organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of metobromuron

aDepartment of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 660-701, Republic of Korea
*Correspondence e-mail: thkim@gnu.ac.kr, jekim@gnu.ac.kr

Edited by P. C. Healy, Griffith University, Australia (Received 6 July 2015; accepted 14 July 2015; online 22 July 2015)

The title compound [systematic name: 3-(4-bromo­phen­yl)-1-meth­oxy-1-methyl­urea], C9H11BrN2O2, is a phenyl­urea herbicide. The dihedral angle between the plane of the urea group and that of the bromo­phenyl ring is 39.13 (10)°. In the crystal, N—H⋯O and C—H⋯O hydrogen bonds and weak C—H⋯π inter­actions link adjacent mol­ecules, forming chains along the a-axis direction. In addition, short inter­molecular Br⋯Br contacts [3.648 (4) Å] are present, resulting in a two-dimensional network extending parallel to (101).

1. Related literature

For information on the herbicidal properties of the title compound, see: Leila et al. (2011[Leila, N., Sakina, H., Abdelaziz, B., Fatiha, M. & Fateh, L. L. D. (2011). J. Biol. Sci. 11, 1-9.]). For related crystal structures, see: Black et al. (2010[Black, H. M. & Baughman, R. G. (2010). Acta Cryst. E66, o2221.]); Kostyanovsky et al. (2010[Kostyanovsky, R. G., Shtamburg, V. G., Shishkin, O. V., Zubatyuk, R. I., Shtamburg, V. V., Anishchenko, A. A. & Mazepa, A. V. (2010). Mendeleev Commun. 20, 167-169.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C9H11BrN2O2

  • Mr = 259.11

  • Orthorhombic, P b c a

  • a = 9.8184 (2) Å

  • b = 11.3286 (3) Å

  • c = 18.9569 (5) Å

  • V = 2108.55 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.88 mm−1

  • T = 173 K

  • 0.30 × 0.16 × 0.02 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.389, Tmax = 0.927

  • 17922 measured reflections

  • 2424 independent reflections

  • 1857 reflections with I > 2σ(I)

  • Rint = 0.048

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.066

  • S = 1.03

  • 2424 reflections

  • 129 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.88 2.39 3.130 (2) 142
C2—H2⋯O1i 0.95 2.42 3.217 (3) 142
C9—H9ACg1i 0.98 2.99 3.477 (3) 112
Symmetry code: (i) [x-{\script{1\over 2}}, y, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Metobromuron: 3-(4-bromophenyl)-1-methoxy-1-methylurea, is a phenylurea herbicide and has been used for the control of broadleaf weeds in cereal and vegetable crops, acting through the inhibition of photosynthesis (Leila et al., 2011). However, until now its crystal structure has not been reported. In the title compound (Fig. 1), the dihedral angle between the plane of the urea group and the bromophenyl ring is 39.13 (10) °. All bond lengths and bond angles are normal and comparable to those observed in similar crystal structures (Black et al., 2010; Kostyanovsky et al., 2010).

In the crystal structure (Fig. 2), N–H···O and C–H···O hydrogen bonds and weak C–H···π interactions link adjacent molecules (Table 1), forming one-dimensional chains along the a-axis direction. In addition, weak intermolecular short Br···Br contacts [3.648 (4) Å] are present, resulting in a two-dimensional network extending parallel to (101).

Related literature top

For information on the herbicidal properties of the title compound, see: Leila et al. (2011). For related crystal structures, see: Black et al. (2010); Kostyanovsky et al. (2010).

Experimental top

The title compound was purchased from the Dr. Ehrenstorfer GmbH Company. Slow evaporation of a solution in ethyl acetate gave single crystals suitable for X-ray analysis.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(N—H) = 0.88 Å, Uiso = 1.2Ueq(C) for urea N—H, d(C—H) = 0.98 Å, Uiso = 1.5Ueq(C) for methyl group, d(C—H) = 0.95 Å, Uiso = 1.2Ueq(C) for aromatic C—H.

Structure description top

Metobromuron: 3-(4-bromophenyl)-1-methoxy-1-methylurea, is a phenylurea herbicide and has been used for the control of broadleaf weeds in cereal and vegetable crops, acting through the inhibition of photosynthesis (Leila et al., 2011). However, until now its crystal structure has not been reported. In the title compound (Fig. 1), the dihedral angle between the plane of the urea group and the bromophenyl ring is 39.13 (10) °. All bond lengths and bond angles are normal and comparable to those observed in similar crystal structures (Black et al., 2010; Kostyanovsky et al., 2010).

In the crystal structure (Fig. 2), N–H···O and C–H···O hydrogen bonds and weak C–H···π interactions link adjacent molecules (Table 1), forming one-dimensional chains along the a-axis direction. In addition, weak intermolecular short Br···Br contacts [3.648 (4) Å] are present, resulting in a two-dimensional network extending parallel to (101).

For information on the herbicidal properties of the title compound, see: Leila et al. (2011). For related crystal structures, see: Black et al. (2010); Kostyanovsky et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Crystal packing viewed along the b axis. The intermolecular interactions are shown as dashed lines.
3-(4-Bromophenyl)-1-methoxy-1-methylurea top
Crystal data top
C9H11BrN2O2Dx = 1.632 Mg m3
Mr = 259.11Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 3544 reflections
a = 9.8184 (2) Åθ = 3.0–24.1°
b = 11.3286 (3) ŵ = 3.88 mm1
c = 18.9569 (5) ÅT = 173 K
V = 2108.55 (9) Å3Plate, colourless
Z = 80.30 × 0.16 × 0.02 mm
F(000) = 1040
Data collection top
Bruker APEXII CCD
diffractometer
1857 reflections with I > 2σ(I)
φ and ω scansRint = 0.048
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
θmax = 27.5°, θmin = 2.2°
Tmin = 0.389, Tmax = 0.927h = 1212
17922 measured reflectionsk = 1414
2424 independent reflectionsl = 2324
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0255P)2 + 1.105P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
2424 reflectionsΔρmax = 0.41 e Å3
129 parametersΔρmin = 0.42 e Å3
Crystal data top
C9H11BrN2O2V = 2108.55 (9) Å3
Mr = 259.11Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.8184 (2) ŵ = 3.88 mm1
b = 11.3286 (3) ÅT = 173 K
c = 18.9569 (5) Å0.30 × 0.16 × 0.02 mm
Data collection top
Bruker APEXII CCD
diffractometer
2424 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
1857 reflections with I > 2σ(I)
Tmin = 0.389, Tmax = 0.927Rint = 0.048
17922 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.066H-atom parameters constrained
S = 1.03Δρmax = 0.41 e Å3
2424 reflectionsΔρmin = 0.42 e Å3
129 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.86464 (3)0.10694 (2)0.51608 (2)0.03673 (10)
O10.88255 (14)0.47320 (14)0.80131 (9)0.0337 (4)
O20.55297 (15)0.56454 (15)0.83862 (9)0.0338 (4)
N10.67399 (18)0.41832 (16)0.75709 (10)0.0259 (4)
H1N0.58550.42690.76240.031*
N20.69171 (18)0.54270 (17)0.85274 (10)0.0297 (5)
C10.7206 (2)0.34339 (18)0.70276 (12)0.0224 (5)
C20.6508 (2)0.34425 (19)0.63907 (12)0.0249 (5)
H20.57320.39340.63350.030*
C30.6936 (2)0.2741 (2)0.58381 (12)0.0276 (5)
H30.64670.27560.54000.033*
C40.8053 (2)0.20197 (19)0.59297 (12)0.0265 (5)
C50.8734 (2)0.19632 (19)0.65655 (12)0.0278 (5)
H50.94850.14440.66250.033*
C60.8306 (2)0.26736 (19)0.71147 (12)0.0264 (5)
H60.87660.26430.75550.032*
C70.7577 (2)0.47817 (19)0.80181 (12)0.0248 (5)
C80.7580 (3)0.6412 (2)0.88719 (14)0.0378 (6)
H8A0.84520.61520.90690.057*
H8B0.69960.67090.92520.057*
H8C0.77400.70420.85280.057*
C90.4734 (3)0.5087 (3)0.89159 (16)0.0525 (8)
H9A0.49740.42490.89410.079*
H9B0.37660.51680.88000.079*
H9C0.49140.54610.93730.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.04164 (16)0.03414 (14)0.03440 (17)0.00799 (11)0.01142 (11)0.00470 (11)
O10.0172 (9)0.0434 (10)0.0404 (10)0.0032 (7)0.0014 (7)0.0051 (8)
O20.0191 (8)0.0430 (10)0.0395 (10)0.0057 (7)0.0011 (7)0.0108 (8)
N10.0157 (9)0.0335 (11)0.0285 (11)0.0028 (7)0.0012 (8)0.0047 (9)
N20.0195 (10)0.0382 (12)0.0314 (12)0.0014 (8)0.0023 (8)0.0082 (9)
C10.0194 (11)0.0238 (11)0.0241 (12)0.0008 (8)0.0040 (9)0.0012 (9)
C20.0203 (12)0.0278 (11)0.0267 (13)0.0060 (9)0.0009 (9)0.0021 (10)
C30.0275 (12)0.0311 (12)0.0241 (13)0.0037 (9)0.0005 (10)0.0014 (10)
C40.0282 (12)0.0256 (11)0.0255 (13)0.0023 (9)0.0092 (10)0.0001 (10)
C50.0229 (12)0.0254 (11)0.0350 (14)0.0057 (9)0.0063 (10)0.0046 (10)
C60.0235 (12)0.0301 (12)0.0254 (12)0.0034 (9)0.0009 (9)0.0033 (10)
C70.0223 (12)0.0273 (11)0.0249 (12)0.0011 (9)0.0003 (9)0.0032 (9)
C80.0338 (14)0.0426 (15)0.0371 (15)0.0010 (11)0.0087 (12)0.0110 (12)
C90.0383 (16)0.0555 (18)0.064 (2)0.0075 (13)0.0224 (15)0.0177 (16)
Geometric parameters (Å, º) top
Br1—C41.904 (2)C3—C41.378 (3)
O1—C71.228 (3)C3—H30.9500
O2—N21.410 (2)C4—C51.380 (3)
O2—C91.421 (3)C5—C61.381 (3)
N1—C71.361 (3)C5—H50.9500
N1—C11.411 (3)C6—H60.9500
N1—H1N0.8800C8—H8A0.9800
N2—C71.373 (3)C8—H8B0.9800
N2—C81.448 (3)C8—H8C0.9800
C1—C21.388 (3)C9—H9A0.9800
C1—C61.391 (3)C9—H9B0.9800
C2—C31.380 (3)C9—H9C0.9800
C2—H20.9500
N2—O2—C9108.60 (19)C4—C5—H5120.5
C7—N1—C1123.95 (18)C6—C5—H5120.5
C7—N1—H1N118.0C5—C6—C1120.5 (2)
C1—N1—H1N118.0C5—C6—H6119.8
C7—N2—O2114.55 (17)C1—C6—H6119.8
C7—N2—C8121.04 (19)O1—C7—N1125.1 (2)
O2—N2—C8112.62 (18)O1—C7—N2120.1 (2)
C2—C1—C6119.4 (2)N1—C7—N2114.73 (19)
C2—C1—N1118.07 (19)N2—C8—H8A109.5
C6—C1—N1122.5 (2)N2—C8—H8B109.5
C3—C2—C1120.4 (2)H8A—C8—H8B109.5
C3—C2—H2119.8N2—C8—H8C109.5
C1—C2—H2119.8H8A—C8—H8C109.5
C4—C3—C2119.2 (2)H8B—C8—H8C109.5
C4—C3—H3120.4O2—C9—H9A109.5
C2—C3—H3120.4O2—C9—H9B109.5
C3—C4—C5121.5 (2)H9A—C9—H9B109.5
C3—C4—Br1118.85 (18)O2—C9—H9C109.5
C5—C4—Br1119.62 (16)H9A—C9—H9C109.5
C4—C5—C6119.0 (2)H9B—C9—H9C109.5
C9—O2—N2—C7116.7 (2)Br1—C4—C5—C6178.85 (16)
C9—O2—N2—C899.8 (2)C4—C5—C6—C10.0 (3)
C7—N1—C1—C2141.5 (2)C2—C1—C6—C52.3 (3)
C7—N1—C1—C640.2 (3)N1—C1—C6—C5179.4 (2)
C6—C1—C2—C32.8 (3)C1—N1—C7—O11.2 (4)
N1—C1—C2—C3178.9 (2)C1—N1—C7—N2177.6 (2)
C1—C2—C3—C40.9 (3)O2—N2—C7—O1165.9 (2)
C2—C3—C4—C51.4 (3)C8—N2—C7—O125.7 (3)
C2—C3—C4—Br1179.30 (17)O2—N2—C7—N117.6 (3)
C3—C4—C5—C61.9 (3)C8—N2—C7—N1157.8 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.882.393.130 (2)142
C2—H2···O1i0.952.423.217 (3)142
C9—H9A···Cg1i0.982.993.477 (3)112
Symmetry code: (i) x1/2, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.882.393.130 (2)142.2
C2—H2···O1i0.952.423.217 (3)141.6
C9—H9A···Cg1i0.982.993.477 (3)112
Symmetry code: (i) x1/2, y, z+3/2.
 

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2014R1A1A4A01009105).

References

First citationBlack, H. M. & Baughman, R. G. (2010). Acta Cryst. E66, o2221.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKostyanovsky, R. G., Shtamburg, V. G., Shishkin, O. V., Zubatyuk, R. I., Shtamburg, V. V., Anishchenko, A. A. & Mazepa, A. V. (2010). Mendeleev Commun. 20, 167–169.  CSD CrossRef CAS Google Scholar
First citationLeila, N., Sakina, H., Abdelaziz, B., Fatiha, M. & Fateh, L. L. D. (2011). J. Biol. Sci. 11, 1–9.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds