research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­[N-phenyl-2-(1,2,3,4-tetra­hydronaphthalen-1-yl­idene)hydrazinecarbo­thio­amidato-κ2N2,S]zinc di­methyl sulfoxide monosolvate

aPrograma de Pós-Graduação em Ciência e Engenharia de Materiais, Universidade Federal de Sergipe, Av. Marechal Rondon s/n, 49100-000 São Cristóvão-SE, Brazil, bInstitut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth Strasse 2, D-24118 Kiel, Germany, and cDepartamento de Química, Universidade Federal de Sergipe, Av. Marechal Rondon s/n, 49100-000 São Cristóvão-SE, Brazil
*Correspondence e-mail: iara.gimenez@gmail.com

Edited by W. Imhof, University Koblenz-Landau, Germany (Received 19 March 2015; accepted 25 March 2015; online 2 April 2015)

The reaction of the N-phenyl-2-(1,2,3,4-tetrahydronaphthalen-1-yl­idene)hy­dra­zine­car­bo­thio­amide ligand with zinc acetate dihydrate in a 2:1 molar ratio yielded a yellow solid, which was crystallized from DMSO to obtain the title compound, [Zn(C17H16N3S)2]·C2H6OS. The ZnII ion is four-coordinated in a distorted tetra­hedral environment by two deprotonated ligands. Each ligand acts as an N,S-donor, forming a five-membered metallacycle. The maximum deviation from the mean plane of the N–N–C–S chelate group is 0.0029 (14) Å for the N-donor atom of one ligand and 0.0044 (14) Å for the non-coordinating N atom of the second. The dihedral angle between the planes of the two chelate groups is 72.80 (07)°. Bond lengths in the ligands are compared with those in the crystal structure of the free ligand. In the crystal, complex mol­ecules are connected by dimethyl sulfoxide solvate mol­ecules via N—H⋯O hydrogen-bonding inter­actions, building a one-dimensional hydrogen-bonded polymer along the a-axis direction. The S atom and one C atom of the dimethyl sulfoxide solvate mol­ecules are disordered over two sets of sites with an occupancy ratio of 0.6:0.4.

1. Chemical context

In a continuation of our on-going research on the supra­molecular chemistry of thio­semicarbazone derivatives and their complexes, we report herein the synthesis and crystal structure of a ZnII complex with the N-phenyl-2-(1,2,3,4-tetrahydronaphthalen-1-yl­idene)hy­dra­zine­car­bo­thio­amidate ligand. Thio­semicarbazone derivatives are N,S-donors with a wide range of coordination modes and a variety of applications in biological inorganic chemistry (Lobana et al. 2009[Lobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977-1055.]; Ferraz et al. 2012[Ferraz, K. S. O., Silva, N. F., Da Silva, J. G., Speziali, N. L., Mendes, I. C. & Beraldo, H. (2012). J. Mol. Struct. 1008, 102-107.]).

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound consists of one ZnII ion, four-coordinated in a distorted tetra­hedral environment by two deprotonated thio­semicarbazone ligands in a bidentate chelating mode, and one disordered DMSO solvate mol­ecule (Fig. 1[link]). The N,S-donor atoms together with the central zinc atom form five-membered metallacycles (Fig. 1[link]). The maximum deviation from the mean plane of the N1—N2—C11—S1 chelate group is 0.0029 (14) Å for the N1 donor atom. For the N21—N22—C31—S21 chelate group, the maximum deviation is 0.0044 (14) Å for atom N22. The dihedral angle between the planes of the two chelate groups is 72.80 (7)°, clearly showing the distorted tetra­hedral geometry.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with atom labeling and displacement ellipsoids drawn at the 30% probability level. Disorder is shown with open and full bonds.

The acidic hydrogen of the hydrazine fragment is lost by the reaction with the acetate anion. The negative charge of the deprotonated ligand is delocalized over the N—N—C—S entity, as indicated by their inter­mediate bond lengths. The bond lengths in the ligand are also affected by the coordination with the metal atom, especially the C—S bond length, which is consistent with increased single-bond character. In the crystal structure of the free ligand (de Oliveira et al., 2014[Oliveira, A. B. de, Feitosa, B. R. S., Näther, C. & Jess, I. (2014). Acta Cryst. E70, o205.]), selected bond lengths are N—N = 1.3846 (14), N—C = 1.3642 (16) and C—S = 1.6773 (13) Å. For the ligands in the title ZnII complex, the bond lengths are N1—N2 = 1.400 (3)/N21—N22 = 1.393 (3) Å, N2—C11 = 1.303 (3)/N22—C31 = 1.304 (3) Å and C11—S1 = 1.755 (2)/C31—S21 = 1.749 (2) Å.

Neither of the coordinating ligands is planar. For one ligand, the dihedral angles between the aromatic rings (C5–C10 and C12–C17) is 58.25 (11)°. In the second ligand, the corresponding angle is 49.99 (11)° between the C25–C30 and C32–C37 rings. In addition, the aliphatic rings are also not planar. The maximum deviation from the mean plane for the C1–C5/C10 ring is 0.355 (3) Å for C3 and for the C21–C25/C30 ring the maximum deviation is 0.359 (3) Å for C23, with both of the aliphatic rings having an envelope conformation

3. Supra­molecular features

In the crystal, the ZnII complex mol­ecules and the DMSO solvent mol­ecules build a monomeric entity. The DMSO mol­ecule bridges two complex mol­ecules via inter­molecular N—H⋯O hydrogen-bonding inter­actions, building a one-dimensional hydrogen-bonded polymer along the a-axis direction (Fig. 2[link], Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯O41 0.88 2.08 2.945 (3) 168
N23—H23N⋯O41i 0.88 2.03 2.903 (3) 173
Symmetry code: (i) x+1, y, z.
[Figure 2]
Figure 2
View of the one-dimensional hydrogen-bonded polymer that elongates along the a-axis direction. Inter­molecular hydrogen bonding (for details, see Table 1[link]) is shown as dashed lines. The minor occupancy components of the disordered atoms are not shown for clarity.

4. Synthesis and crystallization

Starting materials were commercially available and used without further purification. The ligand synthesis was adapted from a procedure reported previously (Freund & Schander, 1902[Freund, M. & Schander, A. (1902). Ber. Dtsch. Chem. Ges. 35, 2602-2606.]). A mixture of N-phenyl-2-(1,2,3,4-tetra­hydro­naph­tha­len-1-yl­idene)hy­dra­zine­car­bo­thio­amide dissolved in THF (2 mmol/40 mL) with zinc acetate dihydrate dissolved in ethanol (1 mmol/30 mL) was refluxed for 4 h under continuous stirring. An orange solid was obtained, filtered and washed with ethanol. Suitable crystals for X-ray diffraction were obtained in DMSO by slow evaporation of the solvent.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C—H and N—H hydrogen atoms were positioned with idealized geometry and refined isotropically with Uiso(H) = 1.2 Ueq(C) (1.5 for methyl H atoms) using a riding model with C—H = 0.95 Å for aromatic, C—H = 0.99 Å for methyl­ene, C—H = 0.98 Å for methyl and N—H = 0.88 Å. In the DMSO solvate mol­ecule, the S atom and methyl­ene C atom C42 and attached H atoms are disordered and were refined using a split model with an occupancy ratio of 0.4:0.6.

Table 2
Experimental details

Crystal data
Chemical formula [Zn(C17H16N3S)2]·C2H6OS
Mr 732.27
Crystal system, space group Monoclinic, P21/n
Temperature (K) 200
a, b, c (Å) 10.6320 (4), 17.2695 (5), 19.4067 (7)
β (°) 94.223 (3)
V3) 3553.6 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.91
Crystal size (mm) 0.14 × 0.10 × 0.06
 
Data collection
Diffractometer STOE IPDS1
Absorption correction Numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008[Stoe & Cie (2008). X-SHAPE, X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.793, 0.916
No. of measured, independent and observed [I > 2σ(I)] reflections 45253, 6947, 6171
Rint 0.041
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.097, 1.06
No. of reflections 6947
No. of parameters 442
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.80, −0.68
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2008[Stoe & Cie (2008). X-SHAPE, X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013-2 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA (Stoe & Cie, 2008); data reduction: X-RED32 (Stoe & Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013-2(Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis[N-phenyl-2-(1,2,3,4-tetrahydronaphthalen-1-ylidene)hydrazinecarbothioamidato-κ2N2,S]zinc dimethyl sulfoxide monosolvate top
Crystal data top
[Zn(C17H16N3S)2]·C2H6OSF(000) = 1528
Mr = 732.27Dx = 1.369 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.6320 (4) Åθ = 1.6–26.0°
b = 17.2695 (5) ŵ = 0.91 mm1
c = 19.4067 (7) ÅT = 200 K
β = 94.223 (3)°Prism, orange
V = 3553.6 (2) Å30.14 × 0.10 × 0.06 mm
Z = 4
Data collection top
STOE IPDS-1
diffractometer
6947 independent reflections
Radiation source: fine-focus sealed tube, STOE IPDS-16171 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
φ scansθmax = 26.0°, θmin = 1.6°
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
h = 1313
Tmin = 0.793, Tmax = 0.916k = 2121
45253 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0382P)2 + 2.9458P]
where P = (Fo2 + 2Fc2)/3
6947 reflections(Δ/σ)max = 0.001
442 parametersΔρmax = 0.80 e Å3
0 restraintsΔρmin = 0.68 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.75764 (2)0.193873 (16)0.627860 (14)0.03590 (9)
C10.7188 (2)0.31745 (15)0.73748 (13)0.0415 (5)
C20.6288 (3)0.36245 (17)0.77834 (15)0.0518 (7)
H2A0.60790.33110.81860.062*
H2B0.54970.37110.74910.062*
C30.6803 (3)0.44078 (18)0.80402 (17)0.0635 (8)
H3A0.61010.47360.81770.076*
H3B0.73990.43310.84510.076*
C40.7473 (3)0.48091 (18)0.74761 (18)0.0633 (8)
H4A0.68830.48830.70620.076*
H4B0.77770.53240.76380.076*
C50.8570 (3)0.43171 (18)0.72969 (15)0.0555 (7)
C60.9733 (3)0.4637 (2)0.71835 (19)0.0716 (10)
H60.98310.51840.71900.086*
C71.0752 (3)0.4175 (2)0.7061 (2)0.0784 (11)
H71.15350.44060.69730.094*
C81.0638 (3)0.3377 (2)0.70660 (18)0.0684 (9)
H81.13450.30590.69940.082*
C90.9483 (3)0.30455 (18)0.71767 (15)0.0524 (7)
H90.94040.24980.71860.063*
C100.8434 (2)0.35090 (16)0.72747 (14)0.0467 (6)
N10.68571 (18)0.25148 (12)0.70903 (10)0.0374 (4)
N20.56703 (18)0.22579 (12)0.72604 (10)0.0390 (4)
C110.5176 (2)0.16915 (14)0.68884 (12)0.0365 (5)
S10.58047 (6)0.11959 (4)0.62029 (3)0.04070 (15)
N30.40074 (18)0.14264 (13)0.70263 (11)0.0407 (5)
H3N0.36670.10970.67210.049*
C120.3262 (2)0.15955 (15)0.75765 (13)0.0399 (5)
C130.2066 (2)0.12656 (17)0.75371 (14)0.0493 (6)
H130.17900.09640.71460.059*
C140.1274 (3)0.1373 (2)0.80637 (16)0.0582 (8)
H140.04550.11500.80270.070*
C150.1657 (3)0.1799 (2)0.86376 (15)0.0580 (8)
H150.11170.18650.90020.070*
C160.2836 (3)0.2128 (2)0.86770 (15)0.0577 (8)
H160.31070.24250.90730.069*
C170.3644 (2)0.20369 (18)0.81488 (14)0.0508 (7)
H170.44500.22760.81820.061*
C210.7844 (2)0.34196 (15)0.54269 (13)0.0408 (5)
C220.8717 (3)0.39974 (16)0.51388 (18)0.0555 (7)
H22A0.90470.37810.47160.067*
H22B0.94420.40840.54800.067*
C230.8086 (3)0.47694 (18)0.4965 (2)0.0655 (9)
H23A0.87360.51600.48760.079*
H23B0.75180.47150.45400.079*
C240.7336 (3)0.50397 (18)0.55528 (19)0.0675 (9)
H24A0.79060.51080.59750.081*
H24B0.69390.55460.54340.081*
C250.6338 (3)0.44571 (17)0.56840 (15)0.0532 (7)
C260.5159 (3)0.4675 (2)0.58907 (18)0.0674 (9)
H260.49920.52060.59710.081*
C270.4235 (3)0.4135 (2)0.59806 (18)0.0718 (10)
H270.34560.42930.61460.086*
C280.4430 (3)0.3370 (2)0.58337 (17)0.0627 (8)
H280.37760.30020.58750.075*
C290.5585 (2)0.31397 (17)0.56250 (15)0.0495 (6)
H290.57120.26120.55090.059*
C300.6571 (2)0.36679 (16)0.55815 (14)0.0440 (6)
N210.82246 (17)0.27193 (12)0.55813 (10)0.0365 (4)
N220.94220 (18)0.25641 (12)0.53682 (11)0.0402 (5)
C310.9966 (2)0.19343 (14)0.56117 (12)0.0370 (5)
S210.93916 (6)0.12624 (4)0.61853 (3)0.04147 (15)
N231.11279 (19)0.17498 (13)0.53992 (11)0.0438 (5)
H23N1.15060.13580.56180.053*
C321.1814 (2)0.20924 (16)0.48819 (13)0.0434 (6)
C331.2983 (3)0.1765 (2)0.47906 (17)0.0627 (8)
H331.32850.13460.50730.075*
C341.3711 (3)0.2057 (2)0.4282 (2)0.0763 (11)
H341.45110.18330.42220.092*
C351.3300 (3)0.2660 (2)0.38675 (17)0.0636 (8)
H351.38040.28530.35210.076*
C361.2150 (3)0.29789 (19)0.39610 (15)0.0551 (7)
H361.18530.33960.36740.066*
C371.1408 (3)0.27054 (18)0.44670 (14)0.0499 (6)
H371.06160.29410.45280.060*
S410.22794 (16)0.03767 (8)0.62486 (9)0.0732 (4)0.60
S41'0.2187 (2)0.01998 (12)0.55185 (11)0.0653 (5)0.40
O410.25110 (17)0.04499 (11)0.60282 (11)0.0521 (5)
C410.1008 (4)0.0730 (2)0.5786 (3)0.0915 (13)
H41A0.02410.05100.59580.137*0.60
H41B0.09900.12950.58310.137*0.60
H41C0.10510.05910.52980.137*0.60
H41D0.02430.04130.57800.137*0.40
H41E0.12300.09140.62570.137*0.40
H41F0.08570.11750.54770.137*0.40
C420.3516 (9)0.0914 (6)0.5996 (7)0.124 (5)0.60
H42A0.42970.07420.62490.186*0.60
H42B0.35860.08460.54990.186*0.60
H42C0.33720.14620.60950.186*0.60
C42'0.3297 (14)0.0806 (9)0.5512 (7)0.099 (5)0.40
H42D0.40550.05500.53660.148*0.40
H42E0.30530.12260.51900.148*0.40
H42F0.34710.10190.59780.148*0.40
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.03107 (14)0.03978 (16)0.03778 (15)0.00053 (11)0.00889 (10)0.00104 (11)
C10.0421 (13)0.0436 (14)0.0397 (13)0.0017 (11)0.0089 (10)0.0057 (11)
C20.0520 (15)0.0492 (15)0.0560 (17)0.0006 (13)0.0169 (13)0.0114 (13)
C30.075 (2)0.0528 (17)0.0647 (19)0.0011 (15)0.0165 (16)0.0208 (15)
C40.074 (2)0.0467 (16)0.070 (2)0.0102 (15)0.0093 (16)0.0144 (14)
C50.0604 (17)0.0546 (17)0.0519 (16)0.0159 (14)0.0073 (13)0.0132 (13)
C60.074 (2)0.065 (2)0.077 (2)0.0324 (18)0.0117 (18)0.0151 (17)
C70.059 (2)0.093 (3)0.084 (3)0.037 (2)0.0168 (18)0.018 (2)
C80.0451 (16)0.088 (2)0.073 (2)0.0164 (16)0.0134 (15)0.0212 (19)
C90.0423 (14)0.0620 (18)0.0538 (16)0.0092 (13)0.0091 (12)0.0149 (14)
C100.0465 (14)0.0509 (15)0.0436 (14)0.0117 (12)0.0088 (11)0.0099 (12)
N10.0317 (10)0.0431 (11)0.0382 (11)0.0032 (8)0.0080 (8)0.0028 (9)
N20.0320 (10)0.0451 (11)0.0409 (11)0.0039 (9)0.0105 (8)0.0023 (9)
C110.0306 (11)0.0390 (12)0.0403 (13)0.0008 (9)0.0056 (9)0.0017 (10)
S10.0355 (3)0.0431 (3)0.0445 (3)0.0037 (2)0.0101 (2)0.0067 (3)
N30.0321 (10)0.0481 (12)0.0426 (11)0.0056 (9)0.0077 (8)0.0052 (9)
C120.0324 (12)0.0481 (14)0.0401 (13)0.0029 (10)0.0077 (10)0.0038 (11)
C130.0359 (13)0.0656 (18)0.0471 (15)0.0077 (12)0.0076 (11)0.0030 (13)
C140.0334 (13)0.086 (2)0.0565 (17)0.0080 (14)0.0122 (12)0.0018 (16)
C150.0414 (14)0.085 (2)0.0495 (16)0.0000 (14)0.0177 (12)0.0010 (15)
C160.0495 (15)0.080 (2)0.0454 (15)0.0046 (15)0.0145 (12)0.0091 (14)
C170.0369 (13)0.0702 (19)0.0466 (15)0.0075 (12)0.0116 (11)0.0066 (13)
C210.0384 (13)0.0400 (13)0.0445 (14)0.0022 (10)0.0065 (10)0.0026 (11)
C220.0417 (14)0.0459 (15)0.080 (2)0.0006 (12)0.0100 (14)0.0135 (14)
C230.0528 (17)0.0469 (16)0.097 (3)0.0012 (13)0.0082 (17)0.0203 (17)
C240.072 (2)0.0432 (16)0.087 (2)0.0092 (15)0.0019 (18)0.0014 (16)
C250.0564 (16)0.0471 (15)0.0562 (17)0.0139 (13)0.0043 (13)0.0021 (13)
C260.072 (2)0.064 (2)0.066 (2)0.0321 (17)0.0086 (16)0.0015 (16)
C270.0560 (19)0.093 (3)0.069 (2)0.0343 (19)0.0194 (16)0.0174 (19)
C280.0392 (14)0.080 (2)0.071 (2)0.0158 (14)0.0134 (14)0.0230 (17)
C290.0378 (13)0.0543 (16)0.0568 (16)0.0100 (12)0.0077 (12)0.0111 (13)
C300.0400 (13)0.0463 (14)0.0461 (14)0.0088 (11)0.0067 (11)0.0040 (11)
N210.0307 (9)0.0397 (11)0.0400 (11)0.0036 (8)0.0087 (8)0.0016 (9)
N220.0303 (10)0.0461 (12)0.0456 (12)0.0034 (9)0.0115 (8)0.0040 (9)
C310.0307 (11)0.0425 (13)0.0384 (12)0.0028 (10)0.0063 (9)0.0032 (10)
S210.0358 (3)0.0414 (3)0.0485 (4)0.0060 (2)0.0114 (3)0.0056 (3)
N230.0335 (10)0.0502 (12)0.0487 (12)0.0082 (9)0.0098 (9)0.0067 (10)
C320.0302 (12)0.0564 (16)0.0447 (14)0.0015 (11)0.0100 (10)0.0048 (12)
C330.0385 (14)0.083 (2)0.068 (2)0.0139 (15)0.0157 (13)0.0114 (17)
C340.0399 (16)0.109 (3)0.084 (2)0.0103 (17)0.0283 (16)0.006 (2)
C350.0452 (16)0.092 (2)0.0559 (18)0.0123 (16)0.0208 (13)0.0027 (17)
C360.0493 (15)0.0673 (19)0.0500 (16)0.0089 (14)0.0131 (12)0.0024 (14)
C370.0398 (14)0.0617 (17)0.0499 (15)0.0004 (12)0.0142 (11)0.0033 (13)
S410.0817 (10)0.0498 (7)0.0839 (10)0.0036 (7)0.0225 (8)0.0050 (7)
S41'0.0815 (14)0.0555 (11)0.0591 (12)0.0035 (10)0.0072 (10)0.0126 (9)
O410.0462 (10)0.0444 (10)0.0654 (12)0.0011 (8)0.0033 (9)0.0082 (9)
C410.071 (2)0.068 (2)0.135 (4)0.0099 (19)0.010 (2)0.023 (2)
C420.067 (4)0.062 (5)0.238 (14)0.028 (4)0.021 (8)0.031 (8)
C42'0.093 (10)0.084 (8)0.125 (11)0.029 (7)0.042 (9)0.024 (9)
Geometric parameters (Å, º) top
Zn1—N12.057 (2)C23—H23A0.9900
Zn1—N212.064 (2)C23—H23B0.9900
Zn1—S212.2745 (6)C24—C251.498 (4)
Zn1—S12.2747 (7)C24—H24A0.9900
C1—N11.303 (3)C24—H24B0.9900
C1—C101.471 (3)C25—C261.396 (4)
C1—C21.503 (3)C25—C301.402 (4)
C2—C31.529 (4)C26—C271.375 (5)
C2—H2A0.9900C26—H260.9500
C2—H2B0.9900C27—C281.370 (5)
C3—C41.517 (4)C27—H270.9500
C3—H3A0.9900C28—C291.380 (4)
C3—H3B0.9900C28—H280.9500
C4—C51.504 (4)C29—C301.397 (4)
C4—H4A0.9900C29—H290.9500
C4—H4B0.9900N21—N221.393 (3)
C5—C61.387 (4)N22—C311.304 (3)
C5—C101.403 (4)C31—N231.368 (3)
C6—C71.380 (5)C31—S211.749 (2)
C6—H60.9500N23—C321.414 (3)
C7—C81.384 (5)N23—H23N0.8800
C7—H70.9500C32—C371.380 (4)
C8—C91.386 (4)C32—C331.388 (4)
C8—H80.9500C33—C341.392 (4)
C9—C101.397 (4)C33—H330.9500
C9—H90.9500C34—C351.367 (5)
N1—N21.400 (3)C34—H340.9500
N2—C111.303 (3)C35—C361.365 (4)
C11—N31.369 (3)C35—H350.9500
C11—S11.755 (2)C36—C371.387 (4)
N3—C121.407 (3)C36—H360.9500
N3—H3N0.8800C37—H370.9500
C12—C171.383 (4)S41—O411.516 (2)
C12—C131.390 (3)S41—C411.682 (4)
C13—C141.383 (4)S41—C421.709 (9)
C13—H130.9500S41'—O411.518 (3)
C14—C151.371 (4)S41'—C42'1.578 (13)
C14—H140.9500S41'—C411.666 (4)
C15—C161.373 (4)C41—H41A0.9800
C15—H150.9500C41—H41B0.9800
C16—C171.394 (4)C41—H41C0.9800
C16—H160.9500C41—H41D0.9800
C17—H170.9500C41—H41E0.9800
C21—N211.303 (3)C41—H41F0.9800
C21—C301.471 (3)C42—H42A0.9800
C21—C221.499 (4)C42—H42B0.9800
C22—C231.519 (4)C42—H42C0.9800
C22—H22A0.9900C42'—H42D0.9800
C22—H22B0.9900C42'—H42E0.9800
C23—C241.513 (5)C42'—H42F0.9800
N1—Zn1—N21110.30 (8)H24A—C24—H24B108.2
N1—Zn1—S21132.43 (6)C26—C25—C30118.3 (3)
N21—Zn1—S2187.53 (5)C26—C25—C24122.0 (3)
N1—Zn1—S188.25 (6)C30—C25—C24119.6 (3)
N21—Zn1—S1129.85 (6)C27—C26—C25121.3 (3)
S21—Zn1—S1114.13 (3)C27—C26—H26119.4
N1—C1—C10120.3 (2)C25—C26—H26119.4
N1—C1—C2120.9 (2)C28—C27—C26120.4 (3)
C10—C1—C2118.7 (2)C28—C27—H27119.8
C1—C2—C3113.8 (2)C26—C27—H27119.8
C1—C2—H2A108.8C27—C28—C29119.4 (3)
C3—C2—H2A108.8C27—C28—H28120.3
C1—C2—H2B108.8C29—C28—H28120.3
C3—C2—H2B108.8C28—C29—C30121.2 (3)
H2A—C2—H2B107.7C28—C29—H29119.4
C4—C3—C2110.2 (2)C30—C29—H29119.4
C4—C3—H3A109.6C29—C30—C25119.0 (2)
C2—C3—H3A109.6C29—C30—C21121.9 (2)
C4—C3—H3B109.6C25—C30—C21119.1 (2)
C2—C3—H3B109.6C21—N21—N22112.67 (19)
H3A—C3—H3B108.1C21—N21—Zn1130.06 (16)
C5—C4—C3108.8 (3)N22—N21—Zn1115.18 (14)
C5—C4—H4A109.9C31—N22—N21116.34 (19)
C3—C4—H4A109.9N22—C31—N23118.1 (2)
C5—C4—H4B109.9N22—C31—S21128.12 (18)
C3—C4—H4B109.9N23—C31—S21113.76 (18)
H4A—C4—H4B108.3C31—S21—Zn192.77 (8)
C6—C5—C10118.9 (3)C31—N23—C32129.9 (2)
C6—C5—C4121.8 (3)C31—N23—H23N115.1
C10—C5—C4119.2 (3)C32—N23—H23N115.1
C7—C6—C5121.1 (3)C37—C32—C33118.8 (2)
C7—C6—H6119.4C37—C32—N23125.4 (2)
C5—C6—H6119.4C33—C32—N23115.7 (3)
C6—C7—C8120.3 (3)C32—C33—C34119.5 (3)
C6—C7—H7119.9C32—C33—H33120.3
C8—C7—H7119.9C34—C33—H33120.3
C7—C8—C9119.5 (3)C35—C34—C33121.5 (3)
C7—C8—H8120.3C35—C34—H34119.2
C9—C8—H8120.3C33—C34—H34119.2
C8—C9—C10120.6 (3)C36—C35—C34118.6 (3)
C8—C9—H9119.7C36—C35—H35120.7
C10—C9—H9119.7C34—C35—H35120.7
C9—C10—C5119.5 (3)C35—C36—C37121.2 (3)
C9—C10—C1121.9 (3)C35—C36—H36119.4
C5—C10—C1118.6 (3)C37—C36—H36119.4
C1—N1—N2113.40 (19)C32—C37—C36120.3 (3)
C1—N1—Zn1130.03 (16)C32—C37—H37119.9
N2—N1—Zn1114.81 (14)C36—C37—H37119.9
C11—N2—N1116.18 (19)O41—S41—C41109.37 (19)
N2—C11—N3118.5 (2)O41—S41—C42106.6 (4)
N2—C11—S1128.70 (18)C41—S41—C42104.8 (4)
N3—C11—S1112.77 (18)O41—S41'—C42'111.2 (6)
C11—S1—Zn192.06 (8)O41—S41'—C41110.1 (2)
C11—N3—C12130.5 (2)C42'—S41'—C41102.6 (7)
C11—N3—H3N114.8S41—O41—S41'56.91 (12)
C12—N3—H3N114.8S41'—C41—S4151.17 (14)
C17—C12—C13118.9 (2)S41'—C41—H41A123.9
C17—C12—N3125.1 (2)S41—C41—H41A109.5
C13—C12—N3115.9 (2)S41'—C41—H41B126.5
C14—C13—C12120.5 (3)S41—C41—H41B109.5
C14—C13—H13119.7H41A—C41—H41B109.5
C12—C13—H13119.7S41'—C41—H41C58.3
C15—C14—C13120.8 (3)S41—C41—H41C109.5
C15—C14—H14119.6H41A—C41—H41C109.5
C13—C14—H14119.6H41B—C41—H41C109.5
C14—C15—C16118.9 (3)S41'—C41—H41D109.5
C14—C15—H15120.6S41—C41—H41D115.9
C16—C15—H15120.6H41B—C41—H41D122.4
C15—C16—C17121.4 (3)H41C—C41—H41D87.2
C15—C16—H16119.3S41'—C41—H41E109.5
C17—C16—H16119.3S41—C41—H41E59.4
C12—C17—C16119.5 (3)H41A—C41—H41E87.5
C12—C17—H17120.2H41B—C41—H41E66.3
C16—C17—H17120.2H41C—C41—H41E162.6
N21—C21—C30119.9 (2)H41D—C41—H41E109.5
N21—C21—C22120.9 (2)S41'—C41—H41F109.5
C30—C21—C22119.1 (2)S41—C41—H41F134.4
C21—C22—C23113.1 (2)H41A—C41—H41F114.2
C21—C22—H22A109.0H41C—C41—H41F67.7
C23—C22—H22A109.0H41D—C41—H41F109.5
C21—C22—H22B109.0H41E—C41—H41F109.5
C23—C22—H22B109.0S41—C42—H42A109.5
H22A—C22—H22B107.8S41—C42—H42B109.5
C24—C23—C22110.6 (3)H42A—C42—H42B109.5
C24—C23—H23A109.5S41—C42—H42C109.5
C22—C23—H23A109.5H42A—C42—H42C109.5
C24—C23—H23B109.5H42B—C42—H42C109.5
C22—C23—H23B109.5S41'—C42'—H42D109.5
H23A—C23—H23B108.1S41'—C42'—H42E109.5
C25—C24—C23109.9 (3)H42D—C42'—H42E109.5
C25—C24—H24A109.7S41'—C42'—H42F109.5
C23—C24—H24A109.7H42D—C42'—H42F109.5
C25—C24—H24B109.7H42E—C42'—H42F109.5
C23—C24—H24B109.7
N1—C1—C2—C3176.3 (3)C23—C24—C25—C3033.3 (4)
C10—C1—C2—C31.0 (4)C30—C25—C26—C271.2 (5)
C1—C2—C3—C442.4 (4)C24—C25—C26—C27177.2 (3)
C2—C3—C4—C561.7 (4)C25—C26—C27—C283.4 (5)
C3—C4—C5—C6138.1 (3)C26—C27—C28—C293.0 (5)
C3—C4—C5—C1038.9 (4)C27—C28—C29—C302.0 (5)
C10—C5—C6—C71.0 (5)C28—C29—C30—C256.6 (4)
C4—C5—C6—C7176.0 (3)C28—C29—C30—C21173.8 (3)
C5—C6—C7—C81.6 (6)C26—C25—C30—C296.0 (4)
C6—C7—C8—C91.7 (6)C24—C25—C30—C29172.4 (3)
C7—C8—C9—C100.8 (5)C26—C25—C30—C21174.3 (3)
C8—C9—C10—C53.4 (4)C24—C25—C30—C217.2 (4)
C8—C9—C10—C1178.3 (3)N21—C21—C30—C2926.2 (4)
C6—C5—C10—C93.4 (4)C22—C21—C30—C29158.1 (3)
C4—C5—C10—C9173.7 (3)N21—C21—C30—C25154.2 (3)
C6—C5—C10—C1178.2 (3)C22—C21—C30—C2521.5 (4)
C4—C5—C10—C14.7 (4)C30—C21—N21—N22176.8 (2)
N1—C1—C10—C930.4 (4)C22—C21—N21—N227.6 (3)
C2—C1—C10—C9152.3 (3)C30—C21—N21—Zn120.7 (4)
N1—C1—C10—C5151.3 (3)C22—C21—N21—Zn1154.9 (2)
C2—C1—C10—C526.0 (4)N1—Zn1—N21—C2129.8 (2)
C10—C1—N1—N2177.2 (2)S21—Zn1—N21—C21164.6 (2)
C2—C1—N1—N25.6 (3)S1—Zn1—N21—C2175.6 (2)
C10—C1—N1—Zn118.9 (4)N1—Zn1—N21—N22132.36 (16)
C2—C1—N1—Zn1158.3 (2)S21—Zn1—N21—N222.39 (15)
N21—Zn1—N1—C132.0 (2)S1—Zn1—N21—N22122.19 (14)
S21—Zn1—N1—C174.0 (2)C21—N21—N22—C31167.8 (2)
S1—Zn1—N1—C1164.2 (2)Zn1—N21—N22—C312.5 (3)
N21—Zn1—N1—N2131.70 (16)N21—N22—C31—N23178.2 (2)
S21—Zn1—N1—N2122.29 (14)N21—N22—C31—S211.0 (3)
S1—Zn1—N1—N20.55 (15)N22—C31—S21—Zn10.7 (2)
C1—N1—N2—C11166.6 (2)N23—C31—S21—Zn1179.98 (18)
Zn1—N1—N2—C110.1 (3)N1—Zn1—S21—C31114.08 (11)
N1—N2—C11—N3179.0 (2)N21—Zn1—S21—C311.45 (10)
N1—N2—C11—S10.7 (3)S1—Zn1—S21—C31134.57 (8)
N2—C11—S1—Zn10.9 (2)N22—C31—N23—C328.0 (4)
N3—C11—S1—Zn1178.75 (17)S21—C31—N23—C32171.3 (2)
N1—Zn1—S1—C110.64 (10)C31—N23—C32—C370.9 (5)
N21—Zn1—S1—C11114.62 (11)C31—N23—C32—C33180.0 (3)
S21—Zn1—S1—C11137.18 (8)C37—C32—C33—C340.5 (5)
N2—C11—N3—C129.2 (4)N23—C32—C33—C34178.7 (3)
S1—C11—N3—C12171.1 (2)C32—C33—C34—C350.1 (6)
C11—N3—C12—C176.5 (4)C33—C34—C35—C360.2 (6)
C11—N3—C12—C13175.6 (3)C34—C35—C36—C370.3 (5)
C17—C12—C13—C140.4 (4)C33—C32—C37—C361.0 (4)
N3—C12—C13—C14177.7 (3)N23—C32—C37—C36178.1 (3)
C12—C13—C14—C150.8 (5)C35—C36—C37—C321.0 (5)
C13—C14—C15—C161.0 (5)O41—S41—O41—S41'0 (47)
C14—C15—C16—C170.1 (5)C41—S41—O41—S41'43.9 (2)
C13—C12—C17—C161.3 (4)C42—S41—O41—S41'68.9 (4)
N3—C12—C17—C16176.6 (3)O41—S41'—O41—S410 (58)
C15—C16—C17—C121.0 (5)C42'—S41'—O41—S4168.3 (6)
N21—C21—C22—C23177.7 (3)C41—S41'—O41—S4144.7 (2)
C30—C21—C22—C236.7 (4)O41—S41'—C41—S4142.94 (17)
C21—C22—C23—C2446.8 (4)C42'—S41'—C41—S4175.5 (6)
C22—C23—C24—C2560.0 (4)O41—S41—C41—S41'42.81 (18)
C23—C24—C25—C26145.1 (3)C42—S41—C41—S41'71.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O410.882.082.945 (3)168
N23—H23N···O41i0.882.032.903 (3)173
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

We gratefully acknowledge the financial support by the State of Schleswig–Holstein, Germany. We thank Professor Dr Wolfgang Bensch for access to his experimental facilities. IFG and GCS thank CNPq for the award of a researcher scholarship and CAPES for the award of a PhD scholarship, respectively. ABO thanks Renan Lira de Farias, Universidade Federal de Sergipe, Brazil, for his support in the laboratory.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFerraz, K. S. O., Silva, N. F., Da Silva, J. G., Speziali, N. L., Mendes, I. C. & Beraldo, H. (2012). J. Mol. Struct. 1008, 102–107.  CSD CrossRef CAS Google Scholar
First citationFreund, M. & Schander, A. (1902). Ber. Dtsch. Chem. Ges. 35, 2602–2606.  CrossRef CAS Google Scholar
First citationLobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977–1055.  Web of Science CrossRef CAS Google Scholar
First citationOliveira, A. B. de, Feitosa, B. R. S., Näther, C. & Jess, I. (2014). Acta Cryst. E70, o205.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2008). X-SHAPE, X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds