research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages 752-756

Different hydrogen-bonded chains in the crystal structures of three alkyl N-[(E)-1-(2-benzyl­­idene-1-methyl­hydrazin­yl)-3-hy­dr­oxy-1-oxopropan-2-yl]carbamates

aFundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos–FarManguinhos, Rua Sizenando Nabuco, 100, Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil, and bDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk

Edited by P. C. Healy, Griffith University, Australia (Received 27 May 2015; accepted 31 May 2015; online 6 June 2015)

The crystal structures of three methyl­ated hydrazine carbamate derivatives prepared by multi-step syntheses from L-serine are presented, namely benzyl N-{(E)-1-[2-(4-cyanobenzylidene)-1-methylhydrazinyl]-3-hydroxy-1-oxopro­pan-2-yl}carbamate, C20H20N4O4, tert-butyl N-{(E)-1-[2-(4-cyanobenzylidene)-1-methylhydrazinyl]-3-hydroxy-1-oxopropan-2-yl}carbamate, C17H22N4O4, and tert-butyl N-[(E)-1-(2-benzylidene-1-methylhydrazinyl)-3-hydroxy-1-oxopro­pan-2-yl]carbamate, C16H23N3O4. One of them shows that an unexpected racemization has occurred during the mild-condition methyl­ation reaction. In each crystal structure, the mol­ecules are linked into chains by O—H⋯O hydrogen bonds, but with significant differences between them.

1. Chemical context

As part of our ongoing studies of hydrazine carbamates derived from L-serine with possible anti-tubercular activity (Pinheiro et al., 2011[Pinheiro, A. C., Kaiser, C. R., Noguiera, T. C. M., Carvalho, S. A., Silva, E. F., Feitosa, L. O., Henriques, M. O., Candéa, L. P., Lourenço, M. C. S. & Souza, M. V. N. (2011). Med. Chem. 7, 611-623.]), we now describe the syntheses and structures of three methyl­ated derivatives, viz: benzyl (E)-3-hy­droxy-1-[2-(4-cyano­benzyl­dene)-1-methyl­hydrazin­yl]-1-oxo­propan-2-ylcarbamate (I)[link], tert-butyl (E)-3-hy­droxy-1-[2-(4-cyano­benzyl­idene)-1-methyl­hydrazin­yl]-1-oxopropan-2-ylcarbamate (II)[link] and tert-butyl (E)-3-hy­droxy-1-[2-benzyl­idene-1-methyl­hydrazin­yl]-1-oxopropan-2-ylcarbamate (III)[link], formed by the reaction of the corresponding (E)-(S)-ROCONHCH(CH2OH)CONHN=CH-benzene (R = t-Bu or PhCH2) compound (Noguiera et al., 2013[Noguiera, T. C. M., Pinheiro, A. C., Kaiser, C., Wardell, J. L., Wardell, S. M. S. V. & de Souza, M. V. N. (2013). Lett. Org. Chem. 10, 626-631.]) with potassium carbonate and methyl iodide.

[Scheme 1]

In general, the tertiary butyl compounds form simple methyl­ated products as described here, whereas the benzyl compounds lead to cyclized oxazolidin-2-one products (Noguiera et al., 2013[Noguiera, T. C. M., Pinheiro, A. C., Kaiser, C., Wardell, J. L., Wardell, S. M. S. V. & de Souza, M. V. N. (2013). Lett. Org. Chem. 10, 626-631.]). However, compound (I)[link] described herein has not cyclized. As described below, compound (III)[link] has undergone an unexpected racemization during the methyl­ation step. The acidity of the α-hydrogen atom in serine derivatives has been variously reported (e.g., Blaskovich & Lajoie, 1993[Blaskovich, M. A. & Lajoie, G. A. (1993). J. Am. Chem. Soc. 115, 5021-5030.]; Kovacs et al., 1984[Kovacs, J., Jham, G. N., Hui, K. Y., Holleran, E. M., Kim, S. E. & Canavan, T. (1984). Int. J. Peptide Protein Res. 24, 161-167.]), and apparently can result in racemization in the presence of even a very weak base such as the carbonate ion. Similar racemizations have been observed in the cyclized oxazolidin-2-one products (Noguiera et al., 2015[Noguiera, T. C. M., Pinheiro, A. C., Wardell, J. L., de Souza, M. V. N., Abberley, J. P. & Harrison, W. T. A. (2015). Acta Cryst. C71. Submitted.]).

2. Structural commentary

The mol­ecular structure of (I)[link] is shown in Fig. 1[link], which confirms that methyl­ation has occurred at N2 but no cyclization to an oxazolidin-2-one has occurred (Noguiera et al., 2015[Noguiera, T. C. M., Pinheiro, A. C., Wardell, J. L., de Souza, M. V. N., Abberley, J. P. & Harrison, W. T. A. (2015). Acta Cryst. C71. Submitted.]). Compound (I)[link] crystallizes in a chiral space group but its absolute structure was indeterminate in the present experiment and C10 was assumed to have an S configuration to match the corresponding atom in the L-serine starting mat­erial. The atoms of the C14 benzene ring show notably larger displacement ellipsoids than the rest of the mol­ecule, but attempts to model this as disorder did not lead to a significant improvement in fit. Atom N2 is statistically planar (bond-angle sum = 360°), which implies sp2 hybridization for this atom. The C9—N2 bond length of 1.358 (6)Å is typical of an amide and the N1—N2 bond length of 1.374 (5) is shorter than the reference value of 1.40 Å for a nominal N(sp2)—N(sp2) single bond. This suggests at least some electronic conjugation over the almost planar C7/N1/N2/C9/O1 grouping (r.m.s. deviation = 0.010 Å): the C1 benzene ring is twisted by 6.1 (2)° with respect to these atoms. The C7—N1—N2—C8 torsion angle of −1.9 (6)° shows that the carbon atoms are almost eclipsed with respect to the N—N bond whereas the C9—C10—C11—O2 torsion angle of −50.9 (5)° indicates a gauche conformation about the C10—C11 bond. The C9—C10—N3—H3A torsion angle is 38° and the separation between H2A (bonded to O2) and H3A is 2.5 Å.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link] showing 50% displacement ellipsoids.

The mol­ecular structure of (II)[link] can be seen in Fig. 2[link]: again the methyl­ation of N2 has occurred as expected. Because the absolute structure was indeterminate, the configuration of C10 (S) was assumed to be the same as that of the corresponding atom in the L-serine starting material. In terms of the C7/N1/N2/C9/O1 grouping in (II)[link], the C9—N2 and N1—N2 bond lengths are 1.385 (6) and 1.388 (5) Å, respectively, which are both notably longer than the corresponding bonds in (I)[link], and the r.m.s. deviation from planarity of 0.049 Å for these five atoms is also larger than the corresponding value for (I)[link]. The dihedral angle between C7/N1/N2/C9/O1 and the C1-benzene ring in (II)[link] is 10.5 (3)°. The C7—N1—N2—C8 torsion angle is 1.2 (7)° and the C9—C10—C11—O2 torsion angle is −47.4 (6)°, which are similar to the equivalent data for (I)[link]. The C9—C10—N3—H3 torsion angle in (II)[link] is 30° and the separation between H2A and H3 is 2.7 Å. These values are evidently sufficiently different from the corresponding data for (I)[link] to lead to a different hydrogen-bonding pattern in the crystal (see below).

[Figure 2]
Figure 2
The mol­ecular structure of (II)[link] showing 50% displacement ellipsoids.

Compound (III)[link], shown in Fig. 3[link], crystallizes in a centrosymmetric space group, indicating that racemization of C10 has occurred during the methyl­ation of N2: the C10 atom in the asymmetric unit was arbitrarily assigned an S configuration. The O2—H2 hy­droxy group is disordered over two orientations in a 0.802 (7):0.198 (7) ratio. The geometric parameters for (III)[link] are largely consistent with those for (I)[link] and (II)[link]: the C7/N1/N2/C9/O1 grouping (r.m.s. deviation = 0.014 Å) subtends a dihedral angle of 1.9 (4)° with the C1–C6 benzene ring and the C9—N2 and N1—N2 bond lengths are 1.358 (5) and 1.381 (4) Å, respectively. The C7—N1—N2—C8 torsion angle is 0.8 (5)° and the C9—C10—C11—O2A (major disorder component) torsion angle is −54.9 (4)°. The C9—C10—C11—O2B torsion angle for the minor disorder component is −156.7 (8)°, which has a significant role to play in the hydrogen-bonding pattern in the crystal of (III)[link].

[Figure 3]
Figure 3
The mol­ecular structure of (III)[link] showing 50% displacement ellipsoids. Only one orientation of the disordered O2—H2 group is shown.

3. Supra­molecular features

In the extended structure of (I)[link], the mol­ecules are linked by short O2—H2A⋯O4i (i = 1 + x, y, z) and much longer N3—H3A⋯O4i hydrogen bonds (Table 1[link], Fig. 4[link]) to the same acceptor oxygen atom, generating [100] chains, with adjacent mol­ecules related by simple translation in the a-axis direction. An unusual R21(7) loop arises from these hydrogen bonds; alternately, this could be described as combined C(7) O—H⋯O and C(4) N—H⋯O chains. A pair of weak C—H⋯π inter­actions are also observed but there is no aromatic ππ stacking (shortest centroid–centroid separation > 4.7 Å).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg2 is the centroid of the C14-C19 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O4i 0.88 2.40 3.091 (6) 135
O2—H2A⋯O4i 0.84 2.08 2.873 (5) 158
C16—H16⋯Cg2ii 0.95 2.78 3.558 (18) 140
C19—H19⋯Cg2iii 0.95 2.86 3.598 (13) 135
Symmetry codes: (i) x+1, y, z; (ii) [-x+2, y+{\script{1\over 2}}, -z+1]; (iii) [-x+1, y-{\script{1\over 2}}, -z+1].
[Figure 4]
Figure 4
Fragment of a [100] hydrogen-bonded chain in the crystal of (I)[link]. Symmetry code: (i) 1 + x, y, z. All C-bound H atoms are omitted for clarity.

The extended structure of (II)[link] also features [100] chains (Fig. 5[link]) with adjacent mol­ecules related by translation, but in this case the mol­ecules are only linked by C(7) O2—H2A⋯O4i (i = 1 + x, y, z) hydrogen bonds (Table 2[link]) with almost the same local geometry as seen in (I)[link]. The N3—H3 grouping in (II)[link] is twisted far enough away from O4i to not form an inter­molecular hydrogen bond (H3⋯O4i = 3.2 Å), but instead forms an intra­molecular link to O1. A very long inter­molecular C—H⋯N inter­action is observed but there is no ππ stacking in (II)[link], as the shortest centroid–centroid separation is greater than 5.3 Å.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O1 0.88 2.27 2.620 (6) 104
O2—H2A⋯O4i 0.84 2.09 2.877 (5) 156
C4—H4⋯N4ii 0.95 2.61 3.549 (8) 168
Symmetry codes: (i) x+1, y, z; (ii) [-x-1, y-{\script{1\over 2}}, -z+1].
[Figure 5]
Figure 5
Fragment of a [100] hydrogen-bonded chain in the crystal of (II)[link]. Symmetry code: (i) 1 + x, y, z. All C-bound H atoms are omitted for clarity.

The packing in the centrosymmetric structure of (III)[link] leads to [010] chains (Fig. 6[link]) with adjacent mol­ecules related by the 21 screw axis, so that the C1-benzene ring is `flipped' from one side of the chain to the other in adjacent mol­ecules. As noted above, the hydroxyl group is disordered over two orientations. The hydrogen bond from the major orientation of O2A—H2A is still a bond to O4i (Table 3[link]), where i = 1 − x, y − [{1\over 2}], [{1\over 2}] − z. The minor disorder component (O2B—H2B) forms an O—H⋯O hydrogen bond in the opposite chain direction to O1ii (ii = 1 − x, y + [{1\over 2}], [{1\over 2}] − z): O1 also accepts an intra­molecular N—H⋯O hydrogen bond, as seen in (II)[link]. Once again, no aromatic ππ stacking is observed in the crystal of (III)[link], as the minimum centroid–centroid separation is greater than 4.6 Å.

Table 3
Hydrogen-bond geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1N⋯O1 0.88 (4) 2.11 (4) 2.623 (4) 116 (3)
O2A—H2A⋯O4i 0.84 2.09 2.852 (4) 150
O2B—H2B⋯O1ii 0.84 2.18 2.966 (13) 156
C7—H7⋯O2Aiii 0.95 2.45 3.229 (5) 140
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 6]
Figure 6
Fragment of an [010] hydrogen-bonded chain in the crystal of (III)[link]. Both disorder components of the OH group are shown. Symmetry codes: (i) 1 − x, y − [{1\over 2}], [{1\over 2}] − z; (ii) 1 − x, y + [{1\over 2}], [{1\over 2}] − z. All C-bound H atoms are omitted for clarity.

4. Database survey

There are no –OCONHCH(CH2OH)CON(CH3)N=CH– fragments reported in Version 5.36 of the Cambridge Structural Database (Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) but there are 14 unmethyl­ated –OCONHCH(CH2OH)CONHN=CH– groupings with different substituents at each end of the fragment, all of which have been reported by us in the last few years (Howie et al., 2011[Howie, R. A., de Souza, M. V. N., Pinheiro, A., Kaiser, C. R., Wardell, J. L. & Wardell, S. M. S. V. (2011). Z. Kristallogr. 226, 483-491.] and references therein). All of these materials crystallize in chiral space groups.

5. Synthesis and crystallization

Potassium carbonate (1.76 mmol) was added to a solution of the appropriate (E)-(S)-ROCONHCH(CH2OH)CONHN=CH-benzene compound (Noguiera et al., 2013[Noguiera, T. C. M., Pinheiro, A. C., Kaiser, C., Wardell, J. L., Wardell, S. M. S. V. & de Souza, M. V. N. (2013). Lett. Org. Chem. 10, 626-631.]) in acetone (10 ml) and the reaction mixture was vigorously stirred at room temperature for 5 minutes, before adding methyl iodide (1.80 mmol). The reaction mixture was stirred at 323 K for 24–48 h and the solvent removed by rotary evaporation. The residue was subjected to column chromatography on silica gel, using a chloro­form:methanol (100 → 95%) gradient. The colourless crystals used in the structure determinations were recrystallized from ethanol solution at room temperature. For further details and spectroscopic data, see: Noguiera et al. (2013[Noguiera, T. C. M., Pinheiro, A. C., Kaiser, C., Wardell, J. L., Wardell, S. M. S. V. & de Souza, M. V. N. (2013). Lett. Org. Chem. 10, 626-631.]).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The crystal of (I)[link] gave a poor diffraction pattern and indexing initially established a large triclinic unit cell [a = 9.512 (12), b = 13.003 (19), c = 22.94 (3) Å, α = 92.93 (2), β = 91.48 (3), γ = 98.13 (3)°, V = 2804 (7) Å3]. An atomic model could be developed in space group P1 with Z = 6, but a PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) symmetry check indicated that the smaller monoclinic cell reported above was more appropriate and the unit cell transformed by the matrix (−[1\over3][1\over3] 0 / −[2\over3] [1\over3] 0 / 0 0 −1). It is notable that the aromatic rings of the benzyl groups of all six mol­ecules in the triclinic supercell showed a high degree of thermal motion. The transformation to monoclinic symmetry resulted in a rather low data completion percentage of 92%, but we consider that the refinement is satisfactory and a good geometrical precision results. For each structure, the O- and N-bound H atoms were located in difference maps, repositioned in idealized locations and refined as riding atoms [H1N was freely refined in structure (III)]. The C-bound H atoms were placed geometrically (C—H = 0.95–1.00 Å) and refined as riding atoms. The constraint Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl carrier) was applied in all cases. The H atoms of the hydroxyl groups were allowed to rotate about their C—O bond (SHELXL HFIX 83 instruction with O—H = 0.84 Å and C—O—H = 109.5°) to best fit the electron density. The methyl groups were allowed to rotate, but not to tip, to best fit the electron density (AFIX 137 instruction).

Table 4
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula C20H20N4O4 C17H22N4O4 C16H23N3O4
Mr 380.40 346.39 321.37
Crystal system, space group Monoclinic, P21 Monoclinic, P21 Monoclinic, P21/c
Temperature (K) 100 100 100
a, b, c (Å) 4.995 (6), 8.172 (8), 22.94 (3) 5.348 (3), 7.883 (5), 20.903 (14) 10.454 (7), 10.571 (7), 15.664 (11)
β (°) 93.48 (3) 92.763 (1) 101.172 (12)
V3) 934.7 (19) 880.2 (10) 1698 (2)
Z 2 2 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.10 0.10 0.09
Crystal size (mm) 0.14 × 0.03 × 0.01 0.08 × 0.08 × 0.02 0.16 × 0.05 × 0.01
 
Data collection
Diffractometer Rigaku Mercury CCD Rigaku Mercury CCD Rigaku Mercury CCD
No. of measured, independent and observed [I > 2σ(I)] reflections 13928, 4691, 3270 3672, 2483, 2143 8546, 3319, 2716
Rint 0.070 0.023 0.048
(sin θ/λ)max−1) 0.734 0.617 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.095, 0.278, 1.10 0.057, 0.194, 1.13 0.104, 0.197, 1.23
No. of reflections 4691 2483 3319
No. of parameters 255 231 220
No. of restraints 1 1 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.39, −0.35 0.31, −0.36 0.44, −0.26
Computer programs: CrystalClear (Rigaku, 2012[Rigaku (2012). CrystalClear. Rigaku Corporation, Tokyo, Japan.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

As part of our ongoing studies of hydrazine carbamates derived from L-serine with possible anti-tubercular activity (Pinheiro et al., 2011), we now describe the syntheses and structures of three methyl­ated derivatives, viz: benzyl (E)-3-hy­droxy-1-[2-(4-cyano­benzyl­idene)-1-methyl­hydrazinyl]-1-oxopropan-2-ylcarbamate (I), tert-butyl (E)-3-hy­droxy-1-[2-(4-cyano­benzyl­idene)-1-methyl­hydrazinyl]-1-oxopropan-2-ylcarbamate (II) and tert-butyl (E)-3-hy­droxy-1-[2-benzyl­idene-1-methyl­hydrazinyl]-1-oxopropan-2-ylcarbamate (III), formed by the reaction of the corresponding (E)-(S)-ROCONHCH(CH2OH)CONHN=CH-benzene (R = t-Bu or PhCH2) compound (Nogueira et al., 2013) with potassium carbonate and methyl iodide. In general, the tertiary butyl compounds form simple methyl­ated products as described here, whereas the benzyl compounds lead to cyclized oxazolidin-2-one products (Nogueira et al., 2013). However, compound (I) described herein has not cyclized. As described below, compound (III) has undergone an unexpected racemization during the methyl­ation step. The acidity of the α-hydrogen atom in serine derivatives has been variously reported (e.g., Blaskovich & Lajoie, 1993; Kovacs et al., 1984), and apparently can result in racemization in the presence of even a very weak base such as the carbonate ion. Similar racemizations have been observed in the cyclized oxazolidin-2-one products (Nogueira et al., 2015).

Structural commentary top

The molecular structure of (I) is shown in Fig. 1, which confirms that methyl­ation has occurred at N2 but no cyclization to an oxazolidin-2-one has occurred (Nogueira et al., 2015). Compound (I) crystallizes in a chiral space group but its absolute structure was indeterminate in the present experiment and C10 was assumed to have an S configuration to match the corresponding atom in the L-serine starting material. The atoms of the C14 benzene ring show notably larger displacement ellipsoids than the rest of the molecule, but attempts to model this as disorder did not lead to a significant improvement in fit. Atom N2 is statistically planar (bond-angle sum = 360°), which implies sp2 hybridization for this atom. The C9—N2 bond length of 1.358 (6)Å is typical of an amide and the N1—N2 bond length of 1.374 (5) is shorter than the reference value of 1.40 Å for a nominal N(sp2)—N(sp2) single bond. This suggests at least some electronic conjugation over the almost planar C7/N1/N2/C9/O1 grouping (r.m.s. deviation = 0.010 Å): the C1 benzene ring is twisted by 6.1 (2)° with respect to these atoms. The C7—N1—N2—C8 torsion angle of –1.9 (6)° shows that the carbon atoms are almost eclipsed with respect to the N—N bond whereas the C9—C10—C11—O2 torsion angle of –50.9 (5)° indicates a gauche conformation about the C10—C11 bond. The C9—C10—N3—H3A torsion angle is 38° and the separation between H2A (bonded to O2) and H3A is 2.5 Å.

The molecular structure of (II) can be seen in Fig. 2: again the methyl­ation of N2 has occurred as expected. Because the absolute structure was indeterminate, the configuration of C10 (S) was assumed to be the same as that of the corresponding atom in the L-serine starting material. In terms of the C7/N1/N2/C9/O1 grouping in (II), the C9—N2 and N1—N2 bond lengths are 1.385 (6) and 1.388 (5) Å, respectively, which are both notably longer than the corresponding bonds in (I), and the r.m.s. deviation from planarity of 0.049 Å for these five atoms is also larger than the corresponding value for (I). The dihedral angle between C7/N1/N2/C9/O1 and the C1-benzene ring in (II) is 10.5 (3)°. The C7—N1—N2—C8 torsion angle is 1.2 (7)° and the C9—C10—C11—O2 torsion angle is –47.4 (6)°, which are similar to the equivalent data for (I). The C9—C10—N3—H3 torsion angle in (II) is 30° and the separation between H2A and H3 is 2.7 Å. These values are evidently sufficiently different from the corresponding data for (I) to lead to a different hydrogen-bonding pattern in the crystal (see below).

Compound (III) crystallizes in a centrosymmetric space group, indicating that racemization of C10 has occurred during the methyl­ation of N2: the C10 atom in the asymmetric unit was arbitrarily assigned an S configuration. The O2—H2 hy­droxy group is disordered over two orientations in a 0.802 (7):0.198 (7) ratio. The geometric parameters for (III) are largely consistent with those for (I) and (II): the C7/N1/N2/C9/O1 grouping (r.m.s. deviation = 0.014 Å) subtends a dihedral angle of 1.9 (4)° with the C1–C6 benzene ring and the C9—N2 and N1—N2 bond lengths are 1.358 (5) and 1.381 (4) Å, respectively. The C7—N1—N2—C8 torsion angle is 0.8 (5)° and the C9—C10—C11—O2A (major disorder component) torsion angle is –54.9 (4)°. The C9—C10—C11—O2B torsion angle for the minor disorder component is –156.7 (8)°, which has a significant role to play in the hydrogen-bonding pattern in the crystal of (III).

Supra­molecular features top

In the extended structure of (I), the molecules are linked by short O2—H2A···O4i (i = 1 + x, y, z) and much longer N3—H3A···O4i hydrogen bonds (Table 1, Fig. 4) to the same acceptor oxygen atom, generating [100] chains, with adjacent molecules related by simple translation in the a-axis direction. An unusual R21(7) loop arises from these hydrogen bonds; alternately, this could be described as combined C(7) O—H···O and C(4) N—H···O chains. A pair of weak C—H···π inter­actions are also observed but there is no aromatic ππ stacking (shortest centroid–centroid separation > 4.7 Å).

The extended structure of (II) also features [100] chains (Fig. 5) with adjacent molecules related by translation, but in this case the molecules are only linked by C(7) O2—H2A···O4i (i = 1 + x, y, z) hydrogen bonds (Table 2) with almost the same local geometry as seen in (I). The N3—H3 grouping in (II) is twisted far enough away from O4i to not form an inter­molecular hydrogen bond (H3···O4i = 3.2 Å), but instead forms an intra­molecular link to O1. A very long inter­molecular C—H···N inter­action is observed but there is no ππ stacking in (II), as the shortest centroid–centroid separation is greater than 5.3 Å.

The packing in the centrosymmetric structure of (III) leads to [010] chains (Fig. 6) with adjacent molecules related by the 21 screw axis, so that the C1-benzene ring is `flipped' from one side of the chain to the other in adjacent molecules. As noted above, the hydroxyl group is disordered over two orientations. The hydrogen bond from the major orientation of O2A—H2A is still a bond to O4i (Table 3), where i = 1 – x, y – 1/2, 1/2 – z. The minor disorder component (O2B—H2B) forms an O—H···O hydrogen bond in the opposite chain direction to O1ii (ii = 1 – x, y + 1/2, 1/2 – z): O1 also accepts an intra­molecular N—H···O hydrogen bond, as seen in (II). Once again, no aromatic ππ stacking is observed in the crystal of (III), as the minimum centroid–centroid separation is greater than 4.6 Å.

Database survey top

There are no –OCONHCH(CH2OH)CON(CH3)N=CH– fragments reported in Version 5.36 of the Cambridge Structural Database (Groom & Allen, 2014) but there are 14 unmethyl­ated –OCONHCH(CH2OH)CONHN=CH– groupings with different substituents at each end of the fragment, all of which have been reported by us in the last few years (Howie et al., 2011 and references therein). All of these materials crystallize in chiral space groups.

Synthesis and crystallisation top

Potassium carbonate (1.76 mmol) was added to a solution of the appropriate (E)-(S)-ROCONHCH(CH2OH)CONHN=CH-benzene compound (Nogueira et al., 2013) in acetone (10 ml) and the reaction mixture was vigorously stirred at room temperature for 5 minutes, before adding methyl iodide (1.80 mmol). The reaction mixture was stirred at 323 K for 24–48 hours and the solvent removed by rotary evaporation. The residue was subjected to column chromatography on silica gel, using a chloro­form:methanol (100 95%) gradient. The colourless crystals used in the structure determinations were recrystallized from ethanol solution at room temperature. For further details and spectroscopic data, see: Nogueira et al. (2013).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 4. The crystal of (I) gave a poor diffraction pattern and indexing initially established a large triclinic unit cell [a = 9.512 (12), b = 13.003 (19), c = 22.94 (3) Å, α = 92.93 (2), β = 91.48 (3), γ = 98.13 (3)°, V = 2804 (7) Å3]. An atomic model could be developed in space group P1 with Z = 6, but a PLATON (Spek, 2009) symmetry check indicated that the smaller monoclinic cell reported below was more appropriate and the unit cell transformed by the matrix (-1/3 -1/3 0 / -2/3 1/3 0 / 0 0 -1). It is notable that the aromatic rings of the benzyl groups of all six molecules in the triclinic supercell showed a high degree of thermal motion. The transformation to monoclinic symmetry resulted in a rather low data completion percentage of 92%, but we consider that the refinement is satisfactory and a good geometrical precision results.

For each structure, the O- and N-bound H atoms were located in difference maps, repositioned in idealized locations and refined as riding atoms [H1N was freely refined in structure (III)]. The C-bound H atoms were placed geometrically (C—H = 0.95–1.00 Å) and refined as riding atoms. The constraint Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl carrier) was applied in all cases. The H atoms of the hydroxyl groups were allowed to rotate about their C—O bond (SHELXL HFIX 83 instruction with O—H = 0.84 Å and C—O—H = 109.5°) to best fit the electron density. The methyl groups were allowed to rotate, but not to tip, to best fit the electron density (AFIX 137 instruction).

Related literature top

For related literature, see: Blaskovich & Lajoie (1993); Groom & Allen (2014); Howie et al. (2011); Kovacs et al. (1984); Nogueira et al. (2013, 2015); Pinheiro et al. (2011).

Computing details top

For all compounds, data collection: CrystalClear (Rigaku, 2012); cell refinement: CrystalClear (Rigaku, 2012); data reduction: CrystalClear (Rigaku, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% displacement ellipsoids.
[Figure 2] Fig. 2. The molecular structure of (II) showing 50% displacement ellipsoids.
[Figure 3] Fig. 3. The molecular structure of (III) showing 50% displacement ellipsoids. Only one orientation of the disordered O2—H2 group is shown.
[Figure 4] Fig. 4. Fragment of a [100] hydrogen-bonded chain in the crystal of (I). Symmetry code: (i) 1 + x, y, z. All C-bound H atoms are omitted for clarity.
[Figure 5] Fig. 5. Fragment of a [100] hydrogen-bonded chain in the crystal of (II). Symmetry code: (i) 1 + x, y, z. All C-bound H atoms are omitted for clarity.
[Figure 6] Fig. 6. Fragment of an [010] hydrogen-bonded chain in the crystal of (III). Symmetry codes: (i) 1 - x, y - 1/2, 1/2 - z; (ii) 1 - x, y + 1/2, 1/2 - z. All C-bound H atoms are omitted for clarity.
(I) Benzyl N-{(E)-1-[2-(4-cyanobenzylidene)-1-methylhydrazinyl]-3-hydroxy-1-oxopropan-2-yl}carbamate top
Crystal data top
C20H20N4O4F(000) = 400
Mr = 380.40Dx = 1.352 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 5405 reflections
a = 4.995 (6) Åθ = 2.2–31.3°
b = 8.172 (8) ŵ = 0.10 mm1
c = 22.94 (3) ÅT = 100 K
β = 93.48 (3)°Chip, colourless
V = 934.7 (19) Å30.14 × 0.03 × 0.01 mm
Z = 2
Data collection top
Rigaku Mercury CCD
diffractometer
3270 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.070
Graphite monochromatorθmax = 31.5°, θmin = 2.7°
ω scansh = 77
13928 measured reflectionsk = 117
4691 independent reflectionsl = 3233
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.095H-atom parameters constrained
wR(F2) = 0.278 w = 1/[σ2(Fo2) + (0.1373P)2 + 0.3363P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.005
4691 reflectionsΔρmax = 0.39 e Å3
255 parametersΔρmin = 0.35 e Å3
1 restraintExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.079 (13)
Crystal data top
C20H20N4O4V = 934.7 (19) Å3
Mr = 380.40Z = 2
Monoclinic, P21Mo Kα radiation
a = 4.995 (6) ŵ = 0.10 mm1
b = 8.172 (8) ÅT = 100 K
c = 22.94 (3) Å0.14 × 0.03 × 0.01 mm
β = 93.48 (3)°
Data collection top
Rigaku Mercury CCD
diffractometer
3270 reflections with I > 2σ(I)
13928 measured reflectionsRint = 0.070
4691 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0951 restraint
wR(F2) = 0.278H-atom parameters constrained
S = 1.10Δρmax = 0.39 e Å3
4691 reflectionsΔρmin = 0.35 e Å3
255 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1557 (8)0.2306 (6)0.04534 (16)0.0387 (8)
C20.0584 (9)0.0833 (5)0.06903 (16)0.0389 (9)
H20.13800.01740.05670.047*
C30.1564 (8)0.0847 (5)0.11093 (16)0.0371 (8)
H30.22250.01530.12730.044*
C40.2746 (8)0.2330 (5)0.12891 (15)0.0358 (8)
C50.1737 (9)0.3795 (5)0.10501 (16)0.0393 (9)
H50.25410.48020.11710.047*
C60.0422 (9)0.3803 (6)0.06378 (18)0.0404 (9)
H60.11160.48060.04830.048*
C70.5009 (8)0.2375 (6)0.17309 (16)0.0378 (8)
H70.58720.33880.18200.045*
C80.9329 (10)0.2648 (6)0.25743 (18)0.0443 (10)
H8A1.00410.31560.22290.066*
H8B0.80630.34000.27450.066*
H8C1.08080.24090.28620.066*
C90.8664 (10)0.0289 (6)0.26783 (18)0.0416 (9)
C100.7063 (9)0.1831 (5)0.24991 (18)0.0388 (9)
H100.51070.15630.24570.047*
C110.7983 (9)0.2508 (5)0.19144 (16)0.0396 (9)
H11A0.73800.17530.15950.048*
H11B0.71120.35800.18350.048*
C120.5656 (8)0.4037 (6)0.31560 (16)0.0379 (8)
C130.4928 (10)0.6097 (6)0.3865 (2)0.0477 (11)
H13A0.31190.56430.39160.057*
H13B0.47530.70550.36020.057*
C140.6244 (14)0.6577 (9)0.4441 (2)0.0688 (17)
C150.8449 (18)0.7581 (12)0.4483 (4)0.105 (3)
H150.91310.80200.41390.126*
C160.970 (3)0.796 (2)0.5025 (7)0.163 (5)
H161.12200.86640.50530.195*
C170.871 (3)0.7322 (17)0.5505 (4)0.141 (5)
H170.95690.76130.58720.169*
C180.671 (3)0.6355 (18)0.5509 (4)0.149 (5)
H180.61740.58820.58620.179*
C190.531 (3)0.6011 (13)0.4962 (3)0.125 (4)
H190.37150.53810.49540.150*
C200.3731 (8)0.2306 (6)0.00082 (17)0.0411 (9)
N10.5835 (7)0.1082 (5)0.19964 (14)0.0360 (7)
N20.7956 (8)0.1136 (5)0.24061 (15)0.0407 (8)
N30.7554 (7)0.2999 (5)0.29708 (15)0.0422 (8)
H3A0.91700.30370.31460.051*
N40.5474 (8)0.2307 (6)0.03581 (15)0.0480 (9)
O11.0542 (7)0.0348 (4)0.30583 (13)0.0503 (9)
O21.0784 (6)0.2702 (4)0.19126 (12)0.0445 (7)
H2A1.13030.33630.21760.067*
O30.6668 (7)0.4855 (4)0.36255 (12)0.0440 (8)
O40.3405 (6)0.4203 (4)0.29257 (13)0.0443 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.046 (2)0.038 (2)0.0309 (16)0.0001 (19)0.0025 (14)0.0043 (17)
C20.048 (2)0.035 (2)0.0324 (17)0.0014 (19)0.0040 (15)0.0005 (16)
C30.044 (2)0.032 (2)0.0344 (17)0.0029 (18)0.0044 (15)0.0008 (15)
C40.043 (2)0.0313 (19)0.0324 (16)0.0012 (18)0.0016 (14)0.0003 (16)
C50.053 (2)0.031 (2)0.0333 (18)0.0002 (18)0.0037 (16)0.0020 (15)
C60.049 (2)0.035 (2)0.0365 (19)0.0059 (18)0.0001 (16)0.0050 (16)
C70.044 (2)0.0329 (19)0.0360 (17)0.0007 (18)0.0012 (15)0.0032 (16)
C80.060 (3)0.040 (2)0.0316 (17)0.005 (2)0.0073 (17)0.0056 (16)
C90.050 (2)0.039 (2)0.0346 (18)0.0028 (19)0.0080 (16)0.0021 (17)
C100.039 (2)0.036 (2)0.0397 (19)0.0014 (17)0.0100 (16)0.0058 (16)
C110.052 (2)0.030 (2)0.0355 (18)0.0038 (18)0.0102 (16)0.0012 (15)
C120.043 (2)0.037 (2)0.0324 (17)0.0061 (18)0.0066 (15)0.0023 (16)
C130.057 (3)0.044 (3)0.042 (2)0.000 (2)0.0026 (19)0.0129 (19)
C140.092 (4)0.071 (4)0.042 (2)0.003 (3)0.009 (3)0.016 (3)
C150.116 (6)0.087 (6)0.107 (6)0.015 (5)0.035 (5)0.048 (5)
C160.189 (11)0.144 (11)0.145 (9)0.013 (10)0.080 (9)0.057 (9)
C170.232 (15)0.110 (9)0.075 (6)0.032 (9)0.048 (8)0.044 (6)
C180.242 (16)0.140 (11)0.066 (5)0.048 (11)0.006 (7)0.020 (6)
C190.207 (11)0.113 (8)0.054 (4)0.005 (8)0.005 (5)0.011 (5)
C200.046 (2)0.038 (2)0.0390 (18)0.0037 (19)0.0011 (16)0.0022 (18)
N10.0400 (17)0.0363 (18)0.0308 (14)0.0027 (15)0.0057 (12)0.0015 (13)
N20.050 (2)0.0362 (19)0.0343 (15)0.0043 (16)0.0108 (14)0.0038 (14)
N30.0452 (18)0.042 (2)0.0372 (16)0.0023 (16)0.0142 (13)0.0077 (14)
N40.053 (2)0.047 (2)0.0423 (18)0.0066 (19)0.0120 (15)0.0048 (18)
O10.058 (2)0.0464 (19)0.0429 (16)0.0028 (16)0.0232 (14)0.0009 (14)
O20.0532 (17)0.0387 (16)0.0403 (14)0.0021 (14)0.0072 (12)0.0024 (13)
O30.0546 (19)0.0439 (17)0.0321 (13)0.0040 (14)0.0090 (12)0.0074 (12)
O40.0466 (16)0.0429 (18)0.0421 (15)0.0021 (14)0.0093 (12)0.0093 (13)
Geometric parameters (Å, º) top
C1—C21.395 (6)C11—H11A0.9900
C1—C61.404 (7)C11—H11B0.9900
C1—C201.445 (5)C12—O41.221 (5)
C2—C31.397 (6)C12—O31.340 (5)
C2—H20.9500C12—N31.359 (6)
C3—C41.399 (6)C13—O31.465 (6)
C3—H30.9500C13—C141.492 (7)
C4—C51.398 (6)C13—H13A0.9900
C4—C71.472 (5)C13—H13B0.9900
C5—C61.391 (6)C14—C151.372 (11)
C5—H50.9500C14—C191.386 (11)
C6—H60.9500C15—C161.391 (12)
C7—N11.276 (6)C15—H150.9500
C7—H70.9500C16—C171.34 (2)
C8—N21.454 (6)C16—H160.9500
C8—H8A0.9800C17—C181.274 (17)
C8—H8B0.9800C17—H170.9500
C8—H8C0.9800C18—C191.428 (16)
C9—O11.242 (5)C18—H180.9500
C9—N21.358 (6)C19—H190.9500
C9—C101.535 (6)C20—N41.173 (5)
C10—N31.453 (5)N1—N21.374 (5)
C10—C111.546 (6)N3—H3A0.8800
C10—H101.0000O2—H2A0.8400
C11—O21.409 (6)
C2—C1—C6120.6 (3)C10—C11—H11B109.0
C2—C1—C20120.3 (4)H11A—C11—H11B107.8
C6—C1—C20119.0 (4)O4—C12—O3125.8 (4)
C1—C2—C3119.7 (4)O4—C12—N3125.2 (4)
C1—C2—H2120.1O3—C12—N3109.0 (3)
C3—C2—H2120.1O3—C13—C14106.0 (4)
C2—C3—C4120.2 (4)O3—C13—H13A110.5
C2—C3—H3119.9C14—C13—H13A110.5
C4—C3—H3119.9O3—C13—H13B110.5
C5—C4—C3119.4 (3)C14—C13—H13B110.5
C5—C4—C7119.5 (4)H13A—C13—H13B108.7
C3—C4—C7121.2 (4)C15—C14—C19116.6 (8)
C6—C5—C4121.2 (4)C15—C14—C13121.9 (6)
C6—C5—H5119.4C19—C14—C13121.5 (8)
C4—C5—H5119.4C14—C15—C16120.8 (11)
C5—C6—C1118.9 (4)C14—C15—H15119.6
C5—C6—H6120.6C16—C15—H15119.6
C1—C6—H6120.6C17—C16—C15118.6 (13)
N1—C7—C4121.3 (4)C17—C16—H16120.7
N1—C7—H7119.3C15—C16—H16120.7
C4—C7—H7119.3C18—C17—C16125.1 (10)
N2—C8—H8A109.5C18—C17—H17117.4
N2—C8—H8B109.5C16—C17—H17117.4
H8A—C8—H8B109.5C17—C18—C19117.2 (11)
N2—C8—H8C109.5C17—C18—H18121.4
H8A—C8—H8C109.5C19—C18—H18121.4
H8B—C8—H8C109.5C14—C19—C18121.4 (12)
O1—C9—N2121.3 (4)C14—C19—H19119.3
O1—C9—C10121.0 (4)C18—C19—H19119.3
N2—C9—C10117.6 (3)N4—C20—C1179.2 (4)
N3—C10—C9106.2 (3)C7—N1—N2120.9 (4)
N3—C10—C11111.4 (4)C9—N2—N1117.1 (3)
C9—C10—C11110.4 (4)C9—N2—C8120.1 (3)
N3—C10—H10109.6N1—N2—C8122.7 (3)
C9—C10—H10109.6C12—N3—C10123.6 (3)
C11—C10—H10109.6C12—N3—H3A118.2
O2—C11—C10113.0 (3)C10—N3—H3A118.2
O2—C11—H11A109.0C11—O2—H2A109.5
C10—C11—H11A109.0C12—O3—C13116.3 (4)
O2—C11—H11B109.0
C6—C1—C2—C30.8 (6)C14—C15—C16—C170 (2)
C20—C1—C2—C3178.3 (4)C15—C16—C17—C181 (2)
C1—C2—C3—C40.3 (6)C16—C17—C18—C194 (2)
C2—C3—C4—C50.7 (6)C15—C14—C19—C184.7 (15)
C2—C3—C4—C7179.9 (3)C13—C14—C19—C18174.5 (10)
C3—C4—C5—C60.1 (6)C17—C18—C19—C146 (2)
C7—C4—C5—C6179.1 (3)C2—C1—C20—N494 (37)
C4—C5—C6—C11.2 (6)C6—C1—C20—N485 (37)
C2—C1—C6—C51.6 (6)C4—C7—N1—N2179.7 (3)
C20—C1—C6—C5177.6 (4)O1—C9—N2—N1179.3 (4)
C5—C4—C7—N1173.8 (4)C10—C9—N2—N10.8 (6)
C3—C4—C7—N15.4 (6)O1—C9—N2—C82.6 (7)
O1—C9—C10—N319.1 (6)C10—C9—N2—C8177.5 (4)
N2—C9—C10—N3161.0 (4)C7—N1—N2—C9178.4 (4)
O1—C9—C10—C11101.8 (5)C7—N1—N2—C81.8 (6)
N2—C9—C10—C1178.1 (5)O4—C12—N3—C105.8 (7)
N3—C10—C11—O266.8 (5)O3—C12—N3—C10174.9 (4)
C9—C10—C11—O250.9 (5)C9—C10—N3—C12142.7 (4)
O3—C13—C14—C1576.1 (8)C11—C10—N3—C1297.1 (5)
O3—C13—C14—C19103.1 (8)O4—C12—O3—C132.4 (6)
C19—C14—C15—C161.5 (15)N3—C12—O3—C13176.9 (4)
C13—C14—C15—C16177.6 (10)C14—C13—O3—C12168.8 (4)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C14-C19 ring.
D—H···AD—HH···AD···AD—H···A
N3—H3A···O4i0.882.403.091 (6)135
O2—H2A···O4i0.842.082.873 (5)158
C16—H16···Cg2ii0.952.783.558 (18)140
C19—H19···Cg2iii0.952.863.598 (13)135
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1/2, z+1; (iii) x+1, y1/2, z+1.
(II) tert-Butyl N-{(E)-1-[2-(4-cyanobenzylidene)-1-methylhydrazinyl]-3-hydroxy-1-oxopropan-2-yl}carbamate top
Crystal data top
C17H22N4O4F(000) = 368
Mr = 346.39Dx = 1.307 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2232 reflections
a = 5.348 (3) Åθ = 2.6–31.2°
b = 7.883 (5) ŵ = 0.10 mm1
c = 20.903 (14) ÅT = 100 K
β = 92.763 (1)°Slab, colourless
V = 880.2 (10) Å30.08 × 0.08 × 0.02 mm
Z = 2
Data collection top
Rigaku Mercury CCD
diffractometer
2143 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Graphite monochromatorθmax = 26.0°, θmin = 2.9°
ω scansh = 65
3672 measured reflectionsk = 97
2483 independent reflectionsl = 2225
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.194 w = 1/[σ2(Fo2) + (0.0993P)2 + 0.4415P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
2483 reflectionsΔρmax = 0.31 e Å3
231 parametersΔρmin = 0.35 e Å3
1 restraintExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.027 (8)
Crystal data top
C17H22N4O4V = 880.2 (10) Å3
Mr = 346.39Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.348 (3) ŵ = 0.10 mm1
b = 7.883 (5) ÅT = 100 K
c = 20.903 (14) Å0.08 × 0.08 × 0.02 mm
β = 92.763 (1)°
Data collection top
Rigaku Mercury CCD
diffractometer
2143 reflections with I > 2σ(I)
3672 measured reflectionsRint = 0.023
2483 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0571 restraint
wR(F2) = 0.194H-atom parameters constrained
S = 1.13Δρmax = 0.31 e Å3
2483 reflectionsΔρmin = 0.35 e Å3
231 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1123 (9)0.5292 (7)0.3916 (2)0.0253 (11)
H10.18510.63450.38060.030*
C20.0770 (9)0.5247 (7)0.4346 (2)0.0283 (12)
H20.13250.62720.45320.034*
C30.1848 (9)0.3741 (8)0.4505 (2)0.0268 (11)
C40.1071 (10)0.2210 (7)0.4233 (2)0.0273 (12)
H40.18290.11700.43470.033*
C50.0802 (9)0.2224 (7)0.3799 (2)0.0260 (12)
H50.13000.11940.36060.031*
C60.1972 (9)0.3760 (7)0.3641 (2)0.0235 (10)
C70.3919 (9)0.3849 (7)0.3194 (2)0.0249 (10)
H70.47500.48950.31270.030*
C80.7748 (9)0.4254 (6)0.2344 (2)0.0254 (11)
H8A0.85290.46550.27500.038*
H8B0.65640.51100.21740.038*
H8C0.90430.40610.20360.038*
C90.6871 (9)0.1258 (7)0.2084 (2)0.0242 (11)
C100.5475 (10)0.0357 (6)0.2249 (2)0.0264 (12)
H100.36970.00780.23340.032*
C110.6754 (9)0.1158 (7)0.2847 (2)0.0279 (11)
H11A0.63360.04780.32260.034*
H11B0.60610.23110.29030.034*
C120.3719 (9)0.2554 (7)0.1527 (2)0.0234 (11)
C130.2467 (9)0.4533 (7)0.0650 (2)0.0234 (11)
C140.3177 (9)0.6125 (7)0.1010 (2)0.0264 (11)
H14A0.27010.60180.14560.040*
H14B0.49890.63000.10010.040*
H14C0.23030.70950.08100.040*
C150.0334 (9)0.4161 (8)0.0670 (3)0.0333 (13)
H15A0.07110.30820.04530.050*
H15B0.08030.40870.11160.050*
H15C0.12850.50740.04530.050*
C160.3205 (9)0.4594 (7)0.0040 (2)0.0278 (12)
H16A0.29020.34840.02410.042*
H16B0.22050.54580.02720.042*
H16C0.49850.48800.00540.042*
C170.3795 (10)0.3679 (8)0.4971 (2)0.0306 (12)
N10.4545 (7)0.2521 (5)0.28820 (18)0.0224 (9)
N20.6425 (8)0.2680 (5)0.24509 (19)0.0233 (9)
N30.5555 (8)0.1424 (6)0.16859 (19)0.0280 (10)
H30.68370.13350.14390.034*
N40.5229 (9)0.3672 (7)0.5357 (2)0.0356 (11)
O10.8318 (6)0.1316 (5)0.16515 (16)0.0292 (9)
O20.9367 (7)0.1279 (5)0.28307 (16)0.0339 (9)
H2A0.97420.18740.25160.041*
O30.3944 (6)0.3085 (5)0.09164 (16)0.0256 (8)
O40.2146 (6)0.3015 (5)0.18845 (16)0.0292 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.032 (3)0.017 (3)0.027 (2)0.001 (2)0.000 (2)0.002 (2)
C20.035 (3)0.027 (3)0.023 (2)0.009 (3)0.004 (2)0.005 (2)
C30.031 (2)0.031 (3)0.018 (2)0.003 (3)0.0011 (18)0.002 (2)
C40.036 (3)0.020 (3)0.026 (3)0.006 (2)0.000 (2)0.000 (2)
C50.030 (2)0.020 (3)0.028 (3)0.005 (2)0.002 (2)0.002 (2)
C60.030 (2)0.021 (3)0.019 (2)0.004 (2)0.0026 (18)0.001 (2)
C70.033 (2)0.016 (2)0.026 (2)0.003 (2)0.0020 (19)0.001 (2)
C80.029 (3)0.018 (3)0.029 (3)0.005 (2)0.000 (2)0.002 (2)
C90.029 (3)0.021 (3)0.022 (2)0.003 (2)0.0025 (19)0.000 (2)
C100.031 (3)0.022 (3)0.027 (3)0.003 (2)0.010 (2)0.007 (2)
C110.041 (3)0.018 (3)0.025 (2)0.001 (3)0.012 (2)0.002 (2)
C120.023 (2)0.020 (3)0.028 (3)0.001 (2)0.0047 (19)0.002 (2)
C130.022 (2)0.019 (3)0.029 (2)0.005 (2)0.0001 (18)0.001 (2)
C140.030 (2)0.021 (3)0.029 (2)0.004 (2)0.0031 (19)0.003 (2)
C150.028 (3)0.031 (3)0.040 (3)0.004 (3)0.004 (2)0.008 (2)
C160.033 (3)0.025 (3)0.025 (3)0.007 (2)0.002 (2)0.001 (2)
C170.038 (3)0.025 (3)0.029 (3)0.003 (3)0.001 (2)0.006 (3)
N10.024 (2)0.022 (2)0.021 (2)0.0006 (19)0.0028 (15)0.0007 (17)
N20.031 (2)0.015 (2)0.024 (2)0.0043 (19)0.0019 (17)0.0020 (17)
N30.031 (2)0.027 (2)0.027 (2)0.009 (2)0.0088 (17)0.010 (2)
N40.041 (3)0.031 (3)0.035 (2)0.003 (3)0.012 (2)0.002 (2)
O10.0357 (19)0.023 (2)0.0300 (19)0.0063 (17)0.0086 (15)0.0027 (16)
O20.044 (2)0.031 (2)0.0270 (18)0.002 (2)0.0030 (15)0.0058 (18)
O30.0299 (18)0.0225 (18)0.0247 (17)0.0042 (16)0.0039 (13)0.0062 (15)
O40.0305 (18)0.028 (2)0.0304 (19)0.0073 (18)0.0109 (15)0.0062 (16)
Geometric parameters (Å, º) top
C1—C21.386 (7)C11—O21.403 (6)
C1—C61.422 (7)C11—H11A0.9900
C1—H10.9500C11—H11B0.9900
C2—C31.368 (8)C12—O41.208 (5)
C2—H20.9500C12—O31.354 (6)
C3—C41.405 (8)C12—N31.355 (6)
C3—C171.461 (7)C13—O31.481 (6)
C4—C51.384 (7)C13—C141.503 (8)
C4—H40.9500C13—C161.514 (6)
C5—C61.409 (8)C13—C151.529 (7)
C5—H50.9500C14—H14A0.9800
C6—C71.435 (6)C14—H14B0.9800
C7—N11.286 (6)C14—H14C0.9800
C7—H70.9500C15—H15A0.9800
C8—N21.450 (6)C15—H15B0.9800
C8—H8A0.9800C15—H15C0.9800
C8—H8B0.9800C16—H16A0.9800
C8—H8C0.9800C16—H16B0.9800
C9—O11.219 (6)C16—H16C0.9800
C9—N21.385 (6)C17—N41.139 (6)
C9—C101.524 (7)N1—N21.388 (5)
C10—N31.449 (6)N3—H30.8800
C10—C111.532 (7)O2—H2A0.8400
C10—H101.0000
C2—C1—C6119.9 (5)C10—C11—H11B108.7
C2—C1—H1120.1H11A—C11—H11B107.6
C6—C1—H1120.1O4—C12—O3125.9 (5)
C3—C2—C1120.6 (5)O4—C12—N3124.3 (4)
C3—C2—H2119.7O3—C12—N3109.8 (4)
C1—C2—H2119.7O3—C13—C14109.7 (4)
C2—C3—C4120.7 (4)O3—C13—C16103.0 (4)
C2—C3—C17120.9 (5)C14—C13—C16112.3 (4)
C4—C3—C17118.4 (5)O3—C13—C15110.3 (4)
C5—C4—C3119.8 (5)C14—C13—C15111.7 (4)
C5—C4—H4120.1C16—C13—C15109.4 (4)
C3—C4—H4120.1C13—C14—H14A109.5
C4—C5—C6120.2 (5)C13—C14—H14B109.5
C4—C5—H5119.9H14A—C14—H14B109.5
C6—C5—H5119.9C13—C14—H14C109.5
C5—C6—C1118.8 (4)H14A—C14—H14C109.5
C5—C6—C7122.6 (5)H14B—C14—H14C109.5
C1—C6—C7118.6 (5)C13—C15—H15A109.5
N1—C7—C6120.4 (5)C13—C15—H15B109.5
N1—C7—H7119.8H15A—C15—H15B109.5
C6—C7—H7119.8C13—C15—H15C109.5
N2—C8—H8A109.5H15A—C15—H15C109.5
N2—C8—H8B109.5H15B—C15—H15C109.5
H8A—C8—H8B109.5C13—C16—H16A109.5
N2—C8—H8C109.5C13—C16—H16B109.5
H8A—C8—H8C109.5H16A—C16—H16B109.5
H8B—C8—H8C109.5C13—C16—H16C109.5
O1—C9—N2120.9 (5)H16A—C16—H16C109.5
O1—C9—C10122.3 (4)H16B—C16—H16C109.5
N2—C9—C10116.8 (4)N4—C17—C3176.4 (6)
N3—C10—C9105.5 (4)C7—N1—N2118.0 (4)
N3—C10—C11113.2 (5)C9—N2—N1115.8 (4)
C9—C10—C11109.0 (4)C9—N2—C8120.6 (4)
N3—C10—H10109.7N1—N2—C8123.4 (4)
C9—C10—H10109.7C12—N3—C10122.1 (4)
C11—C10—H10109.7C12—N3—H3119.0
O2—C11—C10114.4 (4)C10—N3—H3119.0
O2—C11—H11A108.7C11—O2—H2A109.5
C10—C11—H11A108.7C12—O3—C13121.5 (4)
O2—C11—H11B108.7
C6—C1—C2—C30.5 (7)C9—C10—C11—O247.4 (6)
C1—C2—C3—C40.5 (7)C6—C7—N1—N2179.5 (4)
C1—C2—C3—C17178.3 (4)O1—C9—N2—N1173.2 (4)
C2—C3—C4—C50.0 (7)C10—C9—N2—N16.9 (6)
C17—C3—C4—C5178.9 (4)O1—C9—N2—C82.4 (7)
C3—C4—C5—C61.6 (7)C10—C9—N2—C8177.5 (4)
C4—C5—C6—C12.5 (7)C7—N1—N2—C9174.2 (4)
C4—C5—C6—C7179.9 (4)C7—N1—N2—C81.2 (7)
C2—C1—C6—C52.0 (7)O4—C12—N3—C1014.8 (8)
C2—C1—C6—C7179.4 (4)O3—C12—N3—C10165.8 (5)
C5—C6—C7—N15.0 (7)C9—C10—N3—C12150.2 (5)
C1—C6—C7—N1172.3 (4)C11—C10—N3—C1290.7 (6)
O1—C9—C10—N319.4 (7)O4—C12—O3—C139.9 (8)
N2—C9—C10—N3160.7 (4)N3—C12—O3—C13169.5 (4)
O1—C9—C10—C11102.5 (5)C14—C13—O3—C1263.4 (5)
N2—C9—C10—C1177.5 (5)C16—C13—O3—C12176.8 (4)
N3—C10—C11—O269.7 (6)C15—C13—O3—C1260.1 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O10.882.272.620 (6)104
O2—H2A···O4i0.842.092.877 (5)156
C4—H4···N4ii0.952.613.549 (8)168
Symmetry codes: (i) x+1, y, z; (ii) x1, y1/2, z+1.
(III) tert-Butyl N-[(E)-1-(2-benzylidene-1-methylhydrazinyl)-3-hydroxy-1-oxopropan-2-yl]carbamate top
Crystal data top
C16H23N3O4F(000) = 688
Mr = 321.37Dx = 1.257 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ybcCell parameters from 3225 reflections
a = 10.454 (7) Åθ = 2.0–27.5°
b = 10.571 (7) ŵ = 0.09 mm1
c = 15.664 (11) ÅT = 100 K
β = 101.172 (12)°Blade, colourless
V = 1698 (2) Å30.16 × 0.05 × 0.01 mm
Z = 4
Data collection top
Rigaku Mercury CCD
diffractometer
2716 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.048
Graphite monochromatorθmax = 26.0°, θmin = 2.3°
ω scansh = 1112
8546 measured reflectionsk = 139
3319 independent reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.104Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.197H atoms treated by a mixture of independent and constrained refinement
S = 1.23 w = 1/[σ2(Fo2) + (0.0376P)2 + 3.1065P]
where P = (Fo2 + 2Fc2)/3
3319 reflections(Δ/σ)max = 0.002
220 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C16H23N3O4V = 1698 (2) Å3
Mr = 321.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.454 (7) ŵ = 0.09 mm1
b = 10.571 (7) ÅT = 100 K
c = 15.664 (11) Å0.16 × 0.05 × 0.01 mm
β = 101.172 (12)°
Data collection top
Rigaku Mercury CCD
diffractometer
2716 reflections with I > 2σ(I)
8546 measured reflectionsRint = 0.048
3319 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.1040 restraints
wR(F2) = 0.197H atoms treated by a mixture of independent and constrained refinement
S = 1.23Δρmax = 0.44 e Å3
3319 reflectionsΔρmin = 0.26 e Å3
220 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.7859 (4)0.4700 (4)0.0477 (3)0.0348 (9)
H10.77840.40090.08720.042*
C20.8683 (4)0.5702 (4)0.0568 (3)0.0412 (11)
H20.91700.56950.10210.049*
C30.8788 (4)0.6708 (4)0.0004 (3)0.0430 (11)
H30.93490.73950.00570.052*
C40.8078 (4)0.6721 (4)0.0669 (3)0.0386 (10)
H40.81580.74150.10610.046*
C50.7255 (4)0.5723 (4)0.0762 (3)0.0327 (9)
H50.67690.57360.12150.039*
C60.7141 (4)0.4698 (4)0.0188 (2)0.0311 (9)
C70.6264 (4)0.3627 (4)0.0243 (2)0.0296 (9)
H70.61990.29560.01660.035*
C80.4643 (4)0.1543 (4)0.0243 (3)0.0344 (9)
H8A0.44220.18800.03500.052*
H8B0.39560.09620.03430.052*
H8C0.54740.10870.03170.052*
C90.4092 (3)0.2560 (3)0.1529 (2)0.0271 (8)
C100.4332 (4)0.3650 (4)0.2184 (2)0.0285 (8)
H100.43470.44650.18620.034*
C110.5617 (4)0.3500 (4)0.2828 (3)0.0362 (10)
H11A0.56510.25960.29950.043*0.198 (7)
H11B0.57000.42470.32560.043*0.802 (7)
H11C0.63490.36510.25020.043*
C120.2675 (4)0.4729 (4)0.2834 (2)0.0281 (8)
C130.0726 (4)0.5471 (4)0.3365 (3)0.0341 (9)
C140.0564 (4)0.4811 (5)0.3367 (3)0.0520 (13)
H14A0.04110.40450.37250.078*
H14B0.09700.45800.27700.078*
H14C0.11440.53810.36070.078*
C150.1439 (5)0.5729 (6)0.4287 (3)0.0623 (15)
H15A0.15760.49320.46110.093*
H15B0.09180.63030.45740.093*
H15C0.22850.61210.42730.093*
C160.0522 (5)0.6640 (5)0.2808 (4)0.0669 (16)
H16A0.13570.70760.28380.100*
H16B0.00930.72040.30180.100*
H16C0.01690.64010.22040.100*
N10.5586 (3)0.3598 (3)0.08443 (19)0.0242 (7)
N20.4760 (3)0.2584 (3)0.08675 (19)0.0266 (7)
N30.3211 (3)0.3649 (3)0.2618 (2)0.0314 (8)
H1N0.275 (4)0.295 (4)0.251 (3)0.038*
O10.3346 (3)0.1683 (2)0.16179 (18)0.0340 (7)
O2A0.5728 (3)0.2373 (3)0.3258 (2)0.0362 (10)*0.802 (7)
H2A0.57700.17660.29170.043*0.802 (7)
O2B0.5960 (13)0.4007 (12)0.3635 (8)0.029 (4)0.198 (7)
H2B0.59340.48000.36000.035*0.198 (7)
O30.1477 (3)0.4493 (2)0.29998 (18)0.0335 (7)
O40.3204 (3)0.5758 (2)0.28835 (19)0.0383 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.034 (2)0.042 (2)0.029 (2)0.0071 (18)0.0076 (17)0.0056 (18)
C20.032 (2)0.056 (3)0.038 (2)0.001 (2)0.0133 (18)0.016 (2)
C30.039 (2)0.040 (3)0.051 (3)0.005 (2)0.012 (2)0.012 (2)
C40.039 (2)0.035 (2)0.043 (2)0.0030 (19)0.0095 (19)0.0015 (19)
C50.033 (2)0.035 (2)0.032 (2)0.0011 (17)0.0091 (17)0.0036 (18)
C60.027 (2)0.035 (2)0.031 (2)0.0035 (17)0.0064 (16)0.0084 (18)
C70.034 (2)0.031 (2)0.0233 (19)0.0052 (17)0.0046 (16)0.0030 (16)
C80.040 (2)0.027 (2)0.036 (2)0.0023 (17)0.0084 (18)0.0113 (18)
C90.031 (2)0.0163 (18)0.034 (2)0.0006 (15)0.0040 (16)0.0021 (15)
C100.035 (2)0.0245 (19)0.031 (2)0.0056 (16)0.0168 (17)0.0027 (16)
C110.036 (2)0.046 (3)0.028 (2)0.0073 (19)0.0087 (17)0.0123 (19)
C120.029 (2)0.028 (2)0.0270 (19)0.0001 (16)0.0057 (15)0.0018 (16)
C130.034 (2)0.031 (2)0.040 (2)0.0102 (17)0.0119 (18)0.0056 (18)
C140.035 (2)0.052 (3)0.074 (3)0.009 (2)0.021 (2)0.011 (3)
C150.043 (3)0.089 (4)0.057 (3)0.016 (3)0.014 (2)0.033 (3)
C160.063 (3)0.052 (3)0.091 (4)0.026 (3)0.026 (3)0.022 (3)
N10.0251 (16)0.0186 (15)0.0286 (16)0.0003 (12)0.0046 (13)0.0010 (13)
N20.0318 (17)0.0237 (16)0.0242 (16)0.0026 (14)0.0053 (13)0.0036 (13)
N30.0373 (19)0.0188 (16)0.043 (2)0.0010 (14)0.0211 (16)0.0022 (15)
O10.0369 (16)0.0228 (14)0.0443 (17)0.0052 (12)0.0125 (13)0.0011 (12)
O2B0.043 (8)0.017 (7)0.027 (7)0.006 (6)0.005 (6)0.001 (5)
O30.0355 (15)0.0233 (14)0.0465 (16)0.0034 (12)0.0200 (13)0.0026 (12)
O40.0441 (17)0.0231 (14)0.0529 (18)0.0055 (13)0.0226 (14)0.0072 (13)
Geometric parameters (Å, º) top
C1—C21.389 (6)C11—H11A0.9900
C1—C61.398 (5)C11—H11B1.0278
C1—H10.9500C11—H11C1.0114
C2—C31.382 (6)C12—O41.216 (4)
C2—H20.9500C12—N31.344 (5)
C3—C41.391 (6)C12—O31.350 (4)
C3—H30.9500C13—O31.478 (4)
C4—C51.386 (5)C13—C161.504 (6)
C4—H40.9500C13—C151.516 (6)
C5—C61.398 (6)C13—C141.519 (6)
C5—H50.9500C14—H14A0.9800
C6—C71.470 (5)C14—H14B0.9800
C7—N11.284 (5)C14—H14C0.9800
C7—H70.9500C15—H15A0.9800
C8—N21.462 (5)C15—H15B0.9800
C8—H8A0.9800C15—H15C0.9800
C8—H8B0.9800C16—H16A0.9800
C8—H8C0.9800C16—H16B0.9800
C9—O11.236 (4)C16—H16C0.9800
C9—N21.358 (5)N1—N21.381 (4)
C9—C101.531 (5)N3—H1N0.88 (4)
C10—N31.465 (5)O2A—H11A0.4685
C10—C111.523 (5)O2A—H2A0.8421
C10—H101.0000O2B—H11B0.6548
C11—O2B1.356 (13)O2B—H2B0.8400
C11—O2A1.363 (5)
C2—C1—C6120.7 (4)O2B—C11—H11C108.6
C2—C1—H1119.6O2A—C11—H11C112.7
C6—C1—H1119.6C10—C11—H11C107.8
C3—C2—C1119.5 (4)H11A—C11—H11C107.0
C3—C2—H2120.2H11B—C11—H11C103.4
C1—C2—H2120.2O4—C12—N3124.7 (3)
C2—C3—C4120.4 (4)O4—C12—O3125.4 (3)
C2—C3—H3119.8N3—C12—O3109.8 (3)
C4—C3—H3119.8O3—C13—C16112.1 (3)
C5—C4—C3120.2 (4)O3—C13—C15107.2 (3)
C5—C4—H4119.9C16—C13—C15113.1 (4)
C3—C4—H4119.9O3—C13—C14102.6 (3)
C4—C5—C6120.0 (4)C16—C13—C14110.6 (4)
C4—C5—H5120.0C15—C13—C14110.7 (4)
C6—C5—H5120.0C13—C14—H14A109.5
C1—C6—C5119.1 (4)C13—C14—H14B109.5
C1—C6—C7118.4 (4)H14A—C14—H14B109.5
C5—C6—C7122.4 (3)C13—C14—H14C109.5
N1—C7—C6120.1 (3)H14A—C14—H14C109.5
N1—C7—H7120.0H14B—C14—H14C109.5
C6—C7—H7120.0C13—C15—H15A109.5
N2—C8—H8A109.5C13—C15—H15B109.5
N2—C8—H8B109.5H15A—C15—H15B109.5
H8A—C8—H8B109.5C13—C15—H15C109.5
N2—C8—H8C109.5H15A—C15—H15C109.5
H8A—C8—H8C109.5H15B—C15—H15C109.5
H8B—C8—H8C109.5C13—C16—H16A109.5
O1—C9—N2121.9 (3)C13—C16—H16B109.5
O1—C9—C10121.0 (3)H16A—C16—H16B109.5
N2—C9—C10117.1 (3)C13—C16—H16C109.5
N3—C10—C11112.0 (3)H16A—C16—H16C109.5
N3—C10—C9105.5 (3)H16B—C16—H16C109.5
C11—C10—C9112.0 (3)C7—N1—N2118.3 (3)
N3—C10—H10109.1C9—N2—N1116.8 (3)
C11—C10—H10109.1C9—N2—C8120.5 (3)
C9—C10—H10109.1N1—N2—C8122.5 (3)
O2B—C11—O2A84.4 (6)C12—N3—C10121.8 (3)
O2B—C11—C10128.1 (6)C12—N3—H1N121 (3)
O2A—C11—C10113.4 (3)C10—N3—H1N112 (3)
O2B—C11—H11A98.4C11—O2A—H11A30.8
O2A—C11—H11A14.0C11—O2A—H2A111.3
C10—C11—H11A104.9H11A—O2A—H2A81.1
O2B—C11—H11B27.8C11—O2B—H11B47.0
O2A—C11—H11B111.2C11—O2B—H2B109.4
C10—C11—H11B107.7H11B—O2B—H2B63.3
H11A—C11—H11B125.2C12—O3—C13121.8 (3)
C6—C1—C2—C30.2 (6)C9—C10—C11—O2A54.9 (4)
C1—C2—C3—C40.1 (6)C6—C7—N1—N2179.1 (3)
C2—C3—C4—C50.2 (7)O1—C9—N2—N1178.6 (3)
C3—C4—C5—C60.2 (6)C10—C9—N2—N10.5 (5)
C2—C1—C6—C50.3 (6)O1—C9—N2—C81.7 (5)
C2—C1—C6—C7178.8 (4)C10—C9—N2—C8176.5 (3)
C4—C5—C6—C10.3 (6)C7—N1—N2—C9177.7 (3)
C4—C5—C6—C7178.7 (4)C7—N1—N2—C80.8 (5)
C1—C6—C7—N1179.7 (4)O4—C12—N3—C1017.6 (6)
C5—C6—C7—N11.3 (6)O3—C12—N3—C10163.4 (3)
O1—C9—C10—N321.4 (5)C11—C10—N3—C1295.9 (4)
N2—C9—C10—N3160.5 (3)C9—C10—N3—C12141.9 (4)
O1—C9—C10—C11100.8 (4)O4—C12—O3—C137.2 (6)
N2—C9—C10—C1177.4 (4)N3—C12—O3—C13171.8 (3)
N3—C10—C11—O2B38.4 (9)C16—C13—O3—C1257.0 (5)
C9—C10—C11—O2B156.7 (8)C15—C13—O3—C1267.7 (5)
N3—C10—C11—O2A63.5 (4)C14—C13—O3—C12175.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1N···O10.88 (4)2.11 (4)2.623 (4)116 (3)
O2A—H2A···O4i0.842.092.852 (4)150
O2B—H2B···O1ii0.842.182.966 (13)156
C7—H7···O2Aiii0.952.453.229 (5)140
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) for (I) top
Cg2 is the centroid of the C14-C19 ring.
D—H···AD—HH···AD···AD—H···A
N3—H3A···O4i0.882.403.091 (6)135
O2—H2A···O4i0.842.082.873 (5)158
C16—H16···Cg2ii0.952.783.558 (18)140
C19—H19···Cg2iii0.952.863.598 (13)135
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1/2, z+1; (iii) x+1, y1/2, z+1.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O10.882.272.620 (6)104
O2—H2A···O4i0.842.092.877 (5)156
C4—H4···N4ii0.952.613.549 (8)168
Symmetry codes: (i) x+1, y, z; (ii) x1, y1/2, z+1.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N3—H1N···O10.88 (4)2.11 (4)2.623 (4)116 (3)
O2A—H2A···O4i0.842.092.852 (4)150
O2B—H2B···O1ii0.842.182.966 (13)156
C7—H7···O2Aiii0.952.453.229 (5)140
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1/2, z1/2.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC20H20N4O4C17H22N4O4C16H23N3O4
Mr380.40346.39321.37
Crystal system, space groupMonoclinic, P21Monoclinic, P21Monoclinic, P21/c
Temperature (K)100100100
a, b, c (Å)4.995 (6), 8.172 (8), 22.94 (3)5.348 (3), 7.883 (5), 20.903 (14)10.454 (7), 10.571 (7), 15.664 (11)
β (°) 93.48 (3) 92.763 (1) 101.172 (12)
V3)934.7 (19)880.2 (10)1698 (2)
Z224
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.100.100.09
Crystal size (mm)0.14 × 0.03 × 0.010.08 × 0.08 × 0.020.16 × 0.05 × 0.01
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Rigaku Mercury CCD
diffractometer
Rigaku Mercury CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13928, 4691, 3270 3672, 2483, 2143 8546, 3319, 2716
Rint0.0700.0230.048
(sin θ/λ)max1)0.7340.6170.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.095, 0.278, 1.10 0.057, 0.194, 1.13 0.104, 0.197, 1.23
No. of reflections469124833319
No. of parameters255231220
No. of restraints110
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.350.31, 0.350.44, 0.26

Computer programs: CrystalClear (Rigaku, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), publCIF (Westrip, 2010).

 

Acknowledgements

We thank the EPSRC National Crystallography Service (University of Southampton) for the X-ray data collections.

References

First citationBlaskovich, M. A. & Lajoie, G. A. (1993). J. Am. Chem. Soc. 115, 5021–5030.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CrossRef CAS Google Scholar
First citationHowie, R. A., de Souza, M. V. N., Pinheiro, A., Kaiser, C. R., Wardell, J. L. & Wardell, S. M. S. V. (2011). Z. Kristallogr. 226, 483–491.  CAS Google Scholar
First citationKovacs, J., Jham, G. N., Hui, K. Y., Holleran, E. M., Kim, S. E. & Canavan, T. (1984). Int. J. Peptide Protein Res. 24, 161–167.  CrossRef CAS Google Scholar
First citationNoguiera, T. C. M., Pinheiro, A. C., Kaiser, C., Wardell, J. L., Wardell, S. M. S. V. & de Souza, M. V. N. (2013). Lett. Org. Chem. 10, 626–631.  Google Scholar
First citationNoguiera, T. C. M., Pinheiro, A. C., Wardell, J. L., de Souza, M. V. N., Abberley, J. P. & Harrison, W. T. A. (2015). Acta Cryst. C71. Submitted.  Google Scholar
First citationPinheiro, A. C., Kaiser, C. R., Noguiera, T. C. M., Carvalho, S. A., Silva, E. F., Feitosa, L. O., Henriques, M. O., Candéa, L. P., Lourenço, M. C. S. & Souza, M. V. N. (2011). Med. Chem. 7, 611–623.  Web of Science CAS PubMed Google Scholar
First citationRigaku (2012). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages 752-756
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds