research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of hexa­kis­(dmpu)-di-μ2-hydroxido-dialuminium tetraiodide dmpu tetra­solvate [dmpu is 1,3-di­methyl­tetra­hydro­pyrimidin-2(1H)-one]: a centrosymmetric dinuclear aluminium complex containing AlO5 polyhedra

aDepartment of Chemistry and Biotechnology, PO Box 7015, Swedish University of Agricultural Sciences, S-750 07 Uppsala, Sweden, and bInstitute of Nuclear Chemistry and Technology, Dorodna 16, PL-03-195 Warsaw, Poland
*Correspondence e-mail: daniel.lundberg@slu.se

Edited by M. Weil, Vienna University of Technology, Austria (Received 12 June 2015; accepted 2 July 2015; online 8 July 2015)

The structure of the title compound, [Al2(OH)2(C6H12N2O)6]I4·4C6H12N2O (systematic name: di-μ2-hydroxido-bis­{tris­[1,3-di­methyl­tetra­hydro­pyrimidin-2(1H)-one-κO]aluminium} tetra­iodide 1,3-di­methyl­tetra­hydro­pyrimidin-2(1H)-one tetra­solvate), is composed of two Al(C6H12N2O)3 moieties linked into a centrosymmetric dinuclear unit by a pair of bridging hydroxide ions. The aluminium cations show a distorted trigonal bipyramidal AlO5 coordination environment formed only by monodentate ligands. The Al—O bond lengths are in the range 1.789 (2)–1.859 (2) Å (mean bond length = 1.818 Å). The non-coordinating iodide anions compensate the charge of the complex cation. The remaining solvent mol­ecules and the iodide counter-anions inter­act with the complex cation by weak non-classical C—H⋯I and C—H⋯O hydrogen bonds.

1. Chemical context

The solvent ligand N,N′-di­methyl­propyl­eneurea (dmpu; IUPAC name: 1,3-di­methyl­tetra­hydro­pyrimidin-2(1H)-one, C6H12N2O) is known to be space-demanding upon coordination. This has been shown for several different metal ions which have a lower coordination number than the corresponding hydrates (Lundberg, 2006[Lundberg, D. (2006). PhD thesis, Swedish University of Agricultural Sciences, Sweden. Available for free at http://pub.epsilon.slu.se/1072/.]; Lundberg et al., 2010[Lundberg, D., Persson, I., Eriksson, L., D'Angelo, P. & De Panfilis, S. (2010). Inorg. Chem. 49, 4420-4432.]). In the boron group (group 13), the trivalent metal ions have previously been studied in dmpu solution and the solid state,

[Scheme 1]
with reported crystal structures for tri­chlorido­bis­(dmpu)thallium(III) (Carmalt et al., 1996[Carmalt, C. J., Farrugia, L. J. & Norman, N. C. (1996). Main Group Chem. 1, 339-344.]) and tri­bromido­bis­(dmpu)indium(III) (Topel et al., 2010[Topel, Ö., Persson, I., Lundberg, D. & Ullström, A.-S. (2010). Inorg. Chim. Acta, 363, 988-994.]). In the case of dmpu-solvated gallium(III) bromide, the gallium cation was determined to be five-coordinate in solution but crystallization was not successful despite of repeated attempts (Topel et al., 2010[Topel, Ö., Persson, I., Lundberg, D. & Ullström, A.-S. (2010). Inorg. Chim. Acta, 363, 988-994.]). The title compound was prepared in an attempt to reveal the dmpu coordination for the last remaining naturally occurring trivalent group 13 metal ion, aluminium(III). Since both chloride and bromide ions are more prone to form aluminium complexes, the iodide salt was chosen as a starting material.

2. Structural commentary

The asymmetric unit of the title structure comprises one Al(dmpu)3 moiety, two dmpu solvent mol­ecules and two iodide counter anions. The dinuclear cationic aluminium complex (Fig. 1[link]) is generated by inversion symmetry and contains two five-coordinate aluminium cations, in which each cation is coordinated by the oxygen atoms of three dmpu ligand mol­ecules and two μ2-bridging hydroxide ions, completing an AlO5 coordination sphere. The Al—O bond lengths in the Al2(μ2-OH)2 bridge are 1.804 (2) and 1.859 (2) Å, while the Al—O bonds to the dmpu ligand mol­ecules are 1.789 (2), 1.792 (2), and 1.846 (2) Å, respectively. The two aluminium cations are separated by 2.883 (1) Å from each other. The Al—O—C angles for the coordinating dmpu ligand mol­ecules lie in the range of 144.0 (2) to 154.7 (2)°. The dmpu ligand mol­ecules are all essentially flat with the exception of the middle propyl­ene carbon atom which is bent out of the plane with a dihedral angle of ca 50°.

[Figure 1]
Figure 1
The dinuclear complex cation in the title compound, with displacement ellipsoids drawn at the 50% probability level. The hydrogen bonding from the bridging hydroxide group to the O atom (O4i) of one non-coordinating dmpu mol­ecule is indicated with a dashed line. Non-hydroxide H atoms have been omitted and the symmetry-related half of the complex has been shaded for clarity. [Symmetry code: (i) −x, 1 − y, 1 − z.]

3. Supra­molecular features

In the crystal packing, the complex cations are arranged in rods parallel to [001] with the counter-anions situated between the rods (Fig. 2[link]). The hydroxide ion forms a medium-strength O—H⋯O hydrogen bond of 2.625 (3) Å to one of the non-coordinating dmpu ligand mol­ecules, with an H⋯O—C angle for this inter­action of 134.8 (17)°. The other non-coordinating dmpu mol­ecule is stabilized by a much weaker O⋯H—C inter­action of 3.190 (5) Å. Other O⋯H—C inter­action between the moieties range from 3.404 (5)–3.561 (4) Å. The remaining positive charges on the aluminium atoms in the complex are compensated by the presence of non-coordin­ating iodide anions, which inter­act with the cationic complex by weak I⋯H—C hydrogen bonds in the range 3.932 (4)–4.070 (4) Å (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6⋯O4i 0.73 (5) 1.91 (5) 2.625 (3) 167 (5)
C5—H5B⋯I2 0.98 3.01 3.987 (3) 172
C6—H6B⋯O5ii 0.98 2.21 3.190 (4) 174
C12—H12A⋯O1 0.98 2.59 3.561 (4) 173
C12—H12B⋯I1iii 0.98 3.09 4.051 (3) 167
C14—H14A⋯I2iv 0.99 3.15 4.070 (4) 156
C17—H17B⋯I1iv 0.98 3.05 4.015 (4) 169
C16—H16A⋯I1iii 0.99 3.11 3.932 (4) 141
C24—H24A⋯O3i 0.98 2.57 3.482 (5) 154
C28—H28B⋯I2v 0.99 3.09 3.981 (4) 150
C30—H30A⋯O5vi 0.98 2.57 3.404 (5) 143
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z+2; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) x-1, y, z; (v) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (vi) -x+2, -y+1, -z+2.
[Figure 2]
Figure 2
The crystal packing of the title structure in a view along [001].

4. Database survey

The Cambridge Structural Database (Version 2015; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) lists 615 structures with an AlO4 coordination polyhedron and 387 structures with an AlO6 polyhedron, but only 46 with an AlO5 polyhedron. Of these 46, three contain μ2-hydroxido bridges, including two polynuclear structures (Abrahams et al., 2002[Abrahams, I., Bradley, D. C., Chudzynska, H., Motevalli, M. & Sinclair, R. A. (2002). J. Chem. Soc. Dalton Trans. pp. 259-266.]; Murugavel & Kuppuswamy, 2006[Murugavel, R. & Kuppuswamy, S. (2006). Angew. Chem. Int. Ed. 45, 7022-7026.]) and a trinuclear structure with an AlO3N2–AlO5–AlO3N2 motif. Another trinuclear complex with an AlO4–AlO5–AlO4 motif, albeit without hydroxide bridges (Pauls & Neumüller, 2000[Pauls, J. & Neumüller, B. (2000). Z. Anorg. Allg. Chem. 626, 270-279.]), and two different mononuclear, five-coordinate tetra­hydro­furan (thf) solvates have been reported (Karsch et al., 2012[Karsch, M., Lund, H., Schulz, A., Villinger, A. & Voss, K. (2012). Eur. J. Inorg. Chem. pp. 5542-5553.]). More than 50 examples of dimeric complexes with hexa­coordinate aluminium ions with similar bridging between aluminium have been reported.

Urea solvated aluminium perchlorate was structurally determined by Mooy et al. (1974[Mooy, J. H. M., Krieger, W., Heijdenrijk, D. & Stam, C. H. (1974). Chem. Phys. Lett. 29, 179-182.]) as a hexa­coordinate, homoleptic complex. Homoleptic hexa­coordination is also found in other common, non-aqueous O-donor solvents, including di­methyl­sulfoxide (dmso) solvated aluminium chloride (Boström et al., 2003[Boström, D., Clausén, M. & Sandström, M. (2003). Acta Cryst. E59, m934-m935.]), hexa­iso­thio­cyanato­aluminium (Gumbris et al., 2012[Gumbris, E. G., Peresypkina, E. V., Virovets, A. V. & Cherkasova, T. G. (2012). Russ. J. Inorg. Chem. 57, 337-342.]), iodide (Molla-Abbassi et al., 2003[Molla-Abbassi, A., Skripkin, M., Kritikos, M., Persson, I., Mink, J. & Sandström, M. (2003). Dalton Trans. pp. 1746-1753.]), and perchlorate (Chan et al., 2004[Chan, E. J., Cox, B. G., Harrowfield, J. M., Ogden, M. F., Skelton, B. W. & White, A. H. (2004). Inorg. Chim. Acta, 357, 2365-2373.]), as well as N,N-di­methyl­formamide (dmf) solvated aluminium hexa­chlorido­technate chloride (Benz et al., 2015[Benz, M., Braband, H., Schmutz, P., Halter, J. & Alberto, R. (2015). Chem. Sci. 6, 165-169.]), perchlorate (Suzuki & Ishiguro, 1998[Suzuki, H. & Ishiguro, S.-I. (1998). Acta Cryst. C54, 586-588.]), and tribromide (Bekaert et al., 2002[Bekaert, A., Barberan, O., Kaloun, E. B., Rabhi, C., Danan, A., Brion, J. D., Lemoine, P. & Viossat, B. (2002). Z. Kristallogr. New Cryst. Struct. 217, 128-130.]), and the N,N-di­methyl­acetamide (dma) solvated aluminium perchlorate (Suzuki & Ishiguro, 2006[Suzuki, H. & Ishiguro, S. (2006). Acta Cryst. E62, m576-m578.]). One homoleptic, tetra­coordinate aluminium ion has been reported by Engesser et al. (2012[Engesser, T. A., Hrobarik, P., Trapp, N., Eiden, P., Scherer, H., Kaupp, M. & Krossing, I. (2012). ChemPlusChem, 77, 643-651.]) with an anionic O-donor ligand.

5. Synthesis and crystallization

The title compound was prepared by dissolving anhydrous aluminium(III) iodide (Sigma–Aldrich) in distilled dmpu in a glass vial, and subsequently heated in an oil bath to approximately 323 K, and then allowed to cool while still in the oil bath. After cooling to room temperature, the sample was refrigerated (277 K) for several weeks to allow for crystal growth. The presence of hy­droxide ions in the title compound was most likely caused during preparation of the mother liquor. It appears possible that with additional precautions, a hydroxide-free compound might be obtained. A part of the solid was photographed in detail at ambient room temperature (Fig. 3[link]), whereas attempts to study smaller crystals failed, presumably due to the hygroscopicity of the material.

[Figure 3]
Figure 3
High-resolution photograph of another, partially crystalline sample of the title compound. Multiple exposures were stacked for an increased depth of field.

6. Refinement

Hydrogen atoms bonded to carbon atoms were placed in calculated positions with C—H = 0.98 (meth­yl) or 0.99 Å (methyl­ene) and refined isotropically using a riding model with Uiso(H) equal to 1.5Ueq(C) or 1.2Ueq(C) for methyl and methyl­ene hydrogen atoms, respectively. The hydrogen atom of the hydroxide group was located in a difference map and its position and Uiso value were freely refined. Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Al2(OH)2(C6H12N2O)6]I4·4C6H12N2O
Mr 1877.33
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 13.9120 (2), 22.6152 (2), 14.4875 (3)
β (°) 116.331 (2)
V3) 4085.16 (12)
Z 2
Radiation type Cu Kα
μ (mm−1) 12.72
Crystal size (mm) 0.20 × 0.16 × 0.14
 
Data collection
Diffractometer Agilent SuperNova Dual Source diffractometer with an Eos detector
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.411, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 75993, 7114, 6779
Rint 0.040
(sin θ/λ)max−1) 0.593
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.078, 1.10
No. of reflections 7114
No. of parameters 456
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.20, −1.13
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and DIAMOND (Crystal Impact, 2001[Crystal Impact (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Crystal Impact, 2001); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Di-µ2-hydroxido-bis{tris[1,3-dimethyltetrahydropyrimidin-2(1H)-one-κO]aluminium} tetraiodide 1,3-dimethyltetrahydropyrimidin-2(1H)-one tetrasolvate top
Crystal data top
[Al2(OH)2(C6H12N2O)6]I4·4C6H12N2OF(000) = 1912
Mr = 1877.33Dx = 1.526 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 13.9120 (2) ÅCell parameters from 30242 reflections
b = 22.6152 (2) Åθ = 3.9–69.2°
c = 14.4875 (3) ŵ = 12.72 mm1
β = 116.331 (2)°T = 100 K
V = 4085.16 (12) Å3Block, yellow
Z = 20.20 × 0.16 × 0.14 mm
Data collection top
Agilent SuperNova Dual Source
diffractometer with an Eos detector
7114 independent reflections
Radiation source: SuperNova (Cu) X-ray Source6779 reflections with I > 2σ(I)
Detector resolution: 16.0131 pixels mm-1Rint = 0.040
ω scansθmax = 66.0°, θmin = 3.7°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 1616
Tmin = 0.411, Tmax = 1.000k = 2626
75993 measured reflectionsl = 1717
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0364P)2 + 6.5832P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.002
7114 reflectionsΔρmax = 1.20 e Å3
456 parametersΔρmin = 1.13 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.51772 (2)0.62910 (2)0.13190 (2)0.03025 (7)
I20.53752 (2)0.68312 (2)0.63215 (2)0.03565 (8)
Al10.00668 (7)0.56180 (4)0.52651 (7)0.01970 (18)
O10.13114 (16)0.58133 (9)0.63291 (16)0.0250 (5)
O30.07158 (16)0.60555 (9)0.57705 (16)0.0240 (4)
N90.7761 (2)0.63074 (12)0.9445 (2)0.0298 (6)
N20.2309 (2)0.54816 (11)0.7944 (2)0.0251 (5)
N10.3048 (2)0.55782 (11)0.6791 (2)0.0252 (5)
C10.2217 (2)0.56185 (12)0.7019 (2)0.0218 (6)
O20.00991 (17)0.61562 (9)0.42976 (17)0.0261 (5)
N40.0161 (2)0.71546 (10)0.41492 (19)0.0230 (5)
N80.2568 (2)0.49894 (13)0.3074 (2)0.0338 (7)
C70.0504 (2)0.66163 (13)0.3756 (2)0.0194 (6)
O40.11822 (19)0.54165 (10)0.32421 (19)0.0339 (5)
C120.0803 (3)0.72256 (14)0.5114 (2)0.0277 (7)
H12A0.09550.68560.55060.042*
H12B0.06940.75440.55160.042*
H12C0.14080.73240.49690.042*
N50.2321 (2)0.64829 (11)0.4770 (2)0.0259 (6)
N60.1056 (2)0.69603 (11)0.6212 (2)0.0241 (5)
N30.1258 (2)0.65501 (11)0.2794 (2)0.0245 (5)
C170.2762 (3)0.59303 (17)0.4251 (3)0.0413 (9)
H17A0.21770.56540.43640.062*
H17B0.31790.60020.35110.062*
H17C0.32300.57600.45260.062*
O50.8410 (2)0.54111 (12)1.0114 (2)0.0441 (6)
C130.1357 (2)0.64952 (13)0.5582 (2)0.0201 (6)
C50.2954 (3)0.57220 (15)0.5773 (3)0.0313 (7)
H5A0.30510.53620.54470.047*
H5B0.35050.60120.58400.047*
H5C0.22420.58890.53490.047*
C60.1414 (3)0.55467 (15)0.8202 (3)0.0311 (7)
H6A0.14580.59330.85250.047*
H6B0.14460.52330.86810.047*
H6C0.07370.55180.75730.047*
N70.2533 (2)0.60067 (13)0.3315 (2)0.0342 (7)
N100.9575 (2)0.61058 (15)1.0066 (2)0.0411 (7)
C200.3530 (3)0.61090 (17)0.3229 (3)0.0410 (9)
H20A0.39490.64250.37150.049*
H20B0.33600.62420.25230.049*
C180.0012 (3)0.69860 (14)0.7087 (3)0.0293 (7)
H18A0.00350.68660.77150.044*
H18B0.02880.73910.71670.044*
H18C0.04970.67190.69630.044*
C140.3091 (3)0.69760 (17)0.4505 (3)0.0367 (8)
H14A0.36420.68820.47410.044*
H14B0.34570.70270.37480.044*
C80.1683 (3)0.70498 (16)0.2085 (3)0.0360 (8)
H8A0.24260.69630.15690.043*
H8B0.12410.71130.17140.043*
C150.2530 (3)0.75435 (16)0.5002 (3)0.0403 (9)
H15A0.20940.76860.46610.048*
H15B0.30660.78510.49270.048*
C270.8817 (3)0.69576 (16)0.8932 (3)0.0377 (8)
H27A0.89700.73770.88560.045*
H27B0.85980.67590.82600.045*
C260.7926 (3)0.69190 (15)0.9246 (3)0.0328 (7)
H26A0.81090.71580.98740.039*
H26B0.72570.70800.86910.039*
C30.4264 (3)0.55167 (14)0.8624 (3)0.0293 (7)
H3A0.49400.53360.91320.035*
H3B0.43240.59510.87250.035*
C190.2059 (3)0.54700 (14)0.3204 (3)0.0275 (7)
C160.1821 (3)0.74310 (14)0.6123 (3)0.0327 (7)
H16A0.14290.77970.64550.039*
H16B0.22600.73090.64720.039*
C280.9807 (3)0.66668 (17)0.9733 (3)0.0413 (9)
H28A1.03260.66050.94460.050*
H28B1.01440.69331.03350.050*
C250.8574 (3)0.59161 (16)0.9887 (3)0.0329 (7)
C290.6688 (3)0.61365 (16)0.9271 (3)0.0324 (7)
H29A0.65210.63180.97970.049*
H29B0.66490.57050.93100.049*
H29C0.61680.62710.85870.049*
C40.3343 (2)0.52907 (14)0.8798 (3)0.0284 (7)
H4A0.33700.48540.88370.034*
H4B0.34000.54450.94600.034*
C20.4107 (2)0.53720 (15)0.7553 (3)0.0305 (7)
H2A0.46750.55650.74240.037*
H2B0.41630.49390.74850.037*
C210.4188 (3)0.55523 (19)0.3467 (4)0.0479 (10)
H21A0.47910.56070.32890.057*
H21B0.44890.54650.42130.057*
C240.1992 (3)0.44301 (16)0.2775 (3)0.0406 (9)
H24A0.14830.44030.30720.061*
H24B0.25040.41020.30280.061*
H24C0.16010.44090.20220.061*
C110.1538 (3)0.59608 (16)0.2335 (3)0.0401 (9)
H11A0.09890.58260.21340.060*
H11B0.22350.59770.17260.060*
H11C0.15790.56850.28390.060*
C301.0498 (3)0.5726 (2)1.0638 (4)0.0552 (11)
H30A1.06880.55121.01540.083*
H30B1.03190.54431.10490.083*
H30C1.11070.59691.10950.083*
C90.1671 (3)0.75993 (15)0.2679 (3)0.0423 (9)
H9A0.18900.79450.22110.051*
H9B0.21870.75560.29750.051*
C100.0559 (3)0.76947 (14)0.3529 (3)0.0365 (8)
H10A0.00690.78060.32280.044*
H10B0.05700.80230.39760.044*
C220.3500 (3)0.50443 (17)0.2862 (4)0.0467 (10)
H22A0.32580.51120.21170.056*
H22B0.39220.46740.30550.056*
C230.1972 (4)0.65363 (17)0.3377 (4)0.0493 (11)
H23A0.24290.67590.39980.074*
H23B0.13060.64240.34070.074*
H23C0.18040.67830.27680.074*
O60.05183 (18)0.49339 (9)0.54105 (19)0.0250 (5)
H60.077 (4)0.487 (2)0.575 (4)0.051 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.04045 (13)0.02150 (11)0.02735 (12)0.00304 (8)0.01372 (10)0.00282 (7)
I20.03502 (13)0.04120 (13)0.03083 (13)0.00851 (9)0.01468 (10)0.00502 (9)
Al10.0201 (4)0.0147 (4)0.0245 (5)0.0025 (3)0.0100 (4)0.0015 (3)
O10.0197 (10)0.0256 (11)0.0251 (11)0.0052 (8)0.0056 (9)0.0025 (9)
O30.0236 (10)0.0202 (10)0.0275 (12)0.0074 (8)0.0108 (9)0.0007 (9)
N90.0238 (14)0.0334 (15)0.0315 (16)0.0003 (11)0.0117 (12)0.0067 (12)
N20.0236 (13)0.0222 (13)0.0254 (14)0.0010 (10)0.0072 (11)0.0015 (11)
N10.0178 (12)0.0244 (13)0.0290 (14)0.0001 (10)0.0064 (11)0.0013 (11)
C10.0244 (15)0.0104 (13)0.0232 (16)0.0008 (11)0.0037 (13)0.0004 (11)
O20.0300 (11)0.0178 (10)0.0282 (12)0.0045 (9)0.0109 (10)0.0059 (9)
N40.0282 (13)0.0160 (12)0.0200 (13)0.0007 (10)0.0064 (11)0.0000 (10)
N80.0378 (16)0.0288 (15)0.0464 (18)0.0013 (12)0.0292 (15)0.0037 (13)
C70.0212 (14)0.0189 (14)0.0223 (15)0.0017 (11)0.0135 (13)0.0023 (12)
O40.0349 (13)0.0353 (13)0.0415 (14)0.0014 (10)0.0261 (11)0.0045 (11)
C120.0287 (16)0.0257 (16)0.0249 (17)0.0043 (13)0.0085 (14)0.0061 (13)
N50.0233 (13)0.0242 (13)0.0285 (14)0.0029 (11)0.0099 (11)0.0028 (11)
N60.0260 (13)0.0184 (12)0.0303 (14)0.0018 (10)0.0145 (12)0.0012 (11)
N30.0251 (13)0.0220 (13)0.0209 (13)0.0004 (10)0.0053 (11)0.0014 (10)
C170.0308 (18)0.037 (2)0.041 (2)0.0051 (15)0.0025 (16)0.0028 (17)
O50.0497 (16)0.0426 (15)0.0432 (16)0.0126 (12)0.0236 (13)0.0164 (12)
C130.0209 (14)0.0201 (14)0.0239 (15)0.0001 (11)0.0142 (13)0.0033 (12)
C50.0252 (16)0.0335 (18)0.0347 (19)0.0034 (13)0.0128 (14)0.0026 (14)
C60.0355 (18)0.0298 (17)0.0285 (18)0.0015 (14)0.0146 (15)0.0014 (14)
N70.0409 (16)0.0289 (15)0.0452 (18)0.0031 (12)0.0304 (15)0.0029 (13)
N100.0280 (15)0.055 (2)0.0359 (17)0.0078 (14)0.0106 (13)0.0061 (15)
C200.044 (2)0.0361 (19)0.054 (2)0.0123 (16)0.0319 (19)0.0053 (17)
C180.0308 (17)0.0279 (16)0.0266 (17)0.0025 (13)0.0105 (14)0.0029 (13)
C140.0291 (17)0.048 (2)0.0304 (19)0.0161 (16)0.0104 (15)0.0080 (16)
C80.0393 (19)0.0365 (19)0.0217 (17)0.0014 (15)0.0041 (15)0.0080 (14)
C150.048 (2)0.0300 (18)0.047 (2)0.0204 (16)0.0247 (19)0.0112 (16)
C270.044 (2)0.0333 (19)0.039 (2)0.0115 (16)0.0213 (17)0.0041 (16)
C260.0345 (18)0.0314 (17)0.0288 (18)0.0045 (14)0.0106 (15)0.0019 (14)
C30.0224 (15)0.0243 (16)0.0317 (18)0.0015 (12)0.0032 (14)0.0001 (13)
C190.0329 (17)0.0280 (16)0.0267 (17)0.0003 (13)0.0179 (14)0.0006 (13)
C160.0379 (18)0.0230 (16)0.045 (2)0.0067 (14)0.0250 (17)0.0010 (14)
C280.0352 (19)0.042 (2)0.050 (2)0.0098 (16)0.0223 (18)0.0104 (18)
C250.0358 (18)0.039 (2)0.0252 (17)0.0030 (15)0.0150 (15)0.0072 (15)
C290.0289 (17)0.0383 (18)0.0306 (18)0.0023 (14)0.0137 (15)0.0035 (15)
C40.0254 (16)0.0258 (16)0.0260 (17)0.0012 (13)0.0043 (13)0.0041 (13)
C20.0196 (15)0.0310 (17)0.0352 (19)0.0003 (13)0.0070 (14)0.0000 (14)
C210.035 (2)0.052 (2)0.066 (3)0.0025 (17)0.031 (2)0.002 (2)
C240.053 (2)0.0293 (18)0.049 (2)0.0092 (16)0.031 (2)0.0088 (16)
C110.042 (2)0.0320 (19)0.034 (2)0.0023 (15)0.0050 (17)0.0084 (15)
C300.040 (2)0.069 (3)0.052 (3)0.013 (2)0.016 (2)0.013 (2)
C90.049 (2)0.0262 (18)0.038 (2)0.0098 (16)0.0061 (18)0.0123 (15)
C100.050 (2)0.0159 (15)0.035 (2)0.0000 (14)0.0113 (17)0.0055 (14)
C220.050 (2)0.038 (2)0.073 (3)0.0029 (17)0.047 (2)0.001 (2)
C230.072 (3)0.0280 (19)0.070 (3)0.0047 (18)0.052 (3)0.0048 (18)
O60.0320 (12)0.0162 (10)0.0356 (13)0.0016 (8)0.0230 (11)0.0015 (9)
Geometric parameters (Å, º) top
Al1—O11.789 (2)C18—H18B0.9800
Al1—O21.792 (2)C18—H18C0.9800
Al1—O61.804 (2)C14—C151.509 (5)
Al1—O31.846 (2)C14—H14A0.9900
Al1—O6i1.859 (2)C14—H14B0.9900
Al1—Al1i2.8831 (16)C8—C91.507 (5)
O1—C11.290 (4)C8—H8A0.9900
O3—C131.282 (4)C8—H8B0.9900
N9—C251.353 (4)C15—C161.501 (5)
N9—C261.452 (4)C15—H15A0.9900
N9—C291.452 (4)C15—H15B0.9900
N2—C11.324 (4)C27—C261.500 (5)
N2—C61.457 (4)C27—C281.502 (6)
N2—C41.485 (4)C27—H27A0.9900
N1—C11.340 (4)C27—H27B0.9900
N1—C51.458 (4)C26—H26A0.9900
N1—C21.471 (4)C26—H26B0.9900
O2—C71.274 (4)C3—C41.502 (5)
N4—C71.339 (4)C3—C21.503 (5)
N4—C121.454 (4)C3—H3A0.9900
N4—C101.471 (4)C3—H3B0.9900
N8—C191.356 (4)C16—H16A0.9900
N8—C241.457 (4)C16—H16B0.9900
N8—C221.464 (4)C28—H28A0.9900
C7—N31.330 (4)C28—H28B0.9900
O4—C191.251 (4)C29—H29A0.9800
C12—H12A0.9800C29—H29B0.9800
C12—H12B0.9800C29—H29C0.9800
C12—H12C0.9800C4—H4A0.9900
N5—C131.336 (4)C4—H4B0.9900
N5—C171.447 (4)C2—H2A0.9900
N5—C141.475 (4)C2—H2B0.9900
N6—C131.332 (4)C21—C221.503 (6)
N6—C181.465 (4)C21—H21A0.9900
N6—C161.470 (4)C21—H21B0.9900
N3—C111.463 (4)C24—H24A0.9800
N3—C81.464 (4)C24—H24B0.9800
C17—H17A0.9800C24—H24C0.9800
C17—H17B0.9800C11—H11A0.9800
C17—H17C0.9800C11—H11B0.9800
O5—C251.237 (4)C11—H11C0.9800
C5—H5A0.9800C30—H30A0.9800
C5—H5B0.9800C30—H30B0.9800
C5—H5C0.9800C30—H30C0.9800
C6—H6A0.9800C9—C101.506 (5)
C6—H6B0.9800C9—H9A0.9900
C6—H6C0.9800C9—H9B0.9900
N7—C191.356 (4)C10—H10A0.9900
N7—C231.454 (5)C10—H10B0.9900
N7—C201.465 (4)C22—H22A0.9900
N10—C251.368 (5)C22—H22B0.9900
N10—C281.444 (5)C23—H23A0.9800
N10—C301.459 (5)C23—H23B0.9800
C20—C211.504 (6)C23—H23C0.9800
C20—H20A0.9900O6—Al1i1.859 (2)
C20—H20B0.9900O6—H60.73 (5)
C18—H18A0.9800
O1—Al1—O2104.24 (11)C16—C15—H15B109.9
O1—Al1—O6115.18 (11)C14—C15—H15B109.9
O2—Al1—O6139.96 (12)H15A—C15—H15B108.3
O1—Al1—O392.39 (10)C26—C27—C28109.8 (3)
O2—Al1—O392.99 (10)C26—C27—H27A109.7
O6—Al1—O392.13 (10)C28—C27—H27A109.7
O1—Al1—O6i101.27 (11)C26—C27—H27B109.7
O2—Al1—O6i90.04 (11)C28—C27—H27B109.7
O6—Al1—O6i76.16 (12)H27A—C27—H27B108.2
O3—Al1—O6i164.83 (11)N9—C26—C27109.9 (3)
O1—Al1—Al1i113.09 (8)N9—C26—H26A109.7
O2—Al1—Al1i118.65 (9)C27—C26—H26A109.7
O6—Al1—Al1i38.76 (7)N9—C26—H26B109.7
O3—Al1—Al1i130.21 (8)C27—C26—H26B109.7
O6i—Al1—Al1i37.40 (7)H26A—C26—H26B108.2
C1—O1—Al1145.4 (2)C4—C3—C2110.8 (3)
C13—O3—Al1144.0 (2)C4—C3—H3A109.5
C25—N9—C26123.0 (3)C2—C3—H3A109.5
C25—N9—C29119.2 (3)C4—C3—H3B109.5
C26—N9—C29117.4 (3)C2—C3—H3B109.5
C1—N2—C6121.6 (3)H3A—C3—H3B108.1
C1—N2—C4122.3 (3)O4—C19—N8120.6 (3)
C6—N2—C4116.0 (3)O4—C19—N7120.9 (3)
C1—N1—C5122.3 (3)N8—C19—N7118.5 (3)
C1—N1—C2121.6 (3)N6—C16—C15108.7 (3)
C5—N1—C2116.1 (3)N6—C16—H16A109.9
O1—C1—N2119.2 (3)C15—C16—H16A109.9
O1—C1—N1119.0 (3)N6—C16—H16B109.9
N2—C1—N1121.7 (3)C15—C16—H16B109.9
C7—O2—Al1154.7 (2)H16A—C16—H16B108.3
C7—N4—C12120.8 (2)N10—C28—C27112.2 (3)
C7—N4—C10121.9 (3)N10—C28—H28A109.2
C12—N4—C10115.6 (2)C27—C28—H28A109.2
C19—N8—C24119.0 (3)N10—C28—H28B109.2
C19—N8—C22121.8 (3)C27—C28—H28B109.2
C24—N8—C22115.7 (3)H28A—C28—H28B107.9
O2—C7—N3118.8 (3)O5—C25—N9121.0 (3)
O2—C7—N4120.3 (3)O5—C25—N10122.1 (3)
N3—C7—N4121.0 (3)N9—C25—N10116.9 (3)
N4—C12—H12A109.5N9—C29—H29A109.5
N4—C12—H12B109.5N9—C29—H29B109.5
H12A—C12—H12B109.5H29A—C29—H29B109.5
N4—C12—H12C109.5N9—C29—H29C109.5
H12A—C12—H12C109.5H29A—C29—H29C109.5
H12B—C12—H12C109.5H29B—C29—H29C109.5
C13—N5—C17120.3 (3)N2—C4—C3110.1 (3)
C13—N5—C14122.9 (3)N2—C4—H4A109.6
C17—N5—C14115.2 (3)C3—C4—H4A109.6
C13—N6—C18120.9 (3)N2—C4—H4B109.6
C13—N6—C16121.1 (3)C3—C4—H4B109.6
C18—N6—C16117.6 (3)H4A—C4—H4B108.1
C7—N3—C11120.4 (3)N1—C2—C3110.1 (3)
C7—N3—C8122.3 (3)N1—C2—H2A109.6
C11—N3—C8116.2 (3)C3—C2—H2A109.6
N5—C17—H17A109.5N1—C2—H2B109.6
N5—C17—H17B109.5C3—C2—H2B109.6
H17A—C17—H17B109.5H2A—C2—H2B108.2
N5—C17—H17C109.5C22—C21—C20109.9 (3)
H17A—C17—H17C109.5C22—C21—H21A109.7
H17B—C17—H17C109.5C20—C21—H21A109.7
O3—C13—N6119.3 (3)C22—C21—H21B109.7
O3—C13—N5120.2 (3)C20—C21—H21B109.7
N6—C13—N5120.5 (3)H21A—C21—H21B108.2
N1—C5—H5A109.5N8—C24—H24A109.5
N1—C5—H5B109.5N8—C24—H24B109.5
H5A—C5—H5B109.5H24A—C24—H24B109.5
N1—C5—H5C109.5N8—C24—H24C109.5
H5A—C5—H5C109.5H24A—C24—H24C109.5
H5B—C5—H5C109.5H24B—C24—H24C109.5
N2—C6—H6A109.5N3—C11—H11A109.5
N2—C6—H6B109.5N3—C11—H11B109.5
H6A—C6—H6B109.5H11A—C11—H11B109.5
N2—C6—H6C109.5N3—C11—H11C109.5
H6A—C6—H6C109.5H11A—C11—H11C109.5
H6B—C6—H6C109.5H11B—C11—H11C109.5
C19—N7—C23119.9 (3)N10—C30—H30A109.5
C19—N7—C20124.1 (3)N10—C30—H30B109.5
C23—N7—C20115.4 (3)H30A—C30—H30B109.5
C25—N10—C28124.9 (3)N10—C30—H30C109.5
C25—N10—C30119.2 (3)H30A—C30—H30C109.5
C28—N10—C30115.9 (3)H30B—C30—H30C109.5
N7—C20—C21110.6 (3)C10—C9—C8109.4 (3)
N7—C20—H20A109.5C10—C9—H9A109.8
C21—C20—H20A109.5C8—C9—H9A109.8
N7—C20—H20B109.5C10—C9—H9B109.8
C21—C20—H20B109.5C8—C9—H9B109.8
H20A—C20—H20B108.1H9A—C9—H9B108.2
N6—C18—H18A109.5N4—C10—C9110.6 (3)
N6—C18—H18B109.5N4—C10—H10A109.5
H18A—C18—H18B109.5C9—C10—H10A109.5
N6—C18—H18C109.5N4—C10—H10B109.5
H18A—C18—H18C109.5C9—C10—H10B109.5
H18B—C18—H18C109.5H10A—C10—H10B108.1
N5—C14—C15110.9 (3)N8—C22—C21109.6 (3)
N5—C14—H14A109.5N8—C22—H22A109.7
C15—C14—H14A109.5C21—C22—H22A109.7
N5—C14—H14B109.5N8—C22—H22B109.7
C15—C14—H14B109.5C21—C22—H22B109.7
H14A—C14—H14B108.0H22A—C22—H22B108.2
N3—C8—C9109.7 (3)N7—C23—H23A109.5
N3—C8—H8A109.7N7—C23—H23B109.5
C9—C8—H8A109.7H23A—C23—H23B109.5
N3—C8—H8B109.7N7—C23—H23C109.5
C9—C8—H8B109.7H23A—C23—H23C109.5
H8A—C8—H8B108.2H23B—C23—H23C109.5
C16—C15—C14109.0 (3)Al1—O6—Al1i103.84 (12)
C16—C15—H15A109.9Al1—O6—H6128 (4)
C14—C15—H15A109.9Al1i—O6—H6127 (4)
O2—Al1—O1—C1133.5 (4)C17—N5—C14—C15174.3 (3)
O6—Al1—O1—C139.4 (4)C7—N3—C8—C932.0 (4)
O3—Al1—O1—C1132.8 (4)C11—N3—C8—C9160.2 (3)
O6i—Al1—O1—C140.5 (4)N5—C14—C15—C1649.1 (4)
Al1i—Al1—O1—C13.2 (4)C25—N9—C26—C2736.6 (4)
O1—Al1—O3—C13117.8 (3)C29—N9—C26—C27151.0 (3)
O2—Al1—O3—C1313.4 (4)C28—C27—C26—N954.5 (4)
O6—Al1—O3—C13126.8 (3)C24—N8—C19—O412.2 (5)
O6i—Al1—O3—C1387.8 (5)C22—N8—C19—O4170.1 (3)
Al1i—Al1—O3—C13118.8 (3)C24—N8—C19—N7169.3 (3)
Al1—O1—C1—N294.1 (4)C22—N8—C19—N711.4 (5)
Al1—O1—C1—N188.0 (4)C23—N7—C19—O46.2 (5)
C6—N2—C1—O10.1 (4)C20—N7—C19—O4176.9 (3)
C4—N2—C1—O1176.1 (3)C23—N7—C19—N8175.3 (3)
C6—N2—C1—N1177.7 (3)C20—N7—C19—N84.6 (5)
C4—N2—C1—N11.7 (4)C13—N6—C16—C1539.2 (4)
C5—N1—C1—O12.8 (4)C18—N6—C16—C15147.6 (3)
C2—N1—C1—O1178.6 (3)C14—C15—C16—N657.8 (4)
C5—N1—C1—N2179.4 (3)C25—N10—C28—C2715.1 (5)
C2—N1—C1—N20.8 (4)C30—N10—C28—C27165.3 (3)
O1—Al1—O2—C7104.2 (5)C26—C27—C28—N1044.8 (4)
O6—Al1—O2—C786.0 (5)C26—N9—C25—O5174.5 (3)
O3—Al1—O2—C710.9 (5)C29—N9—C25—O52.3 (5)
O6i—Al1—O2—C7154.2 (5)C26—N9—C25—N105.6 (5)
Al1i—Al1—O2—C7129.0 (5)C29—N9—C25—N10177.9 (3)
Al1—O2—C7—N3101.8 (5)C28—N10—C25—O5173.8 (4)
Al1—O2—C7—N479.3 (6)C30—N10—C25—O56.6 (6)
C12—N4—C7—O211.5 (4)C28—N10—C25—N96.1 (5)
C10—N4—C7—O2176.0 (3)C30—N10—C25—N9173.6 (3)
C12—N4—C7—N3167.3 (3)C1—N2—C4—C323.8 (4)
C10—N4—C7—N32.8 (4)C6—N2—C4—C3152.4 (3)
O2—C7—N3—C116.0 (4)C2—C3—C4—N250.2 (4)
N4—C7—N3—C11172.9 (3)C1—N1—C2—C328.5 (4)
O2—C7—N3—C8173.3 (3)C5—N1—C2—C3152.8 (3)
N4—C7—N3—C85.6 (4)C4—C3—C2—N152.6 (4)
Al1—O3—C13—N6117.6 (3)N7—C20—C21—C2249.4 (5)
Al1—O3—C13—N563.2 (4)N3—C8—C9—C1053.8 (4)
C18—N6—C13—O32.6 (4)C7—N4—C10—C927.0 (4)
C16—N6—C13—O3170.4 (3)C12—N4—C10—C9167.7 (3)
C18—N6—C13—N5178.1 (3)C8—C9—C10—N451.7 (4)
C16—N6—C13—N58.9 (4)C19—N8—C22—C2137.6 (5)
C17—N5—C13—O315.7 (4)C24—N8—C22—C21163.8 (3)
C14—N5—C13—O3179.4 (3)C20—C21—C22—N855.5 (5)
C17—N5—C13—N6163.6 (3)O1—Al1—O6—Al1i96.12 (13)
C14—N5—C13—N61.3 (4)O2—Al1—O6—Al1i73.02 (19)
C19—N7—C20—C2124.8 (5)O3—Al1—O6—Al1i170.23 (12)
C23—N7—C20—C21164.2 (4)O6i—Al1—O6—Al1i0.000 (1)
C13—N5—C14—C1520.1 (4)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···O4i0.73 (5)1.91 (5)2.625 (3)167 (5)
C5—H5B···I20.983.013.987 (3)172
C6—H6B···O5ii0.982.213.190 (4)174
C12—H12A···O10.982.593.561 (4)173
C12—H12B···I1iii0.983.094.051 (3)167
C14—H14A···I2iv0.993.154.070 (4)156
C17—H17B···I1iv0.983.054.015 (4)169
C16—H16A···I1iii0.993.113.932 (4)141
C24—H24A···O3i0.982.573.482 (5)154
C28—H28B···I2v0.993.093.981 (4)150
C30—H30A···O5vi0.982.573.404 (5)143
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+2; (iii) x1/2, y+3/2, z+1/2; (iv) x1, y, z; (v) x+1/2, y+3/2, z+1/2; (vi) x+2, y+1, z+2.
 

Acknowledgements

We thank Ingmar Persson and Lars Eriksson for their inter­est in this work, and Harald Cederlund for obtaining the high-resolution crystallophotography (HRCP) image.

References

First citationAbrahams, I., Bradley, D. C., Chudzynska, H., Motevalli, M. & Sinclair, R. A. (2002). J. Chem. Soc. Dalton Trans. pp. 259–266.  Web of Science CSD CrossRef Google Scholar
First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBekaert, A., Barberan, O., Kaloun, E. B., Rabhi, C., Danan, A., Brion, J. D., Lemoine, P. & Viossat, B. (2002). Z. Kristallogr. New Cryst. Struct. 217, 128–130.  CAS Google Scholar
First citationBenz, M., Braband, H., Schmutz, P., Halter, J. & Alberto, R. (2015). Chem. Sci. 6, 165–169.  Web of Science CSD CrossRef CAS Google Scholar
First citationBoström, D., Clausén, M. & Sandström, M. (2003). Acta Cryst. E59, m934–m935.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCarmalt, C. J., Farrugia, L. J. & Norman, N. C. (1996). Main Group Chem. 1, 339–344.  CrossRef Web of Science Google Scholar
First citationChan, E. J., Cox, B. G., Harrowfield, J. M., Ogden, M. F., Skelton, B. W. & White, A. H. (2004). Inorg. Chim. Acta, 357, 2365–2373.  Web of Science CSD CrossRef CAS Google Scholar
First citationCrystal Impact (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationEngesser, T. A., Hrobarik, P., Trapp, N., Eiden, P., Scherer, H., Kaupp, M. & Krossing, I. (2012). ChemPlusChem, 77, 643–651.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationGumbris, E. G., Peresypkina, E. V., Virovets, A. V. & Cherkasova, T. G. (2012). Russ. J. Inorg. Chem. 57, 337–342.  Web of Science CrossRef CAS Google Scholar
First citationKarsch, M., Lund, H., Schulz, A., Villinger, A. & Voss, K. (2012). Eur. J. Inorg. Chem. pp. 5542–5553.  Web of Science CSD CrossRef Google Scholar
First citationLundberg, D. (2006). PhD thesis, Swedish University of Agricultural Sciences, Sweden. Available for free at http://pub.epsilon.slu.se/1072/Google Scholar
First citationLundberg, D., Persson, I., Eriksson, L., D'Angelo, P. & De Panfilis, S. (2010). Inorg. Chem. 49, 4420–4432.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMolla-Abbassi, A., Skripkin, M., Kritikos, M., Persson, I., Mink, J. & Sandström, M. (2003). Dalton Trans. pp. 1746–1753.  Google Scholar
First citationMooy, J. H. M., Krieger, W., Heijdenrijk, D. & Stam, C. H. (1974). Chem. Phys. Lett. 29, 179–182.  CSD CrossRef CAS Web of Science Google Scholar
First citationMurugavel, R. & Kuppuswamy, S. (2006). Angew. Chem. Int. Ed. 45, 7022–7026.  Web of Science CSD CrossRef CAS Google Scholar
First citationPauls, J. & Neumüller, B. (2000). Z. Anorg. Allg. Chem. 626, 270–279.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSuzuki, H. & Ishiguro, S.-I. (1998). Acta Cryst. C54, 586–588.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSuzuki, H. & Ishiguro, S. (2006). Acta Cryst. E62, m576–m578.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTopel, Ö., Persson, I., Lundberg, D. & Ullström, A.-S. (2010). Inorg. Chim. Acta, 363, 988–994.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds