organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages o485-o486

Crystal structure of (E)-5,5-di­methyl-2-[3-(4-nitro­phen­yl)allyl­­idene]cyclo­hexane-1,3-dione

CROSSMARK_Color_square_no_text.svg

aCenter for Neuro-Medicine, Korea Institute of Science & Technology, Hwarangro 14-gil, Seongbuk-gu, Seoul 136-791, Republic of Korea, bDepartment of Biological Chemistry, Korea University of Science and Technology (UST), 176 Gajung-dong, 217 Gajungro, Yuseong-gu, Daejeon 305-333, Republic of Korea, cDepartment of Information Display, Kyung Hee University, Dongdaemoon-gu, Seoul 130-701, Republic of Korea, and dDuksan Neolux Co. Ltd, 21-32, Ssukgol-gil, Ipjang-myeon, Seobuk-gu, Cheonan-si, Chungcheongnam-do 331-821, Republic of Korea
*Correspondence e-mail: j9601@kist.re.kr

Edited by K. Fejfarova, Institute of Macromolecular Chemistry, AS CR, v.v.i, Czech Republic (Received 30 May 2015; accepted 9 June 2015; online 13 June 2015)

In the title compound, C17H17NO4, the cylohexane-1,3-dione ring adopts an envelope conformation with the dimethyl-subsituted C atom as the flap. Its mean plane is inclined to the benzene ring by 7.99 (19)°. The mol­ecule has a trans conformation about the bridging C=C bonds of the ally­idene chain. In the crystal, mol­ecules are linked via pairs of C—H⋯O hydrogen bonds, forming inversion dimers. The dimers are linked by further C—H.·O hydrogen bonds, forming sheets lying parallel to (10-1).

1. Related literature

For the uses of cyclo­hexane-1,3-dione derivatives in various organic synthesis fields, see: Feng et al. (2015[Feng, J., Lin, L., Yu, K., Liu, X. & Feng, X. (2015). Adv. Synth. Catal. 357, 1305-1310.]); Frolov et al. (2013[Frolov, K. A., Dotsenko, V. V. & Krivokolysko, S. G. (2013). Chem. Heterocycl. Compd, 49, 1146-1150.]); Sharma et al. (2012[Sharma, D., Bandna, Shil, A. K., Singh, B. & Das, P. (2012). Synlett, 23, 1199-1204.] and references therein).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C17H17NO4

  • Mr = 299.33

  • Monoclinic, P 21 /n

  • a = 13.498 (2) Å

  • b = 7.0791 (9) Å

  • c = 16.1717 (19) Å

  • β = 91.420 (4)°

  • V = 1544.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.30 × 0.10 × 0.10 mm

2.2. Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Rigaku, 1995[Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.641, Tmax = 0.991

  • 14300 measured reflections

  • 3526 independent reflections

  • 1508 reflections with F2 > 2.0σ(F2)

  • Rint = 0.049

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.072

  • wR(F2) = 0.258

  • S = 1.04

  • 3526 reflections

  • 213 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O2i 0.90 (3) 2.42 (4) 3.305 (5) 170 (4)
C14—H14⋯O4ii 0.93 2.52 3.286 (4) 140
C16—H16C⋯O1iii 0.96 2.45 3.407 (6) 174
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x, y-1, z.

Data collection: RAPID-AUTO (Rigaku, 2006[Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: Il Milione (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Related literature top

For the uses of cyclohexane-1,3-dione derivatives in various organic synthesis fields, see: Feng et al. (2015); Frolov et al. (2013); Sharma et al. (2012 and references therein).

Experimental top

To solution of 5,5-Dimethyl-1,3-cyclohexanedione (1.84 mmol), 4-nitrocinnamaldehyde(1.84 mmol) and 4 Å MS was added catalytic amounts of L-proline in under nitrogen atmosphere. The anhydrous ethyl acetate (2 ml) was added to a reaction mixture and the solution was stirred at room temperature for 3 h. The progress of reaction was monitored by TLC. After completion of reaction, the reaction mixture was filtered through pad of celite to remove MS and evaporation of the solvent afforded a mixture. The mixture was purified by flash column chromatography(EA: Hex = 1: 3) to afford the title compound as a colorless solid in yield 62%. Recrystallization from ethanol gave crystals suitable for X-ray analysis.

Refinement top

All hydrogen atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å and Uiso(H) = 1.2 or 1.5 Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2006); cell refinement: RAPID-AUTO (Rigaku, 2006); data reduction: RAPID-AUTO (Rigaku, 2006); program(s) used to solve structure: Il Milione (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic numbering and 50% probability displacement ellipsoids.
(E)-5,5-Dimethyl-2-[3-(4-nitrophenyl)allylidene]cyclohexane-1,3-dione top
Crystal data top
C17H17NO4F(000) = 632.00
Mr = 299.33Dx = 1.287 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ynCell parameters from 7134 reflections
a = 13.498 (2) Åθ = 3.0–27.5°
b = 7.0791 (9) ŵ = 0.09 mm1
c = 16.1717 (19) ÅT = 296 K
β = 91.420 (4)°Block, yellow
V = 1544.8 (4) Å30.30 × 0.10 × 0.10 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1508 reflections with F2 > 2.0σ(F2)
Detector resolution: 10.000 pixels mm-1Rint = 0.049
ω scansθmax = 27.5°
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
h = 1717
Tmin = 0.641, Tmax = 0.991k = 89
14300 measured reflectionsl = 2020
3526 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.258H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.1342P)2]
where P = (Fo2 + 2Fc2)/3
3526 reflections(Δ/σ)max < 0.001
213 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.20 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C17H17NO4V = 1544.8 (4) Å3
Mr = 299.33Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.498 (2) ŵ = 0.09 mm1
b = 7.0791 (9) ÅT = 296 K
c = 16.1717 (19) Å0.30 × 0.10 × 0.10 mm
β = 91.420 (4)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3526 independent reflections
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
1508 reflections with F2 > 2.0σ(F2)
Tmin = 0.641, Tmax = 0.991Rint = 0.049
14300 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0720 restraints
wR(F2) = 0.258H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.33 e Å3
3526 reflectionsΔρmin = 0.20 e Å3
213 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6218 (3)0.3243 (5)0.22209 (16)0.1482 (15)
O20.4678 (3)0.1508 (4)0.37594 (14)0.1069 (9)
O30.8119 (3)1.2273 (4)0.56257 (19)0.1160 (10)
O40.7964 (3)1.1164 (5)0.68389 (19)0.1409 (13)
N10.7877 (3)1.1031 (5)0.6090 (2)0.0895 (9)
C10.5711 (3)0.1820 (5)0.2258 (2)0.0874 (11)
C20.5393 (3)0.0801 (5)0.1507 (2)0.0933 (11)
C30.5375 (3)0.1341 (5)0.1603 (2)0.0867 (10)
C40.4686 (3)0.1804 (6)0.2302 (2)0.1008 (12)
C50.4923 (3)0.0828 (5)0.3103 (2)0.0812 (10)
C60.5423 (3)0.1050 (5)0.30814 (19)0.0753 (9)
C70.5588 (3)0.1923 (5)0.3802 (3)0.0736 (9)
C80.6060 (3)0.3708 (5)0.3991 (2)0.0774 (9)
C90.6183 (3)0.4260 (5)0.4772 (3)0.0774 (9)
C100.6637 (3)0.6006 (4)0.50901 (18)0.0713 (8)
C110.7006 (3)0.7417 (5)0.45815 (19)0.0777 (9)
C120.7411 (3)0.9045 (5)0.49093 (19)0.0770 (9)
C130.7450 (3)0.9282 (4)0.57532 (18)0.0714 (8)
C140.7105 (3)0.7914 (5)0.62813 (18)0.0788 (10)
C150.6701 (3)0.6298 (5)0.59411 (19)0.0775 (9)
C160.6418 (3)0.2060 (6)0.1798 (3)0.1085 (13)
C170.4986 (4)0.2254 (7)0.0804 (3)0.1313 (18)
H2A0.58360.11240.10650.1119*
H2B0.47340.12280.13430.1119*
H4A0.40150.14730.21280.1210*
H4B0.47020.31570.23960.1210*
H110.69780.72560.40110.0932*
H120.76560.99750.45640.0924*
H140.71440.80790.68520.0945*
H150.64610.53710.62910.0930*
H16A0.66740.14520.22890.1302*
H16B0.68380.17790.13430.1302*
H16C0.63990.34010.18840.1302*
H17A0.49840.36030.08670.1575*
H17B0.54050.19120.03570.1575*
H17C0.43230.18220.06850.1575*
H90.603 (3)0.352 (5)0.520 (2)0.091 (11)*
H80.630 (3)0.447 (5)0.350 (3)0.113 (12)*
H70.540 (3)0.130 (4)0.4304 (18)0.071 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.239 (5)0.108 (2)0.0979 (19)0.066 (3)0.012 (2)0.0151 (15)
O20.134 (3)0.0923 (16)0.0961 (17)0.0244 (15)0.0325 (16)0.0069 (13)
O30.127 (3)0.0950 (17)0.125 (3)0.0275 (17)0.0065 (18)0.0005 (17)
O40.193 (4)0.135 (3)0.0939 (19)0.019 (3)0.003 (2)0.0319 (18)
N10.084 (3)0.095 (3)0.090 (2)0.0089 (17)0.0002 (16)0.0124 (18)
C10.105 (3)0.0687 (19)0.089 (3)0.0062 (19)0.0013 (19)0.0196 (17)
C20.093 (3)0.103 (3)0.083 (3)0.001 (2)0.0018 (19)0.014 (2)
C30.079 (3)0.091 (3)0.091 (3)0.0158 (19)0.0161 (18)0.0025 (19)
C40.096 (3)0.114 (3)0.094 (3)0.034 (3)0.025 (2)0.016 (2)
C50.067 (3)0.082 (2)0.095 (3)0.0043 (16)0.0194 (17)0.0070 (19)
C60.064 (2)0.0771 (19)0.085 (2)0.0068 (15)0.0053 (16)0.0045 (17)
C70.060 (2)0.0747 (19)0.087 (3)0.0095 (15)0.0078 (16)0.0130 (19)
C80.075 (3)0.078 (2)0.080 (2)0.0042 (17)0.0086 (17)0.0022 (18)
C90.075 (3)0.078 (2)0.080 (3)0.0003 (17)0.0161 (17)0.0048 (18)
C100.062 (2)0.0776 (19)0.0743 (19)0.0076 (15)0.0046 (14)0.0093 (16)
C110.083 (3)0.081 (2)0.0692 (18)0.0030 (18)0.0011 (16)0.0062 (16)
C120.075 (3)0.080 (2)0.0759 (19)0.0022 (16)0.0035 (16)0.0102 (16)
C130.062 (2)0.0777 (19)0.0746 (19)0.0121 (15)0.0026 (15)0.0007 (16)
C140.074 (3)0.098 (3)0.0643 (17)0.0220 (18)0.0083 (15)0.0040 (17)
C150.071 (3)0.083 (2)0.079 (2)0.0034 (17)0.0201 (16)0.0067 (17)
C160.102 (4)0.093 (3)0.133 (4)0.012 (3)0.031 (3)0.004 (3)
C170.147 (5)0.156 (4)0.092 (3)0.065 (4)0.020 (3)0.031 (3)
Geometric parameters (Å, º) top
O1—C11.220 (5)C12—C131.375 (5)
O2—C51.219 (5)C13—C141.380 (5)
O3—N11.207 (5)C14—C151.376 (5)
O4—N11.218 (5)C2—H2A0.970
N1—C131.465 (5)C2—H2B0.970
C1—C21.467 (5)C4—H4A0.970
C1—C61.499 (5)C4—H4B0.970
C2—C31.524 (5)C7—H70.96 (3)
C3—C41.517 (5)C8—H81.02 (4)
C3—C161.522 (6)C9—H90.90 (4)
C3—C171.527 (6)C11—H110.930
C4—C51.495 (5)C12—H120.930
C5—C61.492 (5)C14—H140.930
C6—C71.332 (5)C15—H150.930
C7—C81.445 (5)C16—H16A0.960
C8—C91.327 (5)C16—H16B0.960
C9—C101.468 (5)C16—H16C0.960
C10—C111.394 (5)C17—H17A0.960
C10—C151.392 (5)C17—H17B0.960
C11—C121.376 (5)C17—H17C0.960
O1···C33.573 (5)O1···H16Aii2.9432
O1···C72.870 (5)O1···H16Bii3.4608
O1···C82.895 (5)O1···H16Ci2.4512
O2···C72.722 (4)O1···H17Ai3.5181
O3···C122.725 (4)O2···H11v3.2415
O3···C143.549 (5)O2···H14iii3.5772
O4···C123.526 (5)O2···H15iv3.1368
O4···C142.721 (5)O2···H9iv2.42 (4)
C1···C42.916 (6)O2···H7iv3.14 (3)
C1···C83.131 (5)O3···H2Bxi2.6644
C1···C163.007 (6)O3···H15i3.3309
C2···C52.910 (5)O3···H16Bvi3.2560
C3···C62.928 (5)O3···H17Bvi2.6426
C5···C163.082 (6)O3···H9i3.02 (4)
C6···C163.331 (6)O4···H2Bxi3.1389
C8···C113.062 (5)O4···H4Aiii3.1931
C10···C132.770 (5)O4···H4Bxii3.2774
C11···C142.771 (5)O4···H14vii2.5218
C12···C152.750 (5)O4···H15vii3.1534
O1···C16i3.407 (5)N1···H2Bxi3.1884
O1···C16ii3.535 (6)N1···H17Axii3.3501
O2···N1iii3.479 (5)N1···H9i3.35 (4)
O2···C9iv3.305 (5)C1···H16Ci3.5639
O2···C11v3.467 (5)C2···H17Bxiii3.2723
O2···C13iii3.386 (5)C5···H11v3.3895
O2···C14iii3.502 (5)C5···H14iii3.4038
O3···C9i3.246 (5)C6···H14iii3.5247
O3···C10i3.413 (4)C7···H12v3.3233
O3···C15i3.478 (5)C7···H15iii3.3646
O3···C17vi3.506 (6)C8···H12v3.5187
O4···C14vii3.286 (5)C8···H15iii3.4844
N1···O2iii3.479 (5)C8···H16Bii2.9222
C5···C14iii3.588 (5)C9···H16Bii3.3418
C7···C15iii3.371 (5)C9···H9iii3.37 (4)
C9···O2iv3.305 (5)C10···H7iii3.51 (3)
C9···O3v3.246 (5)C11···H2Aii3.2511
C9···C9iii3.459 (5)C11···H17Cxii3.5873
C10···O3v3.413 (4)C11···H7i3.52 (3)
C11···O2i3.467 (5)C12···H2Aii3.5420
C13···O2iii3.386 (5)C12···H17Cxii3.2482
C14···O2iii3.502 (5)C12···H7i3.27 (3)
C14···O4viii3.286 (5)C13···H17Axii3.4540
C14···C5iii3.588 (5)C13···H17Cxii3.0738
C15···O3v3.478 (5)C14···H4Axii3.0641
C15···C7iii3.371 (5)C14···H17Cxii3.2608
C16···O1v3.407 (5)C14···H7iii3.54 (3)
C16···O1ix3.535 (6)C15···H17Cxii3.5933
C17···O3x3.506 (6)C15···H7iii3.33 (3)
O1···H2A2.4414C16···H12x3.3094
O1···H2B2.8142C16···H8ix3.32 (4)
O1···H16A3.3815C17···H2Axiii3.2929
O1···H82.24 (4)C17···H2Bxiii3.5766
O2···H4A2.7640C17···H17Bxiii3.5288
O2···H4B2.4958H2A···C11ix3.2511
O2···H72.37 (3)H2A···C12ix3.5420
O3···H122.4360H2A···C17xiii3.2929
O4···H142.4487H2A···H11ix3.0637
N1···H122.5893H2A···H12ix3.5660
N1···H142.6310H2A···H17Bxiii2.8668
C1···H4A3.2706H2A···H17Cxiii2.8771
C1···H16A2.6559H2B···O3xiv2.6644
C1···H16B3.3322H2B···O4xiv3.1389
C1···H82.84 (4)H2B···N1xiv3.1884
C1···H73.37 (3)H2B···C17xiii3.5766
C2···H4A2.6749H2B···H17Bxiii2.7936
C2···H4B3.2940H2B···H17Cxiii3.5729
C2···H16A2.6498H4A···O4iii3.1931
C2···H16B2.6899H4A···C14xv3.0641
C2···H16C3.3200H4A···H14iii3.3272
C2···H17A3.3270H4A···H14xv2.7950
C2···H17B2.6742H4B···O1v3.2849
C2···H17C2.6845H4B···O4xv3.2774
C4···H2A3.2949H4B···H14xv3.5425
C4···H2B2.6494H4B···H15iv3.0980
C4···H16A2.6954H4B···H8v3.2306
C4···H16B3.3264H11···O1ii3.2598
C4···H16C2.6763H11···O2i3.2415
C4···H17A2.6869H11···C5i3.3895
C4···H17B3.3157H11···H2Aii3.0637
C4···H17C2.6480H11···H16Ai2.9497
C5···H2B3.2005H11···H16Bii3.3304
C5···H16A2.7693H11···H16Ci3.5389
C5···H16C3.3719H12···O1ii3.5156
C5···H72.53 (3)H12···C7i3.3233
C6···H2A3.3212H12···C8i3.5187
C6···H2B2.9416H12···C16vi3.3094
C6···H4A3.0058H12···H2Aii3.5660
C6···H4B3.3153H12···H16Bvi2.8188
C6···H16A2.7814H12···H16Cvi2.9282
C6···H82.77 (4)H12···H17Avi3.4287
C7···H92.58 (4)H12···H17Bvi3.4213
C8···H112.8002H12···H9i3.5055
C9···H112.6890H12···H7i3.1990
C9···H152.5987H14···O2iii3.5772
C9···H72.46 (3)H14···O4viii2.5218
C10···H123.2509H14···C5iii3.4038
C10···H143.2619H14···C6iii3.5247
C10···H82.82 (4)H14···H4Aiii3.3272
C11···H153.2226H14···H4Axii2.7950
C11···H93.23 (4)H14···H4Bxii3.5425
C11···H82.88 (4)H15···O2iv3.1368
C12···H143.2433H15···O3v3.3309
C13···H113.2117H15···O4viii3.1534
C13···H153.2033H15···C7iii3.3646
C14···H123.2406H15···C8iii3.4844
C15···H113.2256H15···H4Biv3.0980
C15···H92.47 (4)H15···H7iii3.5644
C16···H2A2.6553H16A···O1ix2.9432
C16···H2B3.3223H16A···H11v2.9497
C16···H4A3.3261H16A···H8v3.5313
C16···H4B2.6477H16A···H8ix3.1187
C16···H17A2.6573H16B···O1ix3.4608
C16···H17B2.6739H16B···O3x3.2560
C16···H17C3.3175H16B···C8ix2.9222
C17···H2A2.6813H16B···C9ix3.3418
C17···H2B2.6395H16B···H11ix3.3304
C17···H4A2.5981H16B···H12x2.8188
C17···H4B2.6890H16B···H8ix2.6763
C17···H16A3.3181H16C···O1v2.4512
C17···H16B2.6487H16C···C1v3.5639
C17···H16C2.6802H16C···H11v3.5389
H2A···H4A3.5476H16C···H12x2.9282
H2A···H16A2.8994H16C···H8v3.0204
H2A···H16B2.4946H17A···O1v3.5181
H2A···H16C3.5408H17A···N1xv3.3501
H2A···H17A3.5499H17A···C13xv3.4540
H2A···H17B2.4972H17A···H12x3.4287
H2A···H17C2.9722H17A···H17Axvi3.4319
H2B···H4A2.5047H17B···O3x2.6426
H2B···H4B3.5409H17B···C2xiii3.2723
H2B···H16A3.5488H17B···C17xiii3.5288
H2B···H16B3.5489H17B···H2Axiii2.8668
H2B···H17A3.5235H17B···H2Bxiii2.7936
H2B···H17B2.8942H17B···H12x3.4213
H2B···H17C2.4642H17B···H17Bxiii3.1298
H4A···H16A3.5919H17B···H17Cxiii3.1616
H4A···H16C3.5269H17C···C11xv3.5873
H4A···H17A2.8775H17C···C12xv3.2482
H4A···H17B3.4772H17C···C13xv3.0738
H4A···H17C2.3934H17C···C14xv3.2608
H4B···H16A2.9308H17C···C15xv3.5933
H4B···H16B3.5212H17C···H2Axiii2.8771
H4B···H16C2.4608H17C···H2Bxiii3.5729
H4B···H17A2.5311H17C···H17Bxiii3.1616
H4B···H17B3.5639H9···O2iv2.42 (4)
H4B···H17C2.9556H9···O3v3.02 (4)
H11···H122.3026H9···N1v3.35 (4)
H11···H93.5302H9···C9iii3.37 (4)
H11···H82.3227H9···H12v3.5055
H14···H152.3033H9···H9iii3.52 (5)
H15···H92.2673H8···C16ii3.32 (4)
H16A···H17A3.5426H8···H4Bi3.2306
H16A···H17B3.5402H8···H16Ai3.5313
H16B···H17A2.9028H8···H16Aii3.1187
H16B···H17B2.4779H8···H16Bii2.6763
H16B···H17C3.5321H8···H16Ci3.0204
H16C···H17A2.4938H7···O2iv3.14 (3)
H16C···H17B2.9737H7···C10iii3.51 (3)
H16C···H17C3.5481H7···C11v3.52 (3)
H9···H82.86 (5)H7···C12v3.27 (3)
H9···H72.28 (5)H7···C14iii3.54 (3)
H8···H72.88 (5)H7···C15iii3.33 (3)
O1···H4Bi3.2849H7···H12v3.1990
O1···H11ix3.2598H7···H15iii3.5644
O1···H12ix3.5156H7···H7iv3.12 (4)
O3—N1—O4122.8 (4)C3—C2—H2A108.706
O3—N1—C13119.6 (3)C3—C2—H2B108.699
O4—N1—C13117.6 (3)H2A—C2—H2B107.619
O1—C1—C2121.2 (4)C3—C4—H4A108.507
O1—C1—C6120.1 (3)C3—C4—H4B108.511
C2—C1—C6118.6 (3)C5—C4—H4A108.502
C1—C2—C3114.2 (3)C5—C4—H4B108.499
C2—C3—C4107.6 (3)H4A—C4—H4B107.508
C2—C3—C16109.7 (3)C6—C7—H7118.8 (17)
C2—C3—C17110.0 (3)C8—C7—H7110.2 (17)
C4—C3—C16110.8 (3)C7—C8—H8116 (2)
C4—C3—C17109.6 (4)C9—C8—H8124 (2)
C16—C3—C17109.3 (4)C8—C9—H9122 (2)
C3—C4—C5115.1 (4)C10—C9—H9109 (2)
O2—C5—C4121.0 (3)C10—C11—H11119.427
O2—C5—C6120.3 (3)C12—C11—H11119.430
C4—C5—C6118.6 (3)C11—C12—H12120.346
C1—C6—C5118.1 (3)C13—C12—H12120.327
C1—C6—C7124.5 (3)C13—C14—H14120.902
C5—C6—C7117.3 (3)C15—C14—H14120.900
C6—C7—C8130.9 (4)C10—C15—H15118.901
C7—C8—C9120.2 (4)C14—C15—H15118.915
C8—C9—C10128.5 (4)C3—C16—H16A109.477
C9—C10—C11123.3 (3)C3—C16—H16B109.472
C9—C10—C15119.1 (3)C3—C16—H16C109.474
C11—C10—C15117.6 (3)H16A—C16—H16B109.467
C10—C11—C12121.1 (3)H16A—C16—H16C109.468
C11—C12—C13119.3 (3)H16B—C16—H16C109.469
N1—C13—C12118.5 (3)C3—C17—H17A109.478
N1—C13—C14119.9 (3)C3—C17—H17B109.481
C12—C13—C14121.6 (3)C3—C17—H17C109.471
C13—C14—C15118.2 (3)H17A—C17—H17B109.468
C10—C15—C14122.2 (3)H17A—C17—H17C109.466
C1—C2—H2A108.706H17B—C17—H17C109.463
C1—C2—H2B108.698
O3—N1—C13—C125.2 (5)O2—C5—C6—C70.2 (5)
O3—N1—C13—C14175.2 (3)C4—C5—C6—C13.1 (5)
O4—N1—C13—C12175.4 (3)C4—C5—C6—C7177.2 (3)
O4—N1—C13—C144.2 (5)C1—C6—C7—C80.7 (6)
O1—C1—C2—C3143.1 (4)C5—C6—C7—C8179.0 (3)
O1—C1—C6—C5171.8 (4)C6—C7—C8—C9176.8 (3)
O1—C1—C6—C77.9 (6)C7—C8—C9—C10179.8 (3)
C2—C1—C6—C56.6 (5)C8—C9—C10—C111.3 (6)
C2—C1—C6—C7173.7 (3)C8—C9—C10—C15179.4 (3)
C6—C1—C2—C335.2 (5)C9—C10—C11—C12178.9 (3)
C1—C2—C3—C457.9 (4)C9—C10—C15—C14179.1 (3)
C1—C2—C3—C1662.6 (4)C11—C10—C15—C140.3 (5)
C1—C2—C3—C17177.2 (3)C15—C10—C11—C120.4 (5)
C2—C3—C4—C554.4 (4)C10—C11—C12—C130.1 (5)
C16—C3—C4—C565.5 (4)C11—C12—C13—N1179.5 (3)
C17—C3—C4—C5173.9 (3)C11—C12—C13—C140.9 (5)
C3—C4—C5—O2154.5 (3)N1—C13—C14—C15179.4 (3)
C3—C4—C5—C628.5 (5)C12—C13—C14—C151.0 (5)
O2—C5—C6—C1179.9 (3)C13—C14—C15—C100.4 (5)
Symmetry codes: (i) x, y+1, z; (ii) x+3/2, y+1/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x+1, y, z+1; (v) x, y1, z; (vi) x+3/2, y+3/2, z+1/2; (vii) x+3/2, y+1/2, z+3/2; (viii) x+3/2, y1/2, z+3/2; (ix) x+3/2, y1/2, z+1/2; (x) x+3/2, y3/2, z+1/2; (xi) x+1/2, y+3/2, z+1/2; (xii) x+1/2, y+1/2, z+1/2; (xiii) x+1, y, z; (xiv) x1/2, y+3/2, z1/2; (xv) x1/2, y+1/2, z1/2; (xvi) x+1, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O2iv0.90 (3)2.42 (4)3.305 (5)170 (4)
C14—H14···O4viii0.932.523.286 (4)140
C16—H16C···O1v0.962.453.407 (6)174
Symmetry codes: (iv) x+1, y, z+1; (v) x, y1, z; (viii) x+3/2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O2i0.90 (3)2.42 (4)3.305 (5)170 (4)
C14—H14···O4ii0.932.523.286 (4)140
C16—H16C···O1iii0.962.453.407 (6)174
Symmetry codes: (i) x+1, y, z+1; (ii) x+3/2, y1/2, z+3/2; (iii) x, y1, z.
 

Acknowledgements

This research was supported by the Korea Institute of Science and Technology (KIST-2E25240). We thank Dr Joo Hwan Cha for helpful discussions on organic synthesis.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFeng, J., Lin, L., Yu, K., Liu, X. & Feng, X. (2015). Adv. Synth. Catal. 357, 1305–1310.  Web of Science CSD CrossRef CAS Google Scholar
First citationFrolov, K. A., Dotsenko, V. V. & Krivokolysko, S. G. (2013). Chem. Heterocycl. Compd, 49, 1146–1150.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSharma, D., Bandna, Shil, A. K., Singh, B. & Das, P. (2012). Synlett, 23, 1199–1204.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages o485-o486
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds