research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of di­chlorido­bis­­(N,N′-di­methyl­thio­urea-κS)mercury(II)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Sargodha, Sargodha, Punjab, Pakistan, bDepartment of Chemistry, University of Engineering and Technology, Lahore 54890, Pakistan, cDepartment of Physics, University of Sargodha, Sargodha, Punjab, Pakistan, and dDepartment of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
*Correspondence e-mail: dmntahir_uos@yahoo.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 6 August 2015; accepted 18 August 2015; online 22 August 2015)

The mol­ecular structure of the title compound, [HgCl2(C3H8N2S)2], has point group symmetry 2, with the twofold rotation axis passing through the HgII atom. The latter is coordinated by two Cl atoms and two N,N′-di­methyl­thio­urea (Dmtu) ligands through their S atoms, defining a distorted tetra­hedral coordination sphere with bond angles in the range 102.47 (4)–118.32 (4)°. Intra- and inter­molecular hydrogen bonds of the type N—H⋯Cl with S(6) and R22(12) ring motifs are present. The inter­molecular contacts make up polymeric chains extending parallel to [101].

1. Chemical context

X-ray structural studies of mercury(II) complexes with thio­urea ligands (L) or derivatives thereof have shown that in combination with a halide or pseudohalide X, some of the complexes exist as mononuclear species [HgX2L2] (Popović et al., 2000[Popović, Z., Pavlović, G., Matković-Čalogović, D., Soldin, Ž., Željka, , Rajić, M., Vikić-Topić, D. & Kovaček, D. (2000). Inorg. Chim. Acta, 306, 142-152.]), while the others exist in a dimeric or polymeric form as [HgX2L]n (Bell et al., 2001[Bell, N. A., Branston, T. N., Clegg, W., Parker, L., Raper, E. S., Sammon, C. & Constable, C. P. (2001). Inorg. Chim. Acta, 319, 130-136.]) in the solid state. In both types of complexes, monomeric (1:2) or polymeric (1:1), the coordination environment around HgII is distorted tetra­hedral or pseudo-tetra­hedral. We have recently reported the crystal structures of HgCl2 and Hg(CN)2 complexes with methyl­thio­urea as an auxiliary ligand (Isab et al., 2011[Isab, A. A., Fettouhi, M., Malik, M. R., Ali, S., Fazal, A. & Ahmad, S. (2011). Russ. J. Coord. Chem. 37, 180-185.]), N,N′-di­methyl­thio­urea (Malik et al., 2010a[Malik, M. R., Ali, S., Fettouhi, M., Isab, A. A. & Ahmad, S. (2010a). J. Struct. Chem. 51, 976-979.]), N,N′-di­ethyl­thio­urea (Mufakkar et al., 2010[Mufakkar, M., Tahir, M. N., Sadaf, H., Ahmad, S. & Waheed, A. (2010). Acta Cryst. E66, m1001-m1002.]), N,N′-di­butyl­thio­urea (Ahmad et al., 2009[Ahmad, S., Sadaf, H., Akkurt, M., Sharif, S. & Khan, I. U. (2009). Acta Cryst. E65, m1191-m1192.]) and tetra­methyl­thio­urea (Nawaz et al., 2010[Nawaz, S., Sadaf, H., Fettouhi, M., Fazal, A. & Ahmad, S. (2010). Acta Cryst. E66, m952.]).

[Scheme 1]

In this article, we report on synthesis and crystal structure of HgCl2 with di­methyl­thio­urea (Dmtu) as an additional ligand, [HgCl2(C3H8N2S)2], (I)[link].

2. Structural comments

The mercury atom in complex (I)[link] lies on a twofold rotation axis (Fig. 1[link]). It exhibits a distorted tetra­hedral coordination environment defined by two S atoms of symmetry-related Dmtu ligands and two Cl atoms. The S—Hg—S bond angle is 118.32 (4)°. At 102.47 (4)°, the Cl—Hg—Cl bond angle is significantly smaller, which can be attributed to the bulkier Dmtu ligands. The Hg—S, Hg—Cl and other bond lengths (Table 1[link]) have similar values compared with other [HgCl2L2] complexes (Ahmad et al., 2009[Ahmad, S., Sadaf, H., Akkurt, M., Sharif, S. & Khan, I. U. (2009). Acta Cryst. E65, m1191-m1192.]; Isab et al., 2011[Isab, A. A., Fettouhi, M., Malik, M. R., Ali, S., Fazal, A. & Ahmad, S. (2011). Russ. J. Coord. Chem. 37, 180-185.]; Malik et al., 2010a[Malik, M. R., Ali, S., Fettouhi, M., Isab, A. A. & Ahmad, S. (2010a). J. Struct. Chem. 51, 976-979.]; Mufakkar et al., 2010[Mufakkar, M., Tahir, M. N., Sadaf, H., Ahmad, S. & Waheed, A. (2010). Acta Cryst. E66, m1001-m1002.]; Popović et al., 2000[Popović, Z., Pavlović, G., Matković-Čalogović, D., Soldin, Ž., Željka, , Rajić, M., Vikić-Topić, D. & Kovaček, D. (2000). Inorg. Chim. Acta, 306, 142-152.]). In (I)[link], the N—(C=S)—N skeleton of the Dmtu ligand is essentially planar with an r.m.s. deviation of 0.0135 Å.

Table 1
Selected bond lengths (Å)

Hg1—S1 2.4622 (7) Hg1—Cl1 2.5589 (7)
[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link]. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small circles of arbitrary radius. [Symmetry code: (i) −x + 1, y, −z + [{3\over 2}].]

3. Supra­molecular features

From a supra­molecular point of view, adjacent mol­ecules are connected by inter­molecular N2—H2⋯Cl1 hydrogen bonds (Table 2[link], Fig. 2[link]) into R22(12) ring motifs (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). The supra­molecular chains formed this way extend parallel to [101]. Additional intra­molecular hydrogen bonds N1—H1⋯Cl1 (Table 2[link]) with S(6) loop motifs (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) are also present.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl1 0.86 2.37 3.223 (3) 170
N2—H2⋯Cl1i 0.86 2.49 3.270 (3) 151
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Crystal packing of compound (I)[link] viewed approximately along [010]. N—H⋯Cl hydrogen bonds are shown as dashed lines (see Table 2[link] for details).

4. Database survey

A systematic search in the Cambridge Structural Database (Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) revealed a total of 25 hits for mercury chloride complexes with thio­urea ligands. The title compound is isotypic with the Zn and Cd analogues [ZnCl2(Dmtu)2] (Burrows et al., 2004[Burrows, A. D., Harrington, R. W. & Mahon, M. F. (2004). Acta Cryst. E60, m1317-m1318.]) and [CdCl2(Dmtu)2] (Malik et al., 2010b[Malik, M. R, Ali, S., Ahmad, S., Altaf, M. & Stoeckli-Evans, H. (2010b). Acta Cryst. E66, m1060-m1061.]) and with [CdBr2(Dmtu)2] (Ahmad et al., 2011[Ahmad, S., Altaf, M., Stoeckli-Evans, H., Isab, A. A., Malik, M. R., Ali, S. & Shuja, S. (2011). J. Chem. Crystallogr. 41, 1099-1104.]). The HgII atom in the structure of (I)[link] shows an equivalent degree of distortion from the tetra­hedral configuration as the metals in [Zn(Dmtu)2Cl2] and [Hg(tetra­methyl­thio­urea)2Cl2] (Nawaz et al., 2010[Nawaz, S., Sadaf, H., Fettouhi, M., Fazal, A. & Ahmad, S. (2010). Acta Cryst. E66, m952.]) in which the bond angles at the metal atom vary from 104.35 (2) to 113.30 (2)° and from 104.08 (4) to 120.75 (4)°, respectively. However, in [CdCl2(Dmtu)2] and [CdBr2(Dmtu)2], the coordination spheres around Cd deviate only slightly from ideal tetra­hedral values. On the other hand in [Hg(Dmtu)2(CN)2], the HgII atom exhibits a severely distorted tetra­hedral coordination sphere with bond angles in the range 94.31 (2) to 148.83 (13)° (Malik et al., 2010a[Malik, M. R., Ali, S., Fettouhi, M., Isab, A. A. & Ahmad, S. (2010a). J. Struct. Chem. 51, 976-979.]).

5. Synthesis and crystallization

For the preparation of title complex, 0.27 g (1 mmol) HgCl2 dissolved in 4 ml di­methyl­sulfoxide were mixed with two equivalents of N,N′-di­methyl­thio­urea in 10 ml aceto­nitrile. After stirring for 15 minutes, the resulting solution was filtered and the filtrate kept at room temperature. After one day colourless crystals were obtained. Yield ca. 60%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were positioned geometrically (C—H = 0.96 Å, N—H= 0.86 Å) and refined as riding with Uiso(H) = 1.5Ueq(C) and Uiso(H) = 1.2Ueq(N).

Table 3
Experimental details

Crystal data
Chemical formula [HgCl2(C3H8NS)2]
Mr 479.84
Crystal system, space group Monoclinic, C2/c
Temperature (K) 296
a, b, c (Å) 13.1434 (12), 8.9971 (3), 12.6596 (9)
β (°) 107.955 (4)
V3) 1424.12 (17)
Z 4
Radiation type Mo Kα
μ (mm−1) 11.45
Crystal size (mm) 0.36 × 0.18 × 0.16
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.106, 0.265
No. of measured, independent and observed [I > 2σ(I)] reflections 12262, 1721, 1556
Rint 0.031
(sin θ/λ)max−1) 0.661
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.038, 1.06
No. of reflections 1721
No. of parameters 71
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.42, −0.32
Computer programs: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/6 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/6 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Dichloridobis(N,N'-dimethylthiourea-κS)mercury(II) top
Crystal data top
[HgCl2(C3H8NS)2]F(000) = 904
Mr = 479.84Dx = 2.238 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 13.1434 (12) ÅCell parameters from 1556 reflections
b = 8.9971 (3) Åθ = 3.0–28.0°
c = 12.6596 (9) ŵ = 11.45 mm1
β = 107.955 (4)°T = 296 K
V = 1424.12 (17) Å3Lath, colourless
Z = 40.36 × 0.18 × 0.16 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1721 independent reflections
Radiation source: fine-focus sealed tube1556 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 7.50 pixels mm-1θmax = 28.0°, θmin = 3.0°
ω scansh = 1617
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
k = 1111
Tmin = 0.106, Tmax = 0.265l = 1616
12262 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.038H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0168P)2 + 0.595P]
where P = (Fo2 + 2Fc2)/3
1721 reflections(Δ/σ)max = 0.001
71 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.32 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.50000.37748 (2)0.75000.04175 (6)
Cl10.60610 (6)0.19941 (10)0.66623 (6)0.05387 (19)
S10.36846 (7)0.51777 (8)0.60297 (6)0.04873 (19)
N10.40138 (19)0.3089 (3)0.4670 (2)0.0464 (6)
H10.45880.29100.52060.056*
N20.24749 (19)0.4417 (3)0.4042 (2)0.0433 (5)
H20.23320.38940.34460.052*
C10.3374 (2)0.4131 (3)0.4824 (2)0.0362 (6)
C20.3824 (3)0.2226 (4)0.3672 (3)0.0553 (8)
H2A0.43810.15000.37720.083*
H2B0.38190.28700.30660.083*
H2C0.31460.17320.35130.083*
C30.1704 (3)0.5533 (4)0.4096 (3)0.0580 (9)
H3A0.15720.54710.48000.087*
H3B0.10480.53710.35090.087*
H3C0.19780.65010.40150.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.04156 (10)0.04908 (9)0.02828 (9)0.0000.00146 (7)0.000
Cl10.0503 (4)0.0684 (5)0.0368 (4)0.0220 (4)0.0044 (3)0.0017 (3)
S10.0591 (5)0.0440 (4)0.0315 (4)0.0151 (3)0.0031 (3)0.0054 (3)
N10.0395 (14)0.0570 (14)0.0344 (13)0.0126 (11)0.0007 (11)0.0056 (11)
N20.0425 (14)0.0480 (12)0.0308 (12)0.0096 (11)0.0011 (11)0.0027 (11)
C10.0366 (16)0.0375 (13)0.0314 (14)0.0001 (10)0.0059 (12)0.0026 (10)
C20.056 (2)0.0626 (19)0.0429 (18)0.0096 (15)0.0091 (16)0.0154 (15)
C30.051 (2)0.067 (2)0.0443 (19)0.0258 (17)0.0017 (15)0.0002 (16)
Geometric parameters (Å, º) top
Hg1—S12.4622 (7)N2—C31.444 (4)
Hg1—S1i2.4622 (7)N2—H20.8600
Hg1—Cl12.5589 (7)C2—H2A0.9600
Hg1—Cl1i2.5589 (7)C2—H2B0.9600
S1—C11.732 (3)C2—H2C0.9600
N1—C11.313 (4)C3—H3A0.9600
N1—C21.438 (4)C3—H3B0.9600
N1—H10.8600C3—H3C0.9600
N2—C11.312 (4)
S1—Hg1—S1i118.32 (4)N2—C1—S1118.1 (2)
S1—Hg1—Cl1110.67 (2)N1—C1—S1122.1 (2)
S1i—Hg1—Cl1106.79 (3)N1—C2—H2A109.5
S1—Hg1—Cl1i106.79 (3)N1—C2—H2B109.5
S1i—Hg1—Cl1i110.67 (2)H2A—C2—H2B109.5
Cl1—Hg1—Cl1i102.47 (4)N1—C2—H2C109.5
C1—S1—Hg1107.88 (9)H2A—C2—H2C109.5
C1—N1—C2124.8 (3)H2B—C2—H2C109.5
C1—N1—H1117.6N2—C3—H3A109.5
C2—N1—H1117.6N2—C3—H3B109.5
C1—N2—C3125.7 (3)H3A—C3—H3B109.5
C1—N2—H2117.2N2—C3—H3C109.5
C3—N2—H2117.2H3A—C3—H3C109.5
N2—C1—N1119.8 (3)H3B—C3—H3C109.5
C3—N2—C1—N1179.5 (3)C2—N1—C1—S1177.2 (2)
C3—N2—C1—S10.5 (4)Hg1—S1—C1—N2159.3 (2)
C2—N1—C1—N21.8 (5)Hg1—S1—C1—N121.6 (3)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.862.373.223 (3)170
N2—H2···Cl1ii0.862.493.270 (3)151
Symmetry code: (ii) x1/2, y+1/2, z1/2.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationAhmad, S., Altaf, M., Stoeckli-Evans, H., Isab, A. A., Malik, M. R., Ali, S. & Shuja, S. (2011). J. Chem. Crystallogr. 41, 1099–1104.  Web of Science CSD CrossRef CAS Google Scholar
First citationAhmad, S., Sadaf, H., Akkurt, M., Sharif, S. & Khan, I. U. (2009). Acta Cryst. E65, m1191–m1192.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBell, N. A., Branston, T. N., Clegg, W., Parker, L., Raper, E. S., Sammon, C. & Constable, C. P. (2001). Inorg. Chim. Acta, 319, 130–136.  Web of Science CSD CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurrows, A. D., Harrington, R. W. & Mahon, M. F. (2004). Acta Cryst. E60, m1317–m1318.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationIsab, A. A., Fettouhi, M., Malik, M. R., Ali, S., Fazal, A. & Ahmad, S. (2011). Russ. J. Coord. Chem. 37, 180–185.  CrossRef CAS Google Scholar
First citationMalik, M. R, Ali, S., Ahmad, S., Altaf, M. & Stoeckli-Evans, H. (2010b). Acta Cryst. E66, m1060–m1061.  CSD CrossRef IUCr Journals Google Scholar
First citationMalik, M. R., Ali, S., Fettouhi, M., Isab, A. A. & Ahmad, S. (2010a). J. Struct. Chem. 51, 976–979.  CrossRef CAS Google Scholar
First citationMufakkar, M., Tahir, M. N., Sadaf, H., Ahmad, S. & Waheed, A. (2010). Acta Cryst. E66, m1001–m1002.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNawaz, S., Sadaf, H., Fettouhi, M., Fazal, A. & Ahmad, S. (2010). Acta Cryst. E66, m952.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPopović, Z., Pavlović, G., Matković-Čalogović, D., Soldin, Ž., Željka, , Rajić, M., Vikić-Topić, D. & Kovaček, D. (2000). Inorg. Chim. Acta, 306, 142–152.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds