research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages 248-250

Crystal structure of chlorido­(2-{1-[2-(4-chloro­phen­yl)hydrazin-1-yl­­idene-κN]eth­yl}pyridine-κN)(η5-penta­methyl­cyclo­penta­dien­yl)rhodium(III) chloride

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, BIT Campus, Anna University, Tiruchirappalli 620 024, Tamil Nadu State, India, bInstitut de Chimie, Université de Neuchâtel, Avenue de Bellevaux 51, CH-2000 Neuchâtel, Switzerland, and cDepartment of Chemistry, Urumu Dhanalakshmi College, Tiruchirappalli 620 019, Tamil Nadu State, India
*Correspondence e-mail: bruno.therrien@unine.ch

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 16 January 2015; accepted 27 January 2015; online 7 February 2015)

The cation of the title compound, [Rh(η5-C5Me5)Cl(C13H12ClN3)]Cl, adopts a typical piano-stool geometry. The complex is chiral at the metal and crystallizes as a racemate. Upon coordination, the hydrazinyl­idene­pyridine ligand is non-planar, an angle of 54.42 (7)° being observed between the pyridine ring and the aromatic ring of the [2-(4-chloro­phen­yl)hydrazin-1-yl­idene]ethyl group. In the crystal, a weak inter­ionic N—H⋯Cl hydrogen bond is observed.

1. Chemical context

Chiral-at-metal penta­methyl­cyclo­penta­dienyl rhodium complexes are popular catalysts in enanti­oselective reactions (Carmona et al., 1999[Carmona, D., Vega, C., Lahoz, F. J., Elipe, S., Oro, L. A., Lamata, M. P., Viguri, F., García-Correas, R., Cativiela, C. & López-Ram de Viu, M. P. (1999). Organometallics, 18, 3364-3371.]; Davies et al., 2004[Davies, D. L., Fawcett, J., Garratt, S. A. & Russell, D. R. (2004). Dalton Trans., pp. 3629-3634.]). To obtain such chiral-at-metal complexes, a non-symmetrical bidentate ligand can be used. Among bidentate ligands, hydrazinyl­idene­pyridine derivatives are easy to synthesise (Liu et al., 2002[Liu, Q., Mudadu, M. S., Schmider, H., Thummel, R., Tao, Y. & Wang, S. (2002). Organometallics, 21, 4743-4749.]; Ghedini et al., 2004[Ghedini, M., Aiello, I., Crispini, A. & La Deda, M. (2004). Dalton Trans., pp. 1386-1392.]; Marandi et al., 2015[Marandi, G., Saghatforoush, L., Golsanamlou, V., Tofighjoo, E., Hassanabad, F. A., Hajari, S. & Ghadimkhani, R. (2015). Res. Chem. Intermed. 41, 631-636.]), and when coupled to metal centers not only can they introduce chirality, but also they can generate biologically relevant complexes (Ghosh et al., 2011[Ghosh, K., Kumar, P., Tyagi, N., Singh, U. P., Goel, N., Chakraborty, A., Roy, P. & Baratto, M. C. (2011). Polyhedron, 30, 2667-2677.], 2012[Ghosh, K., Kumar, P., Mohan, V., Singh, U. P., Kasiri, S. & Mandal, S. S. (2012). Inorg. Chem. 51, 3343-3345.]). Herein, we present the synthesis and characterization of a chiral-at-metal penta­methyl­cyclo­pentadienyl rhodium(III) hydrazinyl­idene­pyridine complex, [Rh(η5-C5Me5)Cl(C13H12ClN3)]Cl.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is presented in Fig. 1[link]. The cationic complex adopts a typical piano-stool geometry and it is chiral at the metal centre. The salt crystallizes as a racemate in the ortho­rhom­bic space group Pbca. In the complex, the hydrazinyl­idene­pyridine ligand is N,N-coordinating, the N-hydrazono and the N-pyridine groups forming with the rhodium(III) atom a five-membered metalla­cycle. Upon coordination, the hydrazinyl­idene­pyridine ligand is non-planar, an angle of 54.42 (7)° being observed between the planes of pyridine and the benzene ring of the [(4-chloro­phen­yl)hydrazono]ethyl group. Otherwise, all geometrical data around the rhodium(III) atom are similar to those found in analogous N,N-chelated penta­methyl­cyclo­penta­dienyl rhodium complexes (Gupta et al., 2011[Gupta, G., Gloria, S., Nongbri, S. L., Therrien, B. & Rao, K. M. (2011). J. Organomet. Chem. 696, 2014-2022.]; Payne et al., 2013[Payne, R., Govender, P., Therrien, B., Clavel, C. M., Dyson, P. J. & Smith, G. S. (2013). J. Organomet. Chem. 729, 20-27.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

The N—H group of the hydrazinyl­idene­pyridine ligand inter­acts weakly with the counter-anion giving rise to a nearly linear hydrogen bond (Table 1[link]). No significant C—H⋯π or ππ stacking inter­actions are observed.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯Cl3 0.83 (3) 2.27 (3) 3.087 (2) 171 (3)

4. Synthesis and crystallization

The title compound was synthesized by reacting one equivalent of [(η5-C5Me5)2Rh2(μ-Cl)2Cl2] (100 mg, 0.16 mmol) with two equivalents of 2-{1-[2-(4-chloro­phen­yl)hydrazono]eth­yl}pyridine (Liu et al., 2002[Liu, Q., Mudadu, M. S., Schmider, H., Thummel, R., Tao, Y. & Wang, S. (2002). Organometallics, 21, 4743-4749.]; 79 mg, 0.32 mmol) in methanol (25 ml), and the mixture was refluxed for 6 h. The solution turned from yellow to dark red. Then, the volume was reduced to 2 ml and diethyl ether was added to induce precipitation of a red–brown solid. After filtration, the solid was purified by column chromatography (silica gel, chloro­form/methanol 9.8:0.2 v/v). Crystals suitable for X-ray structure analysis were obtained by slow evaporation of a di­chloro­methane/n-pentane solution (1:1 v/v) containing the title compound. Yield: 80%. IR (KBr, ν, cm−1): 1592 (s, C=N). 1H NMR (400 MHz, CD3CN, 298 K): δ (p.p.m.) = 9.21 (br s, 1H, NH), 8.76 (d, 3JH-H = 5.6 Hz, 1H, Har), 8.16 (dd, 3JH-H = 8.0 Hz, 1H, Har), 8.01 (d, 3JH-H = 8.0 Hz, 1H, Har), 7.77 (dd, 3JH-H = 6.8 Hz, 1H, Har), 7.45 (d, 3JH-H = 8.8 Hz, 2H, Har), 7.36 (d, 3JH-H = 8.8 Hz, 2H, Har), 2.58 (s, 3H, CH3), 1.43 (s, 15H, C5Me5). MS (ESI positive mode): m/z 518.0 [M − Cl]+.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Except for the N-bound H atom, which was refined freely, all hydrogen atoms were included in calculated positions and treated as riding atoms using SHELXL97 default parameters, with C—H = 0.93 Å for Carom and 0.96 Å for CH3, and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms.

Table 2
Experimental details

Crystal data
Chemical formula [Rh(C10H15)Cl(C13H12ClN3)]Cl
Mr 554.74
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 173
a, b, c (Å) 13.0774 (5), 13.4537 (5), 26.5153 (9)
V3) 4665.1 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 1.09
Crystal size (mm) 0.21 × 0.20 × 0.13
 
Data collection
Diffractometer STOE IPDS diffractometer
Absorption correction Empirical (using intensity measurements) (DIFABS; Walker & Stuart, 1983[Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.])
Tmin, Tmax 0.629, 0.890
No. of measured, independent and observed [I > 2σ(I)] reflections 82717, 6320, 4619
Rint 0.074
(sin θ/λ)max−1) 0.687
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.054, 0.96
No. of reflections 6320
No. of parameters 281
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.48, −0.62
Computer programs: IPDS EXPOSE (Stoe & Cie, 2000[Stoe & Cie (2000). IPDS EXPOSE, IPDS CELL and IPDS INTEGRATE. Stoe & Cie GmbH, Darmstadt, Germany.]), IPDS CELL (Stoe & Cie, 2000[Stoe & Cie (2000). IPDS EXPOSE, IPDS CELL and IPDS INTEGRATE. Stoe & Cie GmbH, Darmstadt, Germany.]), IPDS INTEGRATE (Stoe & Cie, 2000[Stoe & Cie (2000). IPDS EXPOSE, IPDS CELL and IPDS INTEGRATE. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-32 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Chemical context top

Chiral-at-metal penta­methyl­cyclo­penta­dienyl rhodium complexes are popular catalysts in enanti­oselective reactions (Carmona et al., 1999; Davies et al., 2004). To obtain such chiral-at-metal complexes, a non-symmetrical bidentate ligand can be used. Among bidentate ligands, hydrazinyl­idene­pyridine derivatives are easy to synthesised (Liu et al., 2002; Ghedini et al., 2004; Marandi et al., 2015), and when coupled to metal centers not only can they introduce chirality, but also they can generate biologically relevant complexes (Ghosh et al., 2011, 2012). Herein, we present the synthesis and characterization of a chiral-at-metal penta­methyl­cyclo­penta­dienyl rhodium(III) hydrazinyl­idene­pyridine complex, [(η5-C5Me5)Rh(C13H12ClN3)Cl]Cl.

Structural commentary top

The molecular structure of the title compound is presented in Fig. 1. The cationic complex adopts a typical piano-stool geometry and it is chiral at the metal centre. The salt crystallizes as a racemate in the orthorhombic space group Pbca. In the complex, the hydrazinyl­idene­pyridine ligand is N,N-coordinated, the N-hydrazono and the N-pyridine groups forming with the rhodium center a five-membered metallacycle. Upon coordination, the hydrazinyl­idene­pyridine ligand is non-planar, an angle of 54.42 (7)° being observed between the planes of pyridine and the benzene ring of the [(4-chloro­phenyl)­hydrazono]ethyl group. Otherwise, all geometrical data around the rhodium(III) centre are similar to those found in analogous N,N-chelated penta­methyl­cyclo­penta­dienyl rhodium complexes (Gupta et al., 2011; Payne et al., 2013).

Supra­molecular features top

The N—H group of the hydrazinyl­idene­pyridine ligand inter­acts weakly with the counter-anion giving rise to a linear hydrogen bond (Table 1). No C—H···π or ππ stacking inter­actions are observed.

Synthesis and crystallization top

The title compound was synthesized by reacting one equivalent of [(η5-C5Me5)2Rh2(µ-Cl)2Cl2] (100 mg, 0.16 mmol) with two equivalents of 2-{1-[2-(4-chloro­phenyl)­hydrazono]ethyl}­pyridine (Liu et al., 2002; 79 mg, 0.32 mmol) in methanol (25ml), and the mixture was refluxed for 6 hours. The solution turned from yellow to dark red. Then, the volume was reduced to 2 ml and di­ethyl ether was added to induce precipitation of a red–brown solid. After filtration, the solid was purified by column chromatography (silica gel, chloro­form/methanol 9.8:0.2 v/v). Crystals suitable for X-ray structure analysis were obtained by the slow evaporation of a di­chloro­methane/n-pentane solution (1:1 v/v) containing the title compound. Yield: 80%. IR (KBr, ν, cm-1): 1592 (s, CN). 1H NMR (400 MHz, CD3CN, 298 K): d (p.p.m.) = 9.21 (br s, 1H, NH), 8.76 (d, 3JH—H = 5.6 Hz, 1H, Har), 8.16 (dd, 3JH—H = 8.0 Hz, 1H, Har), 8.01 (d, 3JH—H = 8.0 Hz, 1H, Har), 7.77 (dd, 1H, 3JH—H = 6.8 Hz, Har), 7.45 (d, 3JH—H = 8.8 Hz, 2H, Har), 7.36 (d, 3JH—H = 8.8 Hz, 2H, Har), 2.58 (s, 3H, CH3), 1.43 (s, 15H, C5Me5). MS (ESI positive mode): m/z 518.0 [M - Cl]+.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. Except for the N-bound H atom, which was refined freely, all hydrogen atoms were included in calculated positions and treated as riding atoms using SHELXL97 default parameters, with C—H = 0.93 Å for Carom and 0.96 Å for CH3, and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms.

Related literature top

For related literature, see: Carmona et al. (1999); Davies et al. (2004); Ghedini et al. (2004); Ghosh et al. (2011, 2012); Gupta et al. (2011); Liu et al. (2002); Marandi et al. (2015); Payne et al. (2013).

Computing details top

Data collection: IPDS EXPOSE (Stoe & Cie, 2000); cell refinement: IPDS CELL (Stoe & Cie, 2000); data reduction: IPDS INTEGRATE (Stoe & Cie, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-32 (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.
Chlorido(2-{1-[2-(4-chlorophenyl)hydrazin-1-ylidene-κN]ethyl}pyridine-κN)(η5-pentamethylcyclopentadienyl)rhodium(III) chloride top
Crystal data top
[Rh(C10H15)Cl(C13H12ClN3)]ClF(000) = 2256
Mr = 554.74Dx = 1.580 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 8000 reflections
a = 13.0774 (5) Åθ = 2.4–28.9°
b = 13.4537 (5) ŵ = 1.09 mm1
c = 26.5153 (9) ÅT = 173 K
V = 4665.1 (3) Å3Rod, yellow
Z = 80.21 × 0.20 × 0.13 mm
Data collection top
STOE IPDS
diffractometer
6320 independent reflections
Radiation source: fine-focus sealed tube4619 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
Detector resolution: 0.81 pixels mm-1θmax = 29.3°, θmin = 2.2°
phi oscillation scansh = 1717
Absorption correction: empirical (using intensity measurements)
(DIFABS; Walker & Stuart, 1983)
k = 1818
Tmin = 0.629, Tmax = 0.890l = 3636
82717 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.054H atoms treated by a mixture of independent and constrained refinement
S = 0.96 w = 1/[σ2(Fo2) + (0.0236P)2]
where P = (Fo2 + 2Fc2)/3
6320 reflections(Δ/σ)max = 0.005
281 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.62 e Å3
Crystal data top
[Rh(C10H15)Cl(C13H12ClN3)]ClV = 4665.1 (3) Å3
Mr = 554.74Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 13.0774 (5) ŵ = 1.09 mm1
b = 13.4537 (5) ÅT = 173 K
c = 26.5153 (9) Å0.21 × 0.20 × 0.13 mm
Data collection top
STOE IPDS
diffractometer
6320 independent reflections
Absorption correction: empirical (using intensity measurements)
(DIFABS; Walker & Stuart, 1983)
4619 reflections with I > 2σ(I)
Tmin = 0.629, Tmax = 0.890Rint = 0.074
82717 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.054H atoms treated by a mixture of independent and constrained refinement
S = 0.96Δρmax = 0.48 e Å3
6320 reflectionsΔρmin = 0.62 e Å3
281 parameters
Special details top

Experimental. A crystal was mounted at 173 K on a Stoe Image Plate Diffraction System (Stoe & Cie, 2000) using Mo Kα graphite monochromated radiation. Image plate distance 100 mm, ϕ oscillation scans 0 - 180°, step Δϕ = 0.8°, 5 minutes per frame.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.57249 (18)0.00756 (18)0.60832 (10)0.0279 (5)
H10.58710.02340.57780.034*
C20.6422 (2)0.07526 (19)0.62774 (11)0.0355 (6)
H20.70290.08860.61070.043*
C30.6205 (2)0.12238 (18)0.67247 (10)0.0350 (6)
H30.66580.16870.68590.042*
C40.5302 (2)0.09975 (19)0.69720 (9)0.0312 (5)
H40.51450.13040.72770.037*
C50.46296 (18)0.03094 (16)0.67623 (8)0.0218 (5)
C60.36119 (19)0.01036 (16)0.69694 (8)0.0217 (5)
C70.3320 (2)0.04681 (19)0.74812 (9)0.0315 (6)
H7A0.27870.00550.76160.047*
H7B0.39050.04430.77000.047*
H7C0.30800.11410.74570.047*
C80.11641 (18)0.05175 (16)0.65302 (8)0.0214 (5)
C90.11770 (18)0.00803 (16)0.60562 (9)0.0228 (4)
H90.17710.02240.59400.027*
C100.03097 (19)0.00944 (18)0.57538 (9)0.0263 (5)
H100.03240.01920.54350.032*
C110.05724 (18)0.05360 (19)0.59299 (9)0.0282 (6)
C120.06171 (19)0.09489 (19)0.64099 (10)0.0310 (6)
H120.12220.12270.65290.037*
C130.02538 (18)0.09408 (18)0.67088 (9)0.0277 (5)
H130.02340.12180.70300.033*
C140.41151 (18)0.21684 (16)0.54714 (8)0.0185 (4)
C150.46438 (17)0.23872 (16)0.59274 (8)0.0197 (5)
C160.39032 (18)0.25436 (15)0.63199 (8)0.0203 (5)
C170.29044 (17)0.24955 (15)0.60875 (9)0.0206 (5)
C180.30297 (17)0.22316 (15)0.55724 (8)0.0186 (4)
C190.4574 (2)0.19802 (19)0.49645 (8)0.0277 (5)
H19A0.46710.26010.47920.042*
H19B0.41240.15650.47710.042*
H19C0.52210.16540.50040.042*
C200.57832 (18)0.2459 (2)0.59914 (11)0.0314 (6)
H20A0.61150.20520.57430.047*
H20B0.59690.22350.63230.047*
H20C0.59940.31380.59490.047*
C210.4125 (2)0.28192 (18)0.68547 (9)0.0310 (6)
H21A0.47700.25400.69540.046*
H21B0.35940.25650.70690.046*
H21C0.41530.35300.68850.046*
C220.1914 (2)0.27337 (17)0.63382 (10)0.0288 (5)
H22A0.17710.34300.63020.043*
H22B0.19570.25700.66900.043*
H22C0.13760.23540.61850.043*
C230.22078 (19)0.20957 (18)0.51908 (9)0.0272 (5)
H23A0.15770.19380.53580.041*
H23B0.23890.15630.49670.041*
H23C0.21260.26980.50010.041*
Cl10.34471 (4)0.02319 (4)0.54150 (2)0.02355 (12)
Cl20.16517 (5)0.05548 (6)0.55360 (3)0.04123 (17)
Cl30.19592 (5)0.18619 (5)0.77896 (2)0.03405 (14)
N10.48505 (14)0.01482 (14)0.63192 (7)0.0207 (4)
N20.29842 (14)0.03410 (13)0.66601 (7)0.0184 (4)
N30.20095 (15)0.05148 (15)0.68473 (7)0.0229 (4)
H3N0.199 (2)0.082 (2)0.7119 (11)0.036 (8)*
Rh10.371080 (13)0.107403 (11)0.602805 (6)0.01552 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0221 (12)0.0290 (12)0.0328 (13)0.0055 (10)0.0013 (11)0.0033 (11)
C20.0236 (14)0.0349 (13)0.0481 (15)0.0099 (11)0.0049 (12)0.0034 (12)
C30.0299 (14)0.0300 (13)0.0453 (14)0.0086 (12)0.0162 (13)0.0007 (11)
C40.0368 (14)0.0278 (12)0.0289 (12)0.0045 (12)0.0134 (11)0.0037 (11)
C50.0260 (13)0.0187 (11)0.0207 (11)0.0015 (9)0.0078 (9)0.0006 (9)
C60.0296 (13)0.0185 (10)0.0169 (10)0.0028 (10)0.0025 (10)0.0004 (8)
C70.0438 (16)0.0298 (13)0.0207 (12)0.0022 (12)0.0004 (11)0.0060 (10)
C80.0220 (12)0.0184 (10)0.0239 (10)0.0042 (9)0.0025 (10)0.0013 (8)
C90.0213 (12)0.0232 (10)0.0240 (10)0.0001 (9)0.0025 (10)0.0005 (10)
C100.0263 (13)0.0288 (12)0.0238 (12)0.0033 (10)0.0001 (10)0.0005 (10)
C110.0194 (12)0.0308 (13)0.0345 (15)0.0045 (10)0.0032 (10)0.0075 (10)
C120.0220 (12)0.0282 (13)0.0427 (14)0.0001 (11)0.0081 (11)0.0021 (11)
C130.0257 (12)0.0289 (13)0.0286 (12)0.0009 (10)0.0075 (10)0.0023 (10)
C140.0233 (11)0.0158 (10)0.0163 (10)0.0010 (9)0.0006 (9)0.0015 (8)
C150.0224 (11)0.0159 (10)0.0209 (12)0.0034 (9)0.0014 (9)0.0041 (8)
C160.0271 (14)0.0159 (9)0.0178 (10)0.0011 (9)0.0007 (9)0.0006 (8)
C170.0239 (11)0.0134 (9)0.0245 (12)0.0018 (8)0.0017 (10)0.0020 (9)
C180.0200 (11)0.0146 (10)0.0212 (11)0.0015 (9)0.0015 (9)0.0030 (8)
C190.0317 (14)0.0321 (13)0.0192 (11)0.0044 (11)0.0045 (10)0.0011 (10)
C200.0235 (12)0.0361 (13)0.0345 (13)0.0079 (11)0.0043 (12)0.0089 (12)
C210.0482 (16)0.0258 (12)0.0190 (11)0.0002 (11)0.0051 (11)0.0021 (10)
C220.0316 (14)0.0191 (11)0.0358 (14)0.0067 (10)0.0113 (11)0.0010 (10)
C230.0270 (14)0.0261 (12)0.0285 (12)0.0010 (10)0.0083 (10)0.0028 (10)
Cl10.0249 (3)0.0202 (2)0.0255 (3)0.0013 (2)0.0007 (2)0.0065 (2)
Cl20.0240 (3)0.0549 (4)0.0448 (4)0.0029 (3)0.0080 (3)0.0091 (3)
Cl30.0422 (4)0.0344 (3)0.0256 (3)0.0010 (3)0.0048 (3)0.0084 (2)
N10.0191 (10)0.0193 (9)0.0236 (10)0.0007 (8)0.0038 (8)0.0007 (8)
N20.0208 (10)0.0158 (9)0.0186 (9)0.0012 (7)0.0004 (8)0.0013 (7)
N30.0221 (10)0.0279 (11)0.0188 (9)0.0007 (9)0.0027 (8)0.0045 (8)
Rh10.01625 (7)0.01479 (6)0.01552 (6)0.00163 (7)0.00072 (8)0.00038 (7)
Geometric parameters (Å, º) top
C1—N11.338 (3)C15—C161.437 (3)
C1—C21.388 (3)C15—C201.503 (3)
C1—H10.9300C15—Rh12.164 (2)
C2—C31.375 (4)C16—C171.446 (3)
C2—H20.9300C16—C211.494 (3)
C3—C41.385 (4)C16—Rh12.138 (2)
C3—H30.9300C17—C181.421 (3)
C4—C51.392 (3)C17—C221.491 (3)
C4—H40.9300C17—Rh12.190 (2)
C5—N11.357 (3)C18—C231.487 (3)
C5—C61.466 (3)C18—Rh12.163 (2)
C6—N21.306 (3)C19—H19A0.9600
C6—C71.493 (3)C19—H19B0.9600
C7—H7A0.9600C19—H19C0.9600
C7—H7B0.9600C20—H20A0.9600
C7—H7C0.9600C20—H20B0.9600
C8—C91.388 (3)C20—H20C0.9600
C8—N31.389 (3)C21—H21A0.9600
C8—C131.402 (3)C21—H21B0.9600
C9—C101.389 (3)C21—H21C0.9600
C9—H90.9300C22—H22A0.9600
C10—C111.379 (3)C22—H22B0.9600
C10—H100.9300C22—H22C0.9600
C11—C121.390 (4)C23—H23A0.9600
C11—Cl21.756 (2)C23—H23B0.9600
C12—C131.388 (4)C23—H23C0.9600
C12—H120.9300Cl1—Rh12.4183 (6)
C13—H130.9300N1—Rh12.0902 (18)
C14—C151.424 (3)N2—N31.388 (3)
C14—C181.447 (3)N2—Rh12.1643 (18)
C14—C191.493 (3)N3—H3N0.83 (3)
C14—Rh12.151 (2)
N1—C1—C2122.4 (2)C14—C18—Rh169.95 (12)
N1—C1—H1118.8C23—C18—Rh1126.08 (15)
C2—C1—H1118.8C14—C19—H19A109.5
C3—C2—C1119.1 (3)C14—C19—H19B109.5
C3—C2—H2120.4H19A—C19—H19B109.5
C1—C2—H2120.4C14—C19—H19C109.5
C2—C3—C4118.9 (2)H19A—C19—H19C109.5
C2—C3—H3120.6H19B—C19—H19C109.5
C4—C3—H3120.6C15—C20—H20A109.5
C3—C4—C5119.7 (2)C15—C20—H20B109.5
C3—C4—H4120.2H20A—C20—H20B109.5
C5—C4—H4120.2C15—C20—H20C109.5
N1—C5—C4120.9 (2)H20A—C20—H20C109.5
N1—C5—C6115.58 (19)H20B—C20—H20C109.5
C4—C5—C6123.3 (2)C16—C21—H21A109.5
N2—C6—C5114.96 (19)C16—C21—H21B109.5
N2—C6—C7124.1 (2)H21A—C21—H21B109.5
C5—C6—C7120.7 (2)C16—C21—H21C109.5
C6—C7—H7A109.5H21A—C21—H21C109.5
C6—C7—H7B109.5H21B—C21—H21C109.5
H7A—C7—H7B109.5C17—C22—H22A109.5
C6—C7—H7C109.5C17—C22—H22B109.5
H7A—C7—H7C109.5H22A—C22—H22B109.5
H7B—C7—H7C109.5C17—C22—H22C109.5
C9—C8—N3122.5 (2)H22A—C22—H22C109.5
C9—C8—C13119.2 (2)H22B—C22—H22C109.5
N3—C8—C13118.2 (2)C18—C23—H23A109.5
C8—C9—C10120.5 (2)C18—C23—H23B109.5
C8—C9—H9119.8H23A—C23—H23B109.5
C10—C9—H9119.8C18—C23—H23C109.5
C11—C10—C9119.6 (2)H23A—C23—H23C109.5
C11—C10—H10120.2H23B—C23—H23C109.5
C9—C10—H10120.2C1—N1—C5119.0 (2)
C10—C11—C12121.2 (2)C1—N1—Rh1124.81 (16)
C10—C11—Cl2118.5 (2)C5—N1—Rh1115.99 (15)
C12—C11—Cl2120.3 (2)C6—N2—N3115.47 (18)
C13—C12—C11119.0 (2)C6—N2—Rh1114.78 (15)
C13—C12—H12120.5N3—N2—Rh1127.12 (14)
C11—C12—H12120.5N2—N3—C8121.01 (19)
C12—C13—C8120.5 (2)N2—N3—H3N115 (2)
C12—C13—H13119.8C8—N3—H3N120 (2)
C8—C13—H13119.8N1—Rh1—C16109.48 (8)
C15—C14—C18107.88 (19)N1—Rh1—C14119.08 (8)
C15—C14—C19127.2 (2)C16—Rh1—C1465.57 (8)
C18—C14—C19124.8 (2)N1—Rh1—C18158.28 (8)
C15—C14—Rh171.22 (12)C16—Rh1—C1865.47 (8)
C18—C14—Rh170.85 (12)C14—Rh1—C1839.20 (9)
C19—C14—Rh1126.89 (16)N1—Rh1—C1597.47 (8)
C14—C15—C16108.55 (19)C16—Rh1—C1539.03 (8)
C14—C15—C20126.2 (2)C14—Rh1—C1538.53 (8)
C16—C15—C20125.2 (2)C18—Rh1—C1564.87 (8)
C14—C15—Rh170.25 (12)N1—Rh1—N275.85 (7)
C16—C15—Rh169.52 (12)C16—Rh1—N2101.11 (7)
C20—C15—Rh1126.73 (16)C14—Rh1—N2162.04 (8)
C15—C16—C17107.07 (18)C18—Rh1—N2125.44 (8)
C15—C16—C21126.4 (2)C15—Rh1—N2135.66 (7)
C17—C16—C21126.2 (2)N1—Rh1—C17146.86 (8)
C15—C16—Rh171.45 (12)C16—Rh1—C1739.01 (8)
C17—C16—Rh172.42 (12)C14—Rh1—C1764.52 (8)
C21—C16—Rh1126.57 (16)C18—Rh1—C1738.09 (8)
C18—C17—C16108.47 (19)C15—Rh1—C1764.36 (8)
C18—C17—C22125.6 (2)N2—Rh1—C1797.52 (8)
C16—C17—C22125.8 (2)N1—Rh1—Cl185.24 (5)
C18—C17—Rh169.94 (12)C16—Rh1—Cl1158.74 (6)
C16—C17—Rh168.57 (12)C14—Rh1—Cl194.08 (6)
C22—C17—Rh1129.66 (16)C18—Rh1—Cl195.10 (6)
C17—C18—C14107.81 (19)C15—Rh1—Cl1126.21 (6)
C17—C18—C23127.0 (2)N2—Rh1—Cl197.29 (5)
C14—C18—C23125.2 (2)C17—Rh1—Cl1127.90 (6)
C17—C18—Rh171.97 (12)
N1—C1—C2—C31.0 (4)C15—C16—Rh1—N2156.22 (12)
C1—C2—C3—C40.9 (4)C17—C16—Rh1—N288.24 (13)
C2—C3—C4—C50.6 (4)C21—C16—Rh1—N234.2 (2)
C3—C4—C5—N10.4 (4)C15—C16—Rh1—C17115.54 (17)
C3—C4—C5—C6173.4 (2)C21—C16—Rh1—C17122.5 (3)
N1—C5—C6—N212.0 (3)C15—C16—Rh1—Cl154.3 (2)
C4—C5—C6—N2162.0 (2)C17—C16—Rh1—Cl161.2 (2)
N1—C5—C6—C7173.1 (2)C21—C16—Rh1—Cl1176.30 (14)
C4—C5—C6—C712.9 (3)C15—C14—Rh1—N162.63 (15)
N3—C8—C9—C10179.5 (2)C18—C14—Rh1—N1179.89 (11)
C13—C8—C9—C102.4 (3)C19—C14—Rh1—N160.3 (2)
C8—C9—C10—C110.8 (3)C15—C14—Rh1—C1636.94 (13)
C9—C10—C11—C121.5 (4)C18—C14—Rh1—C1680.53 (14)
C9—C10—C11—Cl2179.27 (18)C19—C14—Rh1—C16159.8 (2)
C10—C11—C12—C132.0 (4)C15—C14—Rh1—C18117.47 (18)
Cl2—C11—C12—C13178.73 (19)C19—C14—Rh1—C18119.6 (3)
C11—C12—C13—C80.3 (4)C18—C14—Rh1—C15117.47 (18)
C9—C8—C13—C121.9 (3)C19—C14—Rh1—C15122.9 (3)
N3—C8—C13—C12179.0 (2)C15—C14—Rh1—N281.3 (3)
C18—C14—C15—C162.6 (2)C18—C14—Rh1—N236.1 (3)
C19—C14—C15—C16178.3 (2)C19—C14—Rh1—N2155.8 (2)
Rh1—C14—C15—C1659.16 (15)C15—C14—Rh1—C1780.15 (14)
C18—C14—C15—C20176.6 (2)C18—C14—Rh1—C1737.33 (12)
C19—C14—C15—C200.9 (4)C19—C14—Rh1—C17157.0 (2)
Rh1—C14—C15—C20121.6 (2)C15—C14—Rh1—Cl1149.45 (12)
C18—C14—C15—Rh161.73 (15)C18—C14—Rh1—Cl193.08 (12)
C19—C14—C15—Rh1122.5 (2)C19—C14—Rh1—Cl126.6 (2)
C14—C15—C16—C174.5 (2)C17—C18—Rh1—N1117.7 (2)
C20—C15—C16—C17174.7 (2)C14—C18—Rh1—N10.3 (3)
Rh1—C15—C16—C1764.13 (14)C23—C18—Rh1—N1119.2 (2)
C14—C15—C16—C21178.1 (2)C17—C18—Rh1—C1636.65 (13)
C20—C15—C16—C211.1 (4)C14—C18—Rh1—C1680.81 (14)
Rh1—C15—C16—C21122.2 (2)C23—C18—Rh1—C16159.7 (2)
C14—C15—C16—Rh159.61 (15)C17—C18—Rh1—C14117.46 (18)
C20—C15—C16—Rh1121.2 (2)C23—C18—Rh1—C14119.5 (2)
C15—C16—C17—C184.8 (2)C17—C18—Rh1—C1579.84 (14)
C21—C16—C17—C18178.4 (2)C14—C18—Rh1—C1537.62 (12)
Rh1—C16—C17—C1858.69 (14)C23—C18—Rh1—C15157.1 (2)
C15—C16—C17—C22172.3 (2)C17—C18—Rh1—N249.64 (15)
C21—C16—C17—C221.3 (4)C14—C18—Rh1—N2167.10 (11)
Rh1—C16—C17—C22124.2 (2)C23—C18—Rh1—N273.4 (2)
C15—C16—C17—Rh163.49 (14)C14—C18—Rh1—C17117.46 (18)
C21—C16—C17—Rh1122.9 (2)C23—C18—Rh1—C17123.0 (3)
C16—C17—C18—C143.3 (2)C17—C18—Rh1—Cl1152.34 (12)
C22—C17—C18—C14173.9 (2)C14—C18—Rh1—Cl190.20 (12)
Rh1—C17—C18—C1461.10 (15)C23—C18—Rh1—Cl129.3 (2)
C16—C17—C18—C23179.9 (2)C14—C15—Rh1—N1128.49 (13)
C22—C17—C18—C233.0 (4)C16—C15—Rh1—N1111.85 (13)
Rh1—C17—C18—C23122.0 (2)C20—C15—Rh1—N17.5 (2)
C16—C17—C18—Rh157.85 (14)C14—C15—Rh1—C16119.66 (18)
C22—C17—C18—Rh1125.0 (2)C20—C15—Rh1—C16119.3 (3)
C15—C14—C18—C170.4 (2)C16—C15—Rh1—C14119.66 (18)
C19—C14—C18—C17175.4 (2)C20—C15—Rh1—C14121.0 (3)
Rh1—C14—C18—C1762.40 (15)C14—C15—Rh1—C1838.27 (13)
C15—C14—C18—C23177.4 (2)C16—C15—Rh1—C1881.39 (14)
C19—C14—C18—C231.5 (4)C20—C15—Rh1—C18159.3 (2)
Rh1—C14—C18—C23120.7 (2)C14—C15—Rh1—N2154.14 (12)
C15—C14—C18—Rh161.96 (15)C16—C15—Rh1—N234.48 (17)
C19—C14—C18—Rh1122.2 (2)C20—C15—Rh1—N284.8 (2)
C2—C1—N1—C50.7 (4)C14—C15—Rh1—C1780.61 (14)
C2—C1—N1—Rh1175.13 (19)C16—C15—Rh1—C1739.05 (13)
C4—C5—N1—C10.4 (3)C20—C15—Rh1—C17158.4 (2)
C6—C5—N1—C1173.8 (2)C14—C15—Rh1—Cl138.93 (15)
C4—C5—N1—Rh1175.32 (17)C16—C15—Rh1—Cl1158.59 (10)
C6—C5—N1—Rh11.1 (2)C20—C15—Rh1—Cl182.1 (2)
C5—C6—N2—N3178.27 (18)C6—N2—Rh1—N114.84 (15)
C7—C6—N2—N33.5 (3)N3—N2—Rh1—N1175.49 (18)
C5—C6—N2—Rh118.7 (2)C6—N2—Rh1—C1692.67 (16)
C7—C6—N2—Rh1166.52 (18)N3—N2—Rh1—C1667.98 (18)
C6—N2—N3—C8148.6 (2)C6—N2—Rh1—C14133.1 (2)
Rh1—N2—N3—C850.9 (3)N3—N2—Rh1—C1427.5 (3)
C9—C8—N3—N219.0 (3)C6—N2—Rh1—C18160.37 (15)
C13—C8—N3—N2163.9 (2)N3—N2—Rh1—C180.3 (2)
C1—N1—Rh1—C1696.4 (2)C6—N2—Rh1—C1571.37 (19)
C5—N1—Rh1—C1689.00 (16)N3—N2—Rh1—C1589.28 (19)
C1—N1—Rh1—C1424.2 (2)C6—N2—Rh1—C17132.06 (16)
C5—N1—Rh1—C14161.22 (15)N3—N2—Rh1—C1728.58 (18)
C1—N1—Rh1—C1824.0 (3)C6—N2—Rh1—Cl198.03 (15)
C5—N1—Rh1—C18161.41 (19)N3—N2—Rh1—Cl1101.32 (16)
C1—N1—Rh1—C1558.1 (2)C18—C17—Rh1—N1143.18 (15)
C5—N1—Rh1—C15127.31 (16)C16—C17—Rh1—N122.8 (2)
C1—N1—Rh1—N2166.6 (2)C22—C17—Rh1—N196.6 (2)
C5—N1—Rh1—N27.99 (15)C18—C17—Rh1—C16120.37 (18)
C1—N1—Rh1—C17111.4 (2)C22—C17—Rh1—C16119.4 (3)
C5—N1—Rh1—C1774.0 (2)C18—C17—Rh1—C1438.40 (13)
C1—N1—Rh1—Cl167.84 (19)C16—C17—Rh1—C1481.97 (13)
C5—N1—Rh1—Cl1106.75 (15)C22—C17—Rh1—C14158.6 (2)
C15—C16—Rh1—N177.45 (13)C16—C17—Rh1—C18120.37 (18)
C17—C16—Rh1—N1167.01 (12)C22—C17—Rh1—C18120.2 (3)
C21—C16—Rh1—N144.5 (2)C18—C17—Rh1—C1581.31 (14)
C15—C16—Rh1—C1436.48 (12)C16—C17—Rh1—C1539.07 (12)
C17—C16—Rh1—C1479.06 (13)C22—C17—Rh1—C15158.5 (2)
C21—C16—Rh1—C14158.5 (2)C18—C17—Rh1—N2141.23 (13)
C15—C16—Rh1—C1879.73 (13)C16—C17—Rh1—N298.39 (12)
C17—C16—Rh1—C1835.81 (12)C22—C17—Rh1—N221.0 (2)
C21—C16—Rh1—C18158.3 (2)C18—C17—Rh1—Cl135.87 (15)
C17—C16—Rh1—C15115.54 (17)C16—C17—Rh1—Cl1156.25 (10)
C21—C16—Rh1—C15122.0 (3)C22—C17—Rh1—Cl184.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···Cl30.83 (3)2.27 (3)3.087 (2)171 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···Cl30.83 (3)2.27 (3)3.087 (2)171 (3)

Experimental details

Crystal data
Chemical formula[Rh(C10H15)Cl(C13H12ClN3)]Cl
Mr554.74
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)173
a, b, c (Å)13.0774 (5), 13.4537 (5), 26.5153 (9)
V3)4665.1 (3)
Z8
Radiation typeMo Kα
µ (mm1)1.09
Crystal size (mm)0.21 × 0.20 × 0.13
Data collection
DiffractometerSTOE IPDS
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(DIFABS; Walker & Stuart, 1983)
Tmin, Tmax0.629, 0.890
No. of measured, independent and
observed [I > 2σ(I)] reflections
82717, 6320, 4619
Rint0.074
(sin θ/λ)max1)0.687
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.054, 0.96
No. of reflections6320
No. of parameters281
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.62

Computer programs: IPDS EXPOSE (Stoe & Cie, 2000), IPDS CELL (Stoe & Cie, 2000), IPDS INTEGRATE (Stoe & Cie, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-32 (Farrugia, 2012).

 

Acknowledgements

RN thanks the Swiss Confederation for a Swiss Government Scholarship.

References

First citationCarmona, D., Vega, C., Lahoz, F. J., Elipe, S., Oro, L. A., Lamata, M. P., Viguri, F., García-Correas, R., Cativiela, C. & López-Ram de Viu, M. P. (1999). Organometallics, 18, 3364–3371.  Web of Science CSD CrossRef CAS Google Scholar
First citationDavies, D. L., Fawcett, J., Garratt, S. A. & Russell, D. R. (2004). Dalton Trans., pp. 3629–3634.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGhedini, M., Aiello, I., Crispini, A. & La Deda, M. (2004). Dalton Trans., pp. 1386–1392.  Google Scholar
First citationGhosh, K., Kumar, P., Mohan, V., Singh, U. P., Kasiri, S. & Mandal, S. S. (2012). Inorg. Chem. 51, 3343–3345.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGhosh, K., Kumar, P., Tyagi, N., Singh, U. P., Goel, N., Chakraborty, A., Roy, P. & Baratto, M. C. (2011). Polyhedron, 30, 2667–2677.  Web of Science CSD CrossRef CAS Google Scholar
First citationGupta, G., Gloria, S., Nongbri, S. L., Therrien, B. & Rao, K. M. (2011). J. Organomet. Chem. 696, 2014–2022.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, Q., Mudadu, M. S., Schmider, H., Thummel, R., Tao, Y. & Wang, S. (2002). Organometallics, 21, 4743–4749.  Web of Science CSD CrossRef CAS Google Scholar
First citationMarandi, G., Saghatforoush, L., Golsanamlou, V., Tofighjoo, E., Hassanabad, F. A., Hajari, S. & Ghadimkhani, R. (2015). Res. Chem. Intermed. 41, 631–636.  CrossRef CAS Google Scholar
First citationPayne, R., Govender, P., Therrien, B., Clavel, C. M., Dyson, P. J. & Smith, G. S. (2013). J. Organomet. Chem. 729, 20–27.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2000). IPDS EXPOSE, IPDS CELL and IPDS INTEGRATE. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationWalker, N. & Stuart, D. (1983). Acta Cryst. A39, 158–166.  CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages 248-250
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds