normal and comparable to the corresponding values observed in the related structure of 6-bromo-2,4-bis­(3-meth­oxy-phen­yl)-3,4-di­hydro-2H-1,3-naphthoxazine (Sarojini et al., 2007[Sarojini, B. K., Narayana, B., Mayekar, A. N., Yathirajan, H. S. & Bolte, M. (2007). Acta Cryst. E63, o4739.]). There is an intra­molecular O—H⋯N hydrogen bond (Table 1[link]), forming an S(6) graph-set motif, where the N⋯O distance is longer by about 0.04 and 0.03 Å, respectively, than the observed values in related structures of 1-(piperidin-1-ylmeth­yl)-2-naphthol (Liu et al., 2005[Liu, Q.-W., Zhang, M.-J., Wang, X.-Q. & Ma, P.-G. (2005). Acta Cryst. E61, o4285-o4286.]) and 1-morpholino­methyl-2-naphthol (Ma et al., 2005[Ma, S.-S., Zhang, M.-J., Yuan, D.-Y. & Qi, Z.-B. (2005). Acta Cryst. E61, o1370-o1371.]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg2, Cg3 and Cg5 are the centroids of the C11–C13/C18–C20, C13–C18 and C25–C30 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N1 0.84 1.88 2.627 (2) 147
C1—H1ACg3i 0.99 2.53 3.501 (3) 169
C2—H2BCg2i 0.99 2.86 3.743 (3) 149
C14—H14⋯Cg5ii 0.99 2.87 3.723 (3) 150
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, Displacement ellipsoids are drawn at the 50% probability level. The hydrogen bond is shown as a dashed line.

3. Supra­molecular features

The crystal packing organization is essentially the result of two different types of inter­actions involving inversion-related mol­ecules. Based on the distance criteria employed in PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), the most notable inter­molecular contact is a C—H⋯π inter­action (C1—H1ACg3i; Table 1[link]), so that an inversion dimer is formed (Fig. 2[link]). In addition, there is another C—H⋯π inter­action (C2—H2BCg2i; Table 1[link]) in the dimer. A column of alternating inversion dimers extending along the a axis results from a ππ stacking inter­action (Fig. 3[link]) between adjacent 2,3-di­hydro-1H-naphtho­[1,2-e][1,3]oxazine ring systems with a centroid–centroid distance of 3.6268 (17) Å [Cg3⋯Cg3iii; symmetry code: (iii) = −x, −y + 1, −z + 1]. Neighboring columns are connected by a weak C—H⋯π inter­action (C14—H14ACg5ii; Table 1[link]), generating a three-dimensional network. The unit-cell packing is shown in Fig. 4[link].

[Figure 2]
Figure 2
An inversion dimer in the crystal of the title compound, with C—H⋯π inter­actions indicated by dashed lines.
[Figure 3]
Figure 3
The view of the column structure along the a axis, showing the ππ stacking inter­actions (dashed lines).
[Figure 4]
Figure 4
Packing diagram of the title compound. C-bound H atoms have been omitted for clarity.

4. Database survey

The 2,3-di­hydro-1H-naphtho­[1,2-e][1,3]oxazine fragment is a quite rigid moiety. A search in the CSD (Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) for this fragment gave 22 hits with 24 fragments. The torsion angles in the heterocycle show broadly consistent values. Their absolute values are in the following ranges: O—C—N—C 56.0–69.7°, C—N—C—C 37.7–53.8°, N—C—C—C 3.7–24.2°, C—C—C—O 0.1–6.3°, C—C—O—C 1.0–21.6° and C—O—C—N 28.8–56.1°. Thus, it can be concluded that the conformation of this heterocycle is the same in all fragments. The values of the title compound fit very well into these ranges: O1—C1—N1—C2 64.2 (3)°, C1—N1—C2—C12 − 48.9 (3)°, N1—C2—C12—C11 19.3 (3)°, C2—C12—C11—O1 − 0.5 (3)°, C12—C11—O1—C1 12.4 (3)° and C11—O1—C1—N1 − 45.3 (3)°.

5. Synthesis and crystallization

2-Naphthol (144 mg, 1 mmol) and 1,3,6,8-tetra­aza­tri­cyclo­[4.3.1.13,8]undecane (TATU) (154 mg, 1 mmol) were manually ground together, heated to 313 K and stirred for 12 h under solvent-free conditions. Progress of the reaction was determined by TLC monitoring. After completion of the reaction, the mixture was cooled to room temperature and the solid residue was purified by silica gel column chromatography with benzene–ethyl acetate (4:1) as the eluent to give 1-{[1H-naphtho­[1,2-e][1,3]oxazin-2(3H)-yl]meth­yl}naphthalen-2-ol as a brown solid in 28% yield. This compound was obtained in its crystalline form by recrystallization from an absolute ethanol solution (m.p. 443 K).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were located in a difference electron-density map. The hydroxyl H atom was refined using a riding-model approximation with O—H = 0.84 Å. The Uiso(H) value and the C—C—O—H torsion angle were refined. C-bound H atoms were fixed geometrically (C—H = 0.95 or 0.99 Å) and treated as riding with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C23H19NO2
Mr 341.39
Crystal system, space group Monoclinic, P21/n
Temperature (K) 173
a, b, c (Å) 9.6570 (12), 9.7609 (7), 18.790 (2)
β (°) 102.331 (10)
V3) 1730.3 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.31 × 0.11 × 0.11
 
Data collection
Diffractometer STOE IPDS II two-circle
Absorption correction Multi-scan (X-AREA; Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.300, 0.991
No. of measured, independent and observed [I > 2σ(I)] reflections 8807, 3222, 2069
Rint 0.051
(sin θ/λ)max−1) 0.608
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.135, 0.96
No. of reflections 3222
No. of parameters 237
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.57, −0.24
Computer programs: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]), SHELXS97, XP in SHELXTL-Plus and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/6 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/6 (Sheldrick, 2015); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

1-[(2,3-Dihydro-1H-naphtho[1,2-e][1,3]oxazin-2-yl)methyl]naphthalen-2-ol top
Crystal data top
C23H19NO2F(000) = 720
Mr = 341.39Dx = 1.310 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.6570 (12) ÅCell parameters from 5838 reflections
b = 9.7609 (7) Åθ = 3.4–25.8°
c = 18.790 (2) ŵ = 0.08 mm1
β = 102.331 (10)°T = 173 K
V = 1730.3 (3) Å3Needle, colourless
Z = 40.31 × 0.11 × 0.11 mm
Data collection top
STOE IPDS II two-circle-
diffractometer
2069 reflections with I > 2σ(I)
Radiation source: Genix 3D IµS microfocus X-ray sourceRint = 0.051
ω scansθmax = 25.6°, θmin = 3.4°
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
h = 911
Tmin = 0.300, Tmax = 0.991k = 1011
8807 measured reflectionsl = 2222
3222 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.0738P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max < 0.001
3222 reflectionsΔρmax = 0.57 e Å3
237 parametersΔρmin = 0.24 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5357 (2)0.80192 (19)0.57257 (9)0.0422 (5)
O20.67542 (18)0.5355 (2)0.80171 (9)0.0428 (5)
H20.67630.56780.76040.039 (8)*
N10.5689 (2)0.6438 (2)0.67377 (9)0.0332 (5)
C10.6360 (3)0.7296 (3)0.62925 (13)0.0427 (6)
H1A0.69880.67250.60600.051*
H1B0.69610.79760.66070.051*
C20.4914 (3)0.5345 (3)0.62777 (10)0.0336 (6)
H2A0.43050.48460.65530.040*
H2B0.55980.46840.61490.040*
C30.4775 (3)0.7190 (3)0.71422 (11)0.0326 (5)
H3A0.38920.74700.68010.039*
H3B0.52690.80310.73560.039*
C110.4279 (3)0.7211 (3)0.53568 (11)0.0346 (6)
C120.4002 (2)0.5935 (2)0.55868 (10)0.0293 (5)
C130.2837 (2)0.5172 (3)0.51787 (10)0.0292 (5)
C140.2464 (3)0.3851 (3)0.53810 (10)0.0328 (6)
H140.30300.34240.57980.039*
C150.1310 (3)0.3174 (3)0.49924 (11)0.0381 (6)
H150.10760.22940.51480.046*
C160.0471 (3)0.3762 (3)0.43679 (11)0.0407 (6)
H160.03300.32840.41000.049*
C170.0809 (3)0.5027 (3)0.41453 (11)0.0388 (7)
H170.02460.54140.37160.047*
C180.1980 (3)0.5774 (3)0.45412 (10)0.0336 (6)
C190.2309 (3)0.7106 (3)0.43329 (11)0.0384 (6)
H190.17420.75100.39090.046*
C200.3419 (3)0.7818 (3)0.47263 (11)0.0418 (7)
H200.36200.87160.45820.050*
C210.4405 (2)0.6320 (2)0.77453 (10)0.0272 (5)
C220.5430 (2)0.5495 (3)0.81558 (11)0.0311 (5)
C230.5180 (3)0.4759 (3)0.87625 (11)0.0370 (6)
H230.59170.42290.90500.044*
C240.3891 (3)0.4808 (3)0.89361 (11)0.0360 (6)
H240.37360.43140.93480.043*
C250.2767 (3)0.5584 (2)0.85145 (10)0.0298 (5)
C260.1401 (3)0.5588 (3)0.86679 (11)0.0365 (6)
H260.12310.50700.90690.044*
C270.0318 (3)0.6318 (3)0.82539 (12)0.0406 (6)
H270.06030.62860.83570.049*
C280.0574 (3)0.7115 (3)0.76759 (12)0.0392 (6)
H280.01750.76370.73920.047*
C290.1886 (2)0.7151 (3)0.75153 (10)0.0326 (6)
H290.20370.77130.71260.039*
C300.3031 (2)0.6371 (2)0.79162 (9)0.0257 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0455 (11)0.0355 (11)0.0494 (9)0.0013 (9)0.0184 (8)0.0046 (7)
O20.0317 (9)0.0460 (12)0.0510 (10)0.0000 (9)0.0094 (7)0.0033 (8)
N10.0275 (10)0.0433 (13)0.0306 (8)0.0053 (10)0.0104 (7)0.0037 (8)
C10.0414 (15)0.0423 (17)0.0485 (13)0.0026 (14)0.0192 (11)0.0015 (11)
C20.0348 (13)0.0365 (15)0.0293 (10)0.0095 (12)0.0061 (9)0.0027 (9)
C30.0407 (14)0.0279 (13)0.0334 (10)0.0053 (12)0.0176 (9)0.0032 (9)
C110.0358 (13)0.0375 (15)0.0345 (10)0.0053 (13)0.0164 (9)0.0074 (10)
C120.0332 (13)0.0302 (14)0.0269 (9)0.0099 (11)0.0117 (9)0.0005 (8)
C130.0315 (12)0.0341 (14)0.0238 (9)0.0110 (11)0.0102 (8)0.0004 (8)
C140.0400 (14)0.0332 (14)0.0263 (9)0.0112 (12)0.0095 (9)0.0018 (9)
C150.0448 (15)0.0362 (15)0.0349 (11)0.0028 (13)0.0123 (10)0.0023 (10)
C160.0379 (14)0.0501 (18)0.0335 (11)0.0070 (14)0.0064 (10)0.0089 (11)
C170.0374 (14)0.0524 (19)0.0260 (10)0.0163 (13)0.0052 (9)0.0009 (10)
C180.0387 (14)0.0398 (15)0.0246 (9)0.0166 (12)0.0118 (9)0.0034 (9)
C190.0486 (15)0.0387 (15)0.0283 (10)0.0165 (14)0.0092 (10)0.0070 (10)
C200.0623 (18)0.0313 (15)0.0382 (11)0.0129 (14)0.0252 (11)0.0062 (10)
C210.0310 (12)0.0256 (12)0.0258 (9)0.0078 (11)0.0077 (8)0.0066 (8)
C220.0284 (12)0.0302 (14)0.0341 (10)0.0033 (11)0.0052 (9)0.0087 (9)
C230.0418 (15)0.0288 (14)0.0360 (11)0.0030 (12)0.0014 (10)0.0002 (9)
C240.0515 (16)0.0279 (13)0.0282 (10)0.0035 (13)0.0077 (10)0.0029 (9)
C250.0405 (14)0.0245 (13)0.0257 (9)0.0071 (11)0.0099 (9)0.0045 (8)
C260.0453 (15)0.0343 (15)0.0349 (11)0.0123 (13)0.0193 (10)0.0028 (10)
C270.0354 (14)0.0432 (17)0.0475 (12)0.0084 (13)0.0188 (10)0.0115 (11)
C280.0335 (13)0.0420 (16)0.0416 (11)0.0011 (13)0.0070 (10)0.0017 (11)
C290.0349 (13)0.0338 (14)0.0293 (10)0.0022 (12)0.0075 (9)0.0029 (9)
C300.0308 (12)0.0239 (12)0.0228 (8)0.0061 (10)0.0064 (8)0.0038 (8)
Geometric parameters (Å, º) top
O1—C111.370 (3)C16—H160.9500
O1—C11.460 (3)C17—C181.416 (4)
O2—C221.366 (3)C17—H170.9500
O2—H20.8400C18—C191.413 (4)
N1—C11.433 (3)C19—C201.357 (4)
N1—C21.473 (3)C19—H190.9500
N1—C31.477 (3)C20—H200.9500
C1—H1A0.9900C21—C221.377 (3)
C1—H1B0.9900C21—C301.431 (3)
C2—C121.518 (3)C22—C231.411 (4)
C2—H2A0.9900C23—C241.353 (4)
C2—H2B0.9900C23—H230.9500
C3—C211.518 (3)C24—C251.418 (3)
C3—H3A0.9900C24—H240.9500
C3—H3B0.9900C25—C261.409 (3)
C11—C121.363 (4)C25—C301.429 (3)
C11—C201.423 (3)C26—C271.364 (4)
C12—C131.429 (3)C26—H260.9500
C13—C141.412 (4)C27—C281.400 (4)
C13—C181.429 (3)C27—H270.9500
C14—C151.365 (4)C28—C291.364 (3)
C14—H140.9500C28—H280.9500
C15—C161.399 (3)C29—C301.420 (3)
C15—H150.9500C29—H290.9500
C16—C171.365 (4)
C11—O1—C1113.9 (2)C16—C17—H17119.3
C22—O2—H2109.5C18—C17—H17119.3
C1—N1—C2108.51 (17)C19—C18—C17122.0 (2)
C1—N1—C3113.9 (2)C19—C18—C13119.1 (2)
C2—N1—C3112.13 (18)C17—C18—C13118.9 (2)
N1—C1—O1113.3 (2)C20—C19—C18121.2 (2)
N1—C1—H1A108.9C20—C19—H19119.4
O1—C1—H1A108.9C18—C19—H19119.4
N1—C1—H1B108.9C19—C20—C11119.5 (3)
O1—C1—H1B108.9C19—C20—H20120.2
H1A—C1—H1B107.7C11—C20—H20120.2
N1—C2—C12110.9 (2)C22—C21—C30118.9 (2)
N1—C2—H2A109.5C22—C21—C3119.3 (2)
C12—C2—H2A109.5C30—C21—C3121.7 (2)
N1—C2—H2B109.5O2—C22—C21122.8 (2)
C12—C2—H2B109.5O2—C22—C23115.6 (2)
H2A—C2—H2B108.1C21—C22—C23121.6 (2)
N1—C3—C21111.6 (2)C24—C23—C22120.1 (2)
N1—C3—H3A109.3C24—C23—H23119.9
C21—C3—H3A109.3C22—C23—H23119.9
N1—C3—H3B109.3C23—C24—C25121.2 (2)
C21—C3—H3B109.3C23—C24—H24119.4
H3A—C3—H3B108.0C25—C24—H24119.4
C12—C11—O1123.0 (2)C26—C25—C24121.7 (2)
C12—C11—C20121.7 (2)C26—C25—C30119.5 (2)
O1—C11—C20115.2 (2)C24—C25—C30118.9 (2)
C11—C12—C13119.45 (19)C27—C26—C25121.5 (2)
C11—C12—C2120.0 (2)C27—C26—H26119.3
C13—C12—C2120.5 (2)C25—C26—H26119.3
C14—C13—C12123.26 (18)C26—C27—C28119.5 (2)
C14—C13—C18117.8 (2)C26—C27—H27120.3
C12—C13—C18119.0 (2)C28—C27—H27120.3
C15—C14—C13121.6 (2)C29—C28—C27120.8 (2)
C15—C14—H14119.2C29—C28—H28119.6
C13—C14—H14119.2C27—C28—H28119.6
C14—C15—C16120.7 (3)C28—C29—C30121.6 (2)
C14—C15—H15119.7C28—C29—H29119.2
C16—C15—H15119.7C30—C29—H29119.2
C17—C16—C15119.6 (2)C29—C30—C25117.2 (2)
C17—C16—H16120.2C29—C30—C21123.63 (19)
C15—C16—H16120.2C25—C30—C21119.2 (2)
C16—C17—C18121.4 (2)
C2—N1—C1—O164.2 (3)C13—C18—C19—C200.0 (4)
C3—N1—C1—O161.4 (3)C18—C19—C20—C110.6 (4)
C11—O1—C1—N145.3 (3)C12—C11—C20—C191.3 (4)
C1—N1—C2—C1248.9 (3)O1—C11—C20—C19178.8 (2)
C3—N1—C2—C1277.7 (2)N1—C3—C21—C2240.2 (3)
C1—N1—C3—C21165.05 (18)N1—C3—C21—C30142.0 (2)
C2—N1—C3—C2171.3 (2)C30—C21—C22—O2178.02 (19)
C1—O1—C11—C1212.4 (3)C3—C21—C22—O24.1 (3)
C1—O1—C11—C20170.1 (2)C30—C21—C22—C233.5 (3)
O1—C11—C12—C13178.6 (2)C3—C21—C22—C23174.4 (2)
C20—C11—C12—C131.3 (3)O2—C22—C23—C24178.6 (2)
O1—C11—C12—C20.5 (3)C21—C22—C23—C242.8 (4)
C20—C11—C12—C2177.8 (2)C22—C23—C24—C250.4 (4)
N1—C2—C12—C1119.3 (3)C23—C24—C25—C26176.7 (2)
N1—C2—C12—C13159.8 (2)C23—C24—C25—C302.7 (3)
C11—C12—C13—C14179.3 (2)C24—C25—C26—C27178.9 (2)
C2—C12—C13—C140.3 (3)C30—C25—C26—C270.5 (3)
C11—C12—C13—C180.6 (3)C25—C26—C27—C281.9 (4)
C2—C12—C13—C18178.4 (2)C26—C27—C28—C291.1 (4)
C12—C13—C14—C15177.5 (2)C27—C28—C29—C301.1 (4)
C18—C13—C14—C151.2 (3)C28—C29—C30—C252.4 (3)
C13—C14—C15—C161.3 (4)C28—C29—C30—C21176.7 (2)
C14—C15—C16—C170.0 (4)C26—C25—C30—C291.6 (3)
C15—C16—C17—C181.2 (4)C24—C25—C30—C29179.0 (2)
C16—C17—C18—C19177.5 (2)C26—C25—C30—C21177.5 (2)
C16—C17—C18—C131.2 (4)C24—C25—C30—C211.9 (3)
C14—C13—C18—C19178.7 (2)C22—C21—C30—C29177.9 (2)
C12—C13—C18—C190.0 (3)C3—C21—C30—C294.3 (3)
C14—C13—C18—C170.0 (3)C22—C21—C30—C251.1 (3)
C12—C13—C18—C17178.8 (2)C3—C21—C30—C25176.70 (19)
C17—C18—C19—C20178.7 (2)
Hydrogen-bond geometry (Å, º) top
Cg2, Cg3 and Cg5 are the centroids of the C11–C13/C18–C20, C13–C18 and C25–C30 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.841.882.627 (2)147
C1—H1A···Cg3i0.992.533.501 (3)169
C2—H2B···Cg2i0.992.863.743 (3)149
C14—H14···Cg5ii0.992.873.723 (3)150
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y1/2, z+3/2.
 

Acknowledgements

We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia, for financial support of this work (research project No. 28427). JJR thanks COLCIENCIAS for a fellowship.

References

First citationBurke, W. J. (1949). J. Am. Chem. Soc. 71, 609–612.  CrossRef CAS Web of Science Google Scholar
First citationBurke, W. J., Kolbezen, M. J. & Stephens, C. W. (1952). J. Am. Chem. Soc. 74, 3601–3605.  CrossRef CAS Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationIshida, H. & Sanders, D. P. (2001). Polymer, 42, 3115–3125.  CrossRef CAS Google Scholar
First citationLiu, Q.-W., Zhang, M.-J., Wang, X.-Q. & Ma, P.-G. (2005). Acta Cryst. E61, o4285–o4286.  CSD CrossRef IUCr Journals Google Scholar
First citationMa, S.-S., Zhang, M.-J., Yuan, D.-Y. & Qi, Z.-B. (2005). Acta Cryst. E61, o1370–o1371.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMathew, B. P., Kumar, A., Sharma, S., Shukla, P. K. & Nath, M. (2010). Eur. J. Med. Chem. 45, 1502–1507.  CrossRef CAS PubMed Google Scholar
First citationRivera, A., Ríos, J., Quevedo, R. & Joseph-Nathan, P. (2005). Rev. Colomb. Quim. 34, 105–115.  CAS Google Scholar
First citationSarojini, B. K., Narayana, B., Mayekar, A. N., Yathirajan, H. S. & Bolte, M. (2007). Acta Cryst. E63, o4739.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationUyar, T., Koyuncu, Z., Ishida, H. & Hacaloglu, J. (2008). Polym. Degrad. Stab. 93, 2096–2103.  CrossRef CAS Google Scholar
First citationYildirim, A., Kiskan, B., Demirel, A. L. & Yagci, Y. (2006). Eur. Polym. J. 42, 3006–3014.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds