research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­[trans-(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N)bis­­(thio­cyanato-κN)chromium(III)] tetra­chlorido­zincate from synchrotron data

aPohang Accelerator Laboratory, POSTECH, Pohang 790-784, Republic of Korea, and bDepartment of Chemistry, Andong National University, Andong 760-749, Republic of Korea
*Correspondence e-mail: jhchoi@anu.ac.kr

Edited by J. Simpson, University of Otago, New Zealand (Received 13 April 2015; accepted 16 April 2015; online 22 April 2015)

The structure of the title compound, [Cr(NCS)2(cyclam)]2[ZnCl4] (cyclam = 1,4,8,11-tetra­aza­cyclo­tetra­decane, C10H24N4), has been determined from synchrotron data. The asymmetric unit contains two independent halves of the CrIII complex cations and half of a tetra­chlorido­zincate anion. In each complex cation, the CrIII atom is coordinated by the four N atoms of the cyclam ligand in the equatorial plane and by two N-bound NCS anions in a trans axial arrangement, displaying a distorted octa­hedral geometry with crystallographic inversion symmetry. The mean Cr—N(cyclam) and Cr—N(NCS) bond lengths are 2.065 (4) and 1.995 (6) Å, respectively. The macrocyclic cyclam moieties adopt centrosymmetric trans-III configurations with six- and five-membered chelate rings in chair and gauche configurations, respectively. The [ZnCl4]2− anion, which lies about a twofold rotation axis, has a slightly distorted tetra­hedral geometry. The crystal packing is stabilized by hydrogen-bonding inter­actions between the N—H groups of the cyclam ligands, the S atoms of the NCS groups and the Cl ligands of the anion.

1. Chemical context

In recent years, it has been found that cyclam (1,4,8,11-tetra­aza­cyclo­tetra­decane, C10H24N4) derivatives and their metal complexes exhibit anti-HIV activity (Ronconi & Sadler, 2007[Ronconi, L. & Sadler, P. J. (2007). Coord. Chem. Rev. 251, 1633-1648.]; De Clercq, 2010[De Clercq, E. (2010). J. Med. Chem. 53, 1438-1450.]; Ross et al., 2012[Ross, A., Choi, J.-H., Hunter, T. M., Pannecouque, C., Moggach, S. A., Parsons, S., De Clercq, E. & Sadler, P. J. (2012). Dalton Trans. 41, 6408-6418.]). The cyclam derivatives inhibit the entry of the virus into white cells by binding to CXCR4, a chemokine receptor in the outer membrane. The strength of binding to the CXCR4 receptor correlates with the anti-HIV activity. The cyclam ligand has a moderately flexible structure, and can adopt both planar (trans) and folded (cis) configurations (Poon & Pun, 1980[Poon, C. K. & Pun, K. C. (1980). Inorg. Chem. 19, 568-569.]). There are five configurational trans isomers for this type of macrocycle, Fig. 1[link], that differ in the chirality of the sec-NH groups (Choi, 2009[Choi, J.-H. (2009). Inorg. Chim. Acta, 362, 4231-4236.]). The trans-V configuration can also fold to form the cis-V isomer (Subhan et al., 2011[Subhan, M. A., Choi, J.-H. & Ng, S. W. (2011). Z. Anorg. Allg. Chem. 637, 2193-2197.]). In addition, the thio­cyanate anion can be present in complexes as either a ligand or a non-coordinating anion (Moon et al., 2013[Moon, D., Choi, J.-H., Ryoo, K. S. & Hong, Y. P. (2013). Acta Cryst. E69, m376-m377.]). Furthermore it can coordinate to metals as a terminal ligand through either the nitro­gen or the sulfur atoms, or can use both donor atoms and function as a bridging ligand.

[Scheme 1]
[Figure 1]
Figure 1
Possible configurations for trans-cyclam complexes with the trans-III configuration adopted by the title compound highlighted in blue.

Counter-anionic species play a very important role in the coordination chemistry, pharmacy and biology (Fabbrizzi & Poggi, 2013[Fabbrizzi, L. & Poggi, A. (2013). Chem. Soc. Rev. 42, 1681-1699.]) of metal complexes. Thus, we describe here the synthesis and structural characterization of trans-[Cr(NCS)2(cyclam)]2[ZnCl4], (I)[link].

2. Structural commentary

Each of the two trans-[Cr(NCS)2(cyclam)]+ cations in the structure of the title compound are generated by inversion symmetry, hence the configurations of the cyclam ligands can be described as trans-III, Fig. 1[link]. The CrIII cations, which are located on discrete inversion centres, are coordinated by the nitro­gen atoms of the cyclam ligands that occupy equatorial sites. Two thio­cyanate anions complete the distorted octa­hedral coordination sphere binding through their N atoms in a trans configuration. The single [ZnCl4]2− anion, which lies about a twofold rotation axis, has slightly distorted tetra­hedral geometry and completes the complex salt. Fig. 2[link] shows an ellipsoid plot of (I)[link], with the atom-numbering scheme. This is a second example of the structure of a trans-[Cr(NCS)]2(cyclam)]+ salt, but the previous example had a perchlorate counter-anion (Friesen et al., 1997[Friesen, D. A., Quail, J. W., Waltz, W. L. & Nashiem, R. E. (1997). Acta Cryst. C53, 687-691.]).

[Figure 2]
Figure 2
A perspective view (30% probability ellipsoids) of the two independent chromium(III) complex cations and the tetra­chlorido­zincate anion in (I)[link]. [Symmetry codes: (A′) x − 1, y, z; (B′) x, −y, z + [{1\over 2}]; (C′) −x + 1, −y + 1, −z + 2.]

The Cr—N bond lengths from the donor atoms of the cyclam ligand range from 2.0614 (10) to 2.0700 (10) Å, and these lengths are comparable to those found in a range of related [CrL2(cyclam)]+ complexes (Flores-Velez et al., 1991[Flores-Velez, L. M., Sosa-Rivadeneyra, J., Sosa-Torres, M. E., Rosales-Hoz, M. J. & Toscanoh, R. A. (1991). J. Chem. Soc. Dalton Trans. pp. 3243-3247.]; Friesen et al., 1997[Friesen, D. A., Quail, J. W., Waltz, W. L. & Nashiem, R. E. (1997). Acta Cryst. C53, 687-691.]; Choi, 2009[Choi, J.-H. (2009). Inorg. Chim. Acta, 362, 4231-4236.]; Choi, Oh, Suzuki et al., 2004[Choi, J.-H., Oh, I.-G., Suzuki, T. & Kaizaki, S. (2004). J. Mol. Struct. 694, 39-44.]; Subhan et al., 2011[Subhan, M. A., Choi, J.-H. & Ng, S. W. (2011). Z. Anorg. Allg. Chem. 637, 2193-2197.]; Choi, Oh, Lim et al., 2004[Choi, J.-H., Oh, I.-G., Lim, W.-T. & Park, K.-M. (2004). Acta Cryst. C60, m238-m240.]). However, they are shorter than the bonds to a primary amine as found in the related complex trans-[CrCl2(Me2tn)2]2[ZnCl4] (Me2tn = [2,2-dimethylpropane-1,3-diamine]; Choi et al., 2011[Choi, J.-H., Joshi, T. & Spiccia, L. (2011). Z. Anorg. Allg. Chem. 637, 1194-1198.]). Furthermore, the mean Cr—N(NCS) distance of 1.9951 (11) Å is close the values found in other trans/cis-[Cr(NCS)2N4]+ cations (Moon & Choi, 2015[Moon, D. & Choi, J.-H. (2015). Acta Cryst. E71, 100-103.]; Choi & Lee, 2009[Choi, J.-H. & Lee, S. H. (2009). J. Mol. Struct. 932, 84-89.]; Moon et al., 2013[Moon, D., Choi, J.-H., Ryoo, K. S. & Hong, Y. P. (2013). Acta Cryst. E69, m376-m377.]). As is normally found with cyclam complexes, the five-membered chelate rings adopt gauche configurations while the six-membered rings are in chair configurations. The average bite angles of the five- and six-membered chelate rings around the chromium(III) atoms are 85.51 (4) and 94.49 (4)°, respectively. The N-coordinated NCS ligands are almost linear, with N—C—S angles of 177.42 (12)° in cation A and 178.66 (12)° in cation B. The C6A—S1A bond length [1.6126 (12) Å] in the Cr1A complex cation is slightly longer than the C6B–-S1B bond length [1.6056 (12) Å] in the Cr2B complex cation. This elongation may be attributed to the weak hydrogen bond formed by S1A with the N2A—H2A group of the cyclam ligand.

3. Supra­molecular features

Each complex mol­ecule forms three classical N—H⋯Cl hydrogen bonds between the amine groups of the cyclam ligand in each complex cation and the Cl atoms of the tetra­chlorido­zincate anion, Table 1[link] (Steed & Atwood, 2009[Steed, J. W. & Atwood, J. L. (2009). Supramolecular Chemistry, 2nd ed., New York: John Wiley & Sons.]). These hydrogen bonds link the cations and anions into a three-dimensional network as shown in Fig. 3[link] and help to stabilize the crystal structure.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1A⋯Cl2Ci 0.98 2.66 3.4510 (12) 138
N2A—H2A⋯S1Aii 0.98 2.60 3.4884 (13) 151
N1B—H1B⋯Cl1Ci 0.98 2.58 3.4120 (12) 143
N2B—H2B⋯Cl1Ciii 0.98 2.57 3.3944 (13) 142
Symmetry codes: (i) x-1, y, z; (ii) [x, -y, z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+2.
[Figure 3]
Figure 3
The mol­ecular packing in (I)[link], viewed along the a axis. Dashed lines represent hydrogen-bonding inter­actions N—H⋯Cl (cyan) and N—H⋯S (purple), respectively. H atoms bound to C have been omitted.

4. Database survey

A search of the Cambridge Structural Database (Version 5.36, last update February 2015; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) gave only three hits for the [Cr(NCS)2(cyclam)]+ cation. Of these structures, trans-[Cr(NCS)2(cyclam)](ClO4) (Friesen et al., 1997[Friesen, D. A., Quail, J. W., Waltz, W. L. & Nashiem, R. E. (1997). Acta Cryst. C53, 687-691.]) adopts the trans-III configuration, similar to that adopted by the title compound, while cis-[Cr(NCS)2(cyclam)](ClO4) (Friesen et al., 1997[Friesen, D. A., Quail, J. W., Waltz, W. L. & Nashiem, R. E. (1997). Acta Cryst. C53, 687-691.]) and cis-[Cr(NCS)2(cyclam)](NCS) (Moon et al., 2013[Moon, D., Choi, J.-H., Ryoo, K. S. & Hong, Y. P. (2013). Acta Cryst. E69, m376-m377.]), both adopt the folded cis-V configuration. No structure of a salt of [Cr(NCS)2(cyclam)]+ with the [ZnCl4]2− anion was found.

5. Synthesis and crystallization

The free ligand cyclam was purchased from Strem Chemicals and used as provided. All chemicals were reagent-grade materials and were used without further purification. The starting material, trans-[Cr(NCS)2(cyclam)]ClO4, was prepared according to the literature (Friesen et al., 1997[Friesen, D. A., Quail, J. W., Waltz, W. L. & Nashiem, R. E. (1997). Acta Cryst. C53, 687-691.]). The perchlorate salt (0.33 g) was dissolved in 10 mL of 0.1 M HCl at 333 K and added to 7.5 mL of 6 M HCl containing 0.75 g of solid ZnCl2. The resulting solution was filtered, and allowed to stand at room temperature for two days to give pale-yellow crystals of (I)[link] suitable for X-ray structural analysis.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.97 Å and N—H = 0.98 Å, and with Uiso(H) values of 1.2Ueq of the parent atoms.

Table 2
Experimental details

Crystal data
Chemical formula [Cr(NCS)2(C10H24N4)]2[ZnCl4]
Mr 944.15
Crystal system, space group Monoclinic, P2/c
Temperature (K) 260
a, b, c (Å) 7.9990 (16), 16.532 (3), 15.430 (3)
β (°) 101.36 (3)
V3) 2000.5 (7)
Z 2
Radiation type Synchrotron, λ = 0.610 Å
μ (mm−1) 1.07
Crystal size (mm) 0.22 × 0.19 × 0.12
 
Data collection
Diffractometer ADSC Q210 CCD area detector diffractometer
Absorption correction Empirical (using intensity measurements) (HKL3000sm SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])
Tmin, Tmax 0.801, 0.883
No. of measured, independent and observed [I > 2σ(I)] reflections 20982, 5738, 5500
Rint 0.018
(sin θ/λ)max−1) 0.706
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.072, 1.06
No. of reflections 5738
No. of parameters 217
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.60, −0.58
Computer programs: PAL ADSC Quantum-210 ADX (Arvai & Nielsen, 1983[Arvai, A. J. & Nielsen, C. (1983). ADSC Quantum-210 ADX. Area Detector System Corporation, Poway, CA, USA.]), HKL3000sm (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Putz & Brandenburg, 2014[Putz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) nd publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: PAL ADSC Quantum-210 ADX (Arvai & Nielsen, 1983); cell refinement: HKL3000sm (Otwinowski & Minor, 1997); data reduction: HKL3000sm (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: DIAMOND (Putz & Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis[trans-(1,4,8,11-tetraazacyclotetradecane-κ4N)bis(thiocyanato-κN)chromium(III)] tetrachloridozincate top
Crystal data top
[Cr(NCS)2(C10H24N4)]2[ZnCl4]F(000) = 972
Mr = 944.15Dx = 1.567 Mg m3
Monoclinic, P2/cSynchrotron radiation, λ = 0.610 Å
a = 7.9990 (16) ÅCell parameters from 92486 reflections
b = 16.532 (3) Åθ = 0.4–33.7°
c = 15.430 (3) ŵ = 1.07 mm1
β = 101.36 (3)°T = 260 K
V = 2000.5 (7) Å3Block, pale yellow
Z = 20.22 × 0.19 × 0.12 mm
Data collection top
ADSC Q210 CCD area-detector
diffractometer
5500 reflections with I > 2σ(I)
Radiation source: PLSII 2D bending magnetRint = 0.018
ω scanθmax = 25.5°, θmin = 2.4°
Absorption correction: empirical (using intensity measurements)
(HKL3000sm Scalepack; Otwinowski & Minor, 1997)
h = 1111
Tmin = 0.801, Tmax = 0.883k = 2323
20982 measured reflectionsl = 2121
5738 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.0404P)2 + 0.6258P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.072(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.60 e Å3
5738 reflectionsΔρmin = 0.58 e Å3
217 parametersExtinction correction: SHELXL2014/7 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.013 (2)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr1A0.00000.00000.50000.01897 (7)
S1A0.26852 (5)0.12583 (3)0.28897 (3)0.04579 (10)
N1A0.02449 (13)0.11498 (5)0.55355 (7)0.02520 (18)
H1A0.01890.11290.60860.030*
N2A0.22186 (12)0.04305 (6)0.57760 (7)0.02639 (18)
H2A0.19560.05590.63550.032*
N3A0.12441 (13)0.03450 (6)0.40583 (7)0.0289 (2)
C1A0.09496 (17)0.16709 (7)0.49075 (9)0.0327 (2)
H1A10.04610.17980.43960.039*
H1A20.11550.21740.51930.039*
C2A0.20038 (17)0.14817 (7)0.57588 (9)0.0340 (3)
H2A10.19760.20010.60490.041*
H2A20.24210.15710.52170.041*
C3A0.32286 (17)0.09229 (9)0.63584 (10)0.0386 (3)
H3A10.42760.12170.65770.046*
H3A20.27330.07860.68650.046*
C4A0.36743 (16)0.01431 (9)0.59357 (10)0.0359 (3)
H4A10.40060.02670.53780.043*
H4A20.46390.01100.63190.043*
C5A0.26019 (17)0.12134 (7)0.53750 (9)0.0334 (2)
H5A10.33910.15280.58030.040*
H5A20.31220.11130.48680.040*
C6A0.18232 (14)0.07189 (7)0.35542 (8)0.0263 (2)
Cr2B0.50000.50001.00000.01881 (7)
S1B0.26292 (6)0.31238 (2)1.17097 (3)0.04295 (10)
N1B0.33254 (12)0.45724 (6)0.89068 (6)0.02683 (18)
H1B0.24120.42840.91180.032*
N2B0.35373 (12)0.60051 (6)1.01461 (7)0.02692 (19)
H2B0.26550.58221.04610.032*
N3B0.37356 (14)0.43650 (7)1.07593 (7)0.0310 (2)
C1B0.43163 (18)0.39638 (8)0.85091 (8)0.0351 (3)
H1B10.50870.42350.81910.042*
H1B20.35480.36270.80950.042*
C2B0.25141 (18)0.51949 (9)0.82674 (9)0.0377 (3)
H2B10.17360.49340.77870.045*
H2B20.33850.54680.80200.045*
C3B0.15434 (18)0.58129 (10)0.87041 (10)0.0429 (3)
H3B10.08150.55250.90340.051*
H3B20.08090.61190.82440.051*
C4B0.26361 (18)0.64063 (8)0.93259 (10)0.0379 (3)
H4B10.34670.66500.90260.045*
H4B20.19170.68340.94790.045*
C5B0.46800 (18)0.65534 (8)1.07613 (9)0.0353 (3)
H5B10.40120.69521.10060.042*
H5B20.54470.68351.04500.042*
C6B0.32530 (14)0.38445 (7)1.11521 (8)0.0262 (2)
Zn1C1.00000.28259 (2)0.75000.02829 (7)
Cl1C0.94451 (4)0.36436 (2)0.86092 (2)0.03394 (8)
Cl2C0.77981 (5)0.20141 (2)0.68975 (3)0.04336 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr1A0.02262 (11)0.01669 (11)0.01964 (12)0.00101 (7)0.00917 (8)0.00082 (7)
S1A0.0498 (2)0.0544 (2)0.03621 (19)0.01306 (16)0.01597 (15)0.01604 (15)
N1A0.0311 (4)0.0197 (4)0.0267 (4)0.0016 (3)0.0104 (4)0.0017 (3)
N2A0.0272 (4)0.0272 (4)0.0255 (5)0.0023 (3)0.0069 (3)0.0002 (3)
N3A0.0344 (5)0.0289 (4)0.0269 (5)0.0025 (4)0.0142 (4)0.0021 (4)
C1A0.0423 (6)0.0199 (5)0.0370 (6)0.0043 (4)0.0105 (5)0.0026 (4)
C2A0.0372 (6)0.0261 (5)0.0404 (7)0.0106 (4)0.0122 (5)0.0077 (5)
C3A0.0330 (6)0.0408 (7)0.0402 (7)0.0073 (5)0.0030 (5)0.0122 (5)
C4A0.0248 (5)0.0400 (6)0.0426 (7)0.0012 (5)0.0059 (5)0.0065 (5)
C5A0.0346 (6)0.0278 (5)0.0381 (6)0.0093 (4)0.0079 (5)0.0004 (4)
C6A0.0269 (5)0.0287 (5)0.0246 (5)0.0001 (4)0.0080 (4)0.0015 (4)
Cr2B0.02030 (11)0.02070 (11)0.01588 (12)0.00103 (7)0.00471 (8)0.00120 (7)
S1B0.0606 (2)0.02721 (15)0.0445 (2)0.01031 (14)0.01873 (16)0.00437 (13)
N1B0.0273 (4)0.0307 (5)0.0210 (4)0.0015 (3)0.0011 (3)0.0001 (3)
N2B0.0268 (4)0.0263 (4)0.0282 (5)0.0053 (3)0.0067 (3)0.0006 (3)
N3B0.0345 (5)0.0326 (5)0.0276 (5)0.0021 (4)0.0106 (4)0.0039 (4)
C1B0.0422 (6)0.0376 (6)0.0252 (6)0.0019 (5)0.0058 (5)0.0106 (5)
C2B0.0404 (7)0.0427 (7)0.0243 (6)0.0018 (5)0.0070 (5)0.0040 (5)
C3B0.0340 (6)0.0483 (8)0.0407 (7)0.0109 (6)0.0067 (5)0.0067 (6)
C4B0.0388 (6)0.0322 (6)0.0404 (7)0.0132 (5)0.0024 (5)0.0062 (5)
C5B0.0401 (6)0.0274 (5)0.0390 (7)0.0029 (5)0.0087 (5)0.0086 (5)
C6B0.0292 (5)0.0258 (5)0.0244 (5)0.0010 (4)0.0073 (4)0.0035 (4)
Zn1C0.03449 (11)0.02582 (10)0.02644 (11)0.0000.01061 (7)0.000
Cl1C0.03853 (15)0.03419 (15)0.03262 (15)0.00012 (11)0.01562 (12)0.00580 (10)
Cl2C0.05010 (19)0.04102 (17)0.04059 (19)0.01715 (14)0.01290 (14)0.00567 (13)
Geometric parameters (Å, º) top
Cr1A—N3Ai1.9991 (11)Cr2B—N1Bii2.0614 (11)
Cr1A—N3A1.9991 (11)Cr2B—N1B2.0614 (11)
Cr1A—N2A2.0622 (11)Cr2B—N2Bii2.0700 (10)
Cr1A—N2Ai2.0623 (11)Cr2B—N2B2.0700 (10)
Cr1A—N1Ai2.0664 (10)S1B—C6B1.6056 (12)
Cr1A—N1A2.0665 (10)N1B—C2B1.4836 (16)
S1A—C6A1.6126 (12)N1B—C1B1.4861 (16)
N1A—C2A1.4861 (16)N1B—H1B0.9800
N1A—C1A1.4931 (16)N2B—C4B1.4838 (17)
N1A—H1A0.9800N2B—C5B1.4887 (17)
N2A—C4A1.4842 (16)N2B—H2B0.9800
N2A—C5A1.4921 (15)N3B—C6B1.1614 (16)
N2A—H2A0.9800C1B—C5Bii1.512 (2)
N3A—C6A1.1591 (15)C1B—H1B10.9700
C1A—C5Ai1.5106 (19)C1B—H1B20.9700
C1A—H1A10.9700C2B—C3B1.519 (2)
C1A—H1A20.9700C2B—H2B10.9700
C2A—C3A1.521 (2)C2B—H2B20.9700
C2A—H2A10.9700C3B—C4B1.522 (2)
C2A—H2A20.9700C3B—H3B10.9700
C3A—C4A1.5186 (19)C3B—H3B20.9700
C3A—H3A10.9700C4B—H4B10.9700
C3A—H3A20.9700C4B—H4B20.9700
C4A—H4A10.9700C5B—C1Bii1.512 (2)
C4A—H4A20.9700C5B—H5B10.9700
C5A—C1Ai1.5107 (19)C5B—H5B20.9700
C5A—H5A10.9700Zn1C—Cl2Ciii2.2632 (6)
C5A—H5A20.9700Zn1C—Cl2C2.2632 (6)
Cr2B—N3Bii1.9911 (11)Zn1C—Cl1Ciii2.2919 (5)
Cr2B—N3B1.9911 (11)Zn1C—Cl1C2.2919 (5)
N3Ai—Cr1A—N3A180.0N3Bii—Cr2B—N1B91.31 (5)
N3Ai—Cr1A—N2A88.52 (4)N3B—Cr2B—N1B88.69 (5)
N3A—Cr1A—N2A91.48 (4)N1Bii—Cr2B—N1B180.0
N3Ai—Cr1A—N2Ai91.48 (5)N3Bii—Cr2B—N2Bii89.75 (5)
N3A—Cr1A—N2Ai88.52 (4)N3B—Cr2B—N2Bii90.25 (5)
N2A—Cr1A—N2Ai180.0N1Bii—Cr2B—N2Bii94.26 (4)
N3Ai—Cr1A—N1Ai90.38 (4)N1B—Cr2B—N2Bii85.74 (4)
N3A—Cr1A—N1Ai89.62 (4)N3Bii—Cr2B—N2B90.25 (5)
N2A—Cr1A—N1Ai85.28 (4)N3B—Cr2B—N2B89.75 (5)
N2Ai—Cr1A—N1Ai94.72 (4)N1Bii—Cr2B—N2B85.74 (4)
N3Ai—Cr1A—N1A89.62 (4)N1B—Cr2B—N2B94.26 (4)
N3A—Cr1A—N1A90.38 (4)N2Bii—Cr2B—N2B180.0
N2A—Cr1A—N1A94.72 (4)C2B—N1B—C1B113.21 (10)
N2Ai—Cr1A—N1A85.28 (4)C2B—N1B—Cr2B115.78 (8)
N1Ai—Cr1A—N1A180.0C1B—N1B—Cr2B104.87 (7)
C2A—N1A—C1A113.14 (10)C2B—N1B—H1B107.5
C2A—N1A—Cr1A116.31 (7)C1B—N1B—H1B107.5
C1A—N1A—Cr1A105.85 (7)Cr2B—N1B—H1B107.5
C2A—N1A—H1A107.0C4B—N2B—C5B113.94 (10)
C1A—N1A—H1A107.0C4B—N2B—Cr2B117.13 (8)
Cr1A—N1A—H1A107.0C5B—N2B—Cr2B105.60 (7)
C4A—N2A—C5A113.86 (10)C4B—N2B—H2B106.5
C4A—N2A—Cr1A115.67 (8)C5B—N2B—H2B106.5
C5A—N2A—Cr1A106.39 (8)Cr2B—N2B—H2B106.5
C4A—N2A—H2A106.8C6B—N3B—Cr2B163.19 (10)
C5A—N2A—H2A106.8N1B—C1B—C5Bii108.88 (10)
Cr1A—N2A—H2A106.8N1B—C1B—H1B1109.9
C6A—N3A—Cr1A164.12 (10)C5Bii—C1B—H1B1109.9
N1A—C1A—C5Ai108.06 (10)N1B—C1B—H1B2109.9
N1A—C1A—H1A1110.1C5Bii—C1B—H1B2109.9
C5Ai—C1A—H1A1110.1H1B1—C1B—H1B2108.3
N1A—C1A—H1A2110.1N1B—C2B—C3B111.50 (11)
C5Ai—C1A—H1A2110.1N1B—C2B—H2B1109.3
H1A1—C1A—H1A2108.4C3B—C2B—H2B1109.3
N1A—C2A—C3A112.57 (10)N1B—C2B—H2B2109.3
N1A—C2A—H2A1109.1C3B—C2B—H2B2109.3
C3A—C2A—H2A1109.1H2B1—C2B—H2B2108.0
N1A—C2A—H2A2109.1C2B—C3B—C4B115.66 (12)
C3A—C2A—H2A2109.1C2B—C3B—H3B1108.4
H2A1—C2A—H2A2107.8C4B—C3B—H3B1108.4
C4A—C3A—C2A115.59 (12)C2B—C3B—H3B2108.4
C4A—C3A—H3A1108.4C4B—C3B—H3B2108.4
C2A—C3A—H3A1108.4H3B1—C3B—H3B2107.4
C4A—C3A—H3A2108.4N2B—C4B—C3B111.82 (11)
C2A—C3A—H3A2108.4N2B—C4B—H4B1109.3
H3A1—C3A—H3A2107.4C3B—C4B—H4B1109.3
N2A—C4A—C3A111.76 (10)N2B—C4B—H4B2109.3
N2A—C4A—H4A1109.3C3B—C4B—H4B2109.3
C3A—C4A—H4A1109.3H4B1—C4B—H4B2107.9
N2A—C4A—H4A2109.3N2B—C5B—C1Bii107.44 (10)
C3A—C4A—H4A2109.3N2B—C5B—H5B1110.2
H4A1—C4A—H4A2107.9C1Bii—C5B—H5B1110.2
N2A—C5A—C1Ai108.33 (10)N2B—C5B—H5B2110.2
N2A—C5A—H5A1110.0C1Bii—C5B—H5B2110.2
C1Ai—C5A—H5A1110.0H5B1—C5B—H5B2108.5
N2A—C5A—H5A2110.0N3B—C6B—S1B178.66 (12)
C1Ai—C5A—H5A2110.0Cl2Ciii—Zn1C—Cl2C107.27 (3)
H5A1—C5A—H5A2108.4Cl2Ciii—Zn1C—Cl1Ciii114.02 (2)
N3A—C6A—S1A177.42 (12)Cl2C—Zn1C—Cl1Ciii107.01 (2)
N3Bii—Cr2B—N3B180.00 (5)Cl2Ciii—Zn1C—Cl1C107.01 (2)
N3Bii—Cr2B—N1Bii88.69 (5)Cl2C—Zn1C—Cl1C114.02 (2)
N3B—Cr2B—N1Bii91.31 (4)Cl1Ciii—Zn1C—Cl1C107.71 (2)
C2A—N1A—C1A—C5Ai171.46 (10)C2B—N1B—C1B—C5Bii170.70 (11)
Cr1A—N1A—C1A—C5Ai42.96 (11)Cr2B—N1B—C1B—C5Bii43.59 (12)
C1A—N1A—C2A—C3A176.86 (10)C1B—N1B—C2B—C3B178.93 (11)
Cr1A—N1A—C2A—C3A53.99 (13)Cr2B—N1B—C2B—C3B57.79 (14)
N1A—C2A—C3A—C4A69.83 (15)N1B—C2B—C3B—C4B72.48 (16)
C5A—N2A—C4A—C3A179.00 (11)C5B—N2B—C4B—C3B177.65 (11)
Cr1A—N2A—C4A—C3A57.31 (14)Cr2B—N2B—C4B—C3B53.73 (14)
C2A—C3A—C4A—N2A71.67 (16)C2B—C3B—C4B—N2B69.85 (17)
C4A—N2A—C5A—C1Ai169.58 (11)C4B—N2B—C5B—C1Bii172.02 (11)
Cr1A—N2A—C5A—C1Ai40.99 (11)Cr2B—N2B—C5B—C1Bii42.08 (11)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+2; (iii) x+2, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···Cl2Civ0.982.663.4510 (12)138
N2A—H2A···S1Av0.982.603.4884 (13)151
N1B—H1B···Cl1Civ0.982.583.4120 (12)143
N2B—H2B···Cl1Cii0.982.573.3944 (13)142
Symmetry codes: (ii) x+1, y+1, z+2; (iv) x1, y, z; (v) x, y, z+1/2.
 

Acknowledgements

The X-ray crystallography experiment at the PLS-II BL2D-SMC beamline was supported in part by MSIP and POSTECH.

References

First citationArvai, A. J. & Nielsen, C. (1983). ADSC Quantum-210 ADX. Area Detector System Corporation, Poway, CA, USA.  Google Scholar
First citationChoi, J.-H. (2009). Inorg. Chim. Acta, 362, 4231–4236.  Web of Science CSD CrossRef CAS Google Scholar
First citationChoi, J.-H., Joshi, T. & Spiccia, L. (2011). Z. Anorg. Allg. Chem. 637, 1194–1198.  Web of Science CSD CrossRef CAS Google Scholar
First citationChoi, J.-H. & Lee, S. H. (2009). J. Mol. Struct. 932, 84–89.  Web of Science CSD CrossRef CAS Google Scholar
First citationChoi, J.-H., Oh, I.-G., Lim, W.-T. & Park, K.-M. (2004). Acta Cryst. C60, m238–m240.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationChoi, J.-H., Oh, I.-G., Suzuki, T. & Kaizaki, S. (2004). J. Mol. Struct. 694, 39–44.  Web of Science CSD CrossRef CAS Google Scholar
First citationDe Clercq, E. (2010). J. Med. Chem. 53, 1438–1450.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFabbrizzi, L. & Poggi, A. (2013). Chem. Soc. Rev. 42, 1681–1699.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFlores-Velez, L. M., Sosa-Rivadeneyra, J., Sosa-Torres, M. E., Rosales-Hoz, M. J. & Toscanoh, R. A. (1991). J. Chem. Soc. Dalton Trans. pp. 3243–3247.  Google Scholar
First citationFriesen, D. A., Quail, J. W., Waltz, W. L. & Nashiem, R. E. (1997). Acta Cryst. C53, 687–691.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoon, D. & Choi, J.-H. (2015). Acta Cryst. E71, 100–103.  CSD CrossRef IUCr Journals Google Scholar
First citationMoon, D., Choi, J.-H., Ryoo, K. S. & Hong, Y. P. (2013). Acta Cryst. E69, m376–m377.  CSD CrossRef IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPoon, C. K. & Pun, K. C. (1980). Inorg. Chem. 19, 568–569.  CrossRef CAS Web of Science Google Scholar
First citationPutz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationRonconi, L. & Sadler, P. J. (2007). Coord. Chem. Rev. 251, 1633–1648.  Web of Science CrossRef CAS Google Scholar
First citationRoss, A., Choi, J.-H., Hunter, T. M., Pannecouque, C., Moggach, S. A., Parsons, S., De Clercq, E. & Sadler, P. J. (2012). Dalton Trans. 41, 6408–6418.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSteed, J. W. & Atwood, J. L. (2009). Supramolecular Chemistry, 2nd ed., New York: John Wiley & Sons.  Google Scholar
First citationSubhan, M. A., Choi, J.-H. & Ng, S. W. (2011). Z. Anorg. Allg. Chem. 637, 2193–2197.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds