organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages o125-o126

Crystal structure of 4-amino­benzoic acid–4-methyl­pyridine (1/1)

aDepartment of Physics, Presidency College, Chennai 600 005, India, bDepartment of Physics, Panimalar Engineering College, Chennai 600 123, India, and cDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India
*Correspondence e-mail: chakkaravarthi_2005@yahoo.com, mohan66@hotmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 2 January 2015; accepted 14 January 2015; online 21 January 2015)

In the title 1:1 adduct, C6H7N·C7H7NO2, the carb­oxy­lic acid group is twisted at an angle of 4.32 (18)° with respect to the attached benzene ring. In the crystal, the carb­oxy­lic acid group is linked to the pyridine ring by an O—H⋯N hydrogen bond, forming a dimer. The dimers are linked by N—H⋯O hydrogen bonds, generating (010) sheets.

1. Related literature

For background to pyridine derivatives, see: Tomaru et al. (1991[Tomaru, S., Matsumoto, S., Kurihara, T., Suzuki, H., Ooba, N. & Kaino, T. (1991). Appl. Phys. Lett. 58, 2583-2585.]). Katritzky et al. (1996[Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). In Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.]); Akkurt et al. (2005[Akkurt, M., Karaca, S., Jarrahpour, A. A., Zarei, M. & Büyükgüngör, O. (2005). Acta Cryst. E61, o776-o778.]). For related structures, see: Smith & Wermuth (2010[Smith, G. & Wermuth, U. D. (2010). Acta Cryst. E66, o1254.]); Hemamalini & Fun (2010[Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o2151-o2152.]); Kannan et al. (2012[Kannan, V., Sugumar, P., Brahadeeswaran, S. & Ponnuswamy, M. N. (2012). Acta Cryst. E68, o3187.]); Thanigaimani et al. (2012[Thanigaimani, K., Farhadikoutenaei, A., Khalib, N. C., Arshad, S. & Razak, I. A. (2012). Acta Cryst. E68, o3196-o3197.]); Muralidharan et al. (2013[Muralidharan, S., Elavarasu, N., Srinivasan, T., Gopalakrishnan, R. & Velmurugan, D. (2013). Acta Cryst. E69, o910.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C6H7N·C7H7NO2

  • Mr = 230.26

  • Monoclinic, P c

  • a = 7.5970 (7) Å

  • b = 11.6665 (12) Å

  • c = 7.6754 (8) Å

  • β = 114.200 (3)°

  • V = 620.49 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.28 × 0.24 × 0.20 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.977, Tmax = 0.983

  • 10064 measured reflections

  • 2144 independent reflections

  • 1458 reflections with I > 2σ(I)

  • Rint = 0.030

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.108

  • S = 1.03

  • 2144 reflections

  • 159 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2i 0.84 (1) 1.81 (1) 2.644 (3) 177 (4)
N1—H1A⋯O2ii 0.86 2.32 3.049 (3) 142
N1—H1B⋯O2iii 0.86 2.17 3.031 (3) 174
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z-1; (iii) [x-1, -y, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Chemical context top

Amino­pyridine and its derivatives play an important role in heterocyclic chemistry (Katritzky et al., 1996). Some pyridine derivatives possess nonlinear optical (NLO) properties (Tomaru et al., 1991) and possess anti­bacterial and anti­fungal activities (Akkurt et al., 2005). we herewith, report the synthesis and the crystal structure of (I) (Fig. 1).

Structural commentary top

The molecular structure of the title compound (I) is shown in (Fig. 1). It consists of two independent molecules in the assymetric unit. In the 4-amino­benzoic acid molecule, the carboxyl group is twisted at an angle of 4.32 (18)° with respect to the aromatic ring. In the 4-methyl­pyridine molecule, the pyridine ring (C8—C12/N2) is almost planar [maximum deviation 0.002 (3) Å]. The dihedral angle between the benzene ring (C1—C6) and pyridine ring (C8—C12/N2) is 57.11 (14)°.

Supra­molecular features top

In the crystal structure, 4-amino­benzoate and 4-methyl­pyridine molecules are linked by weak inter­molecular O—H···N hydrogen bonds and forms infinite one-dimensional chain along [0 0 1]. The adjacent 4-amino­benzoate molecules are connected by weak inter­molecular N—H···O hydrogen bonds, forming R22(12) ring motif in a two-dimensional network in the (010) plane (Table 2 & Fig. 2).

Database survey top

Several similar structures containing methyl­pyridinium and nitro­benzoate molecules have been reported earlier: i.e., 2-Amino-5-methyl­pyridinium 2-amino­benzoate (Thanigaimani et al., 2012); 2-Amino-5-chloro­pyridinium 4-amino­benzoate (Kannan et al., 2012); 2-Amino-4-methyl­pyridinium 2-nitro­benzoate (Muralidharan et al., 2013); 4-Methyl­pyridinium 2-carb­oxy-4,5-di­chloro­benzoate monohydrate [Smith & Wermuth, (2010)]; 2-Amino-4-methyl­pyridinium 2-hy­droxy­benzoate [Hemamalini & Fun (2010)].

Synthesis and crystallization top

Equimolar qu­antity of 4-methyl­pyridine and 4-amino­benzoic acid were dissolved in methanol-water mixed solvent and colourless blocks of the title adduct were grown by slow evaporation of the solvents.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. The hydrogen atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) or 0.96 Å (methyl) and N—H = 0.86 Å with Uiso(H) = 1.2 Ueq(C or N) or 1.5 Ueq(C) The hydroxyl H atom was located in a difference Fourier map, and refined with Uiso(H) = 1.2 Ueq(O) and distance restraint O—H = 0.82 Å.

Related literature top

For background to pyridine derivatives, see: Tomaru et al. (1991). Katritzky et al. (1996); Akkurt et al. (2005). For related structures, see: Smith & Wermuth (2010); Hemamalini & Fun (2010); Kannan et al. (2012); Thanigaimani et al. (2012); Muralidharan et al. (2013).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with 30% probability displacement ellipsoids for non-H atoms.
4-Aminobenzoic acid–4-methylpyridine (1/1) top
Crystal data top
C6H7N·C7H7NO2F(000) = 244
Mr = 230.26Dx = 1.232 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2ycCell parameters from 2749 reflections
a = 7.5970 (7) Åθ = 3.4–21.8°
b = 11.6665 (12) ŵ = 0.09 mm1
c = 7.6754 (8) ÅT = 295 K
β = 114.200 (3)°Block, colourless
V = 620.49 (11) Å30.28 × 0.24 × 0.20 mm
Z = 2
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2144 independent reflections
Radiation source: fine-focus sealed tube1458 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω and ϕ scanθmax = 26.7°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 98
Tmin = 0.977, Tmax = 0.983k = 1414
10064 measured reflectionsl = 99
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0554P)2 + 0.0229P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2144 reflectionsΔρmax = 0.12 e Å3
159 parametersΔρmin = 0.13 e Å3
3 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.013 (4)
Crystal data top
C6H7N·C7H7NO2V = 620.49 (11) Å3
Mr = 230.26Z = 2
Monoclinic, PcMo Kα radiation
a = 7.5970 (7) ŵ = 0.09 mm1
b = 11.6665 (12) ÅT = 295 K
c = 7.6754 (8) Å0.28 × 0.24 × 0.20 mm
β = 114.200 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2144 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1458 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.983Rint = 0.030
10064 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0383 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.12 e Å3
2144 reflectionsΔρmin = 0.13 e Å3
159 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3693 (4)0.1034 (2)0.7149 (4)0.0567 (6)
C20.4434 (4)0.2029 (2)0.6722 (4)0.0591 (7)
H20.36710.24710.56750.071*
C30.6273 (4)0.2362 (2)0.7829 (3)0.0558 (6)
H30.67370.30370.75290.067*
C40.7475 (4)0.1730 (2)0.9383 (4)0.0508 (6)
C50.6737 (4)0.0738 (2)0.9798 (4)0.0594 (7)
H50.75160.02941.08350.071*
C60.4892 (4)0.0392 (2)0.8724 (4)0.0629 (7)
H60.44290.02780.90430.076*
C70.9416 (4)0.2104 (2)1.0596 (4)0.0587 (7)
C80.4371 (5)0.4546 (2)1.3188 (5)0.0729 (8)
H80.35670.51481.31830.087*
C90.6306 (4)0.4655 (2)1.4263 (4)0.0693 (8)
H90.67910.53191.49670.083*
C100.7534 (4)0.3784 (2)1.4304 (4)0.0639 (7)
C110.6716 (4)0.2836 (2)1.3242 (4)0.0718 (8)
H110.74870.22201.32290.086*
C120.4767 (5)0.2790 (3)1.2196 (4)0.0766 (9)
H120.42490.21351.14790.092*
C130.9658 (5)0.3866 (3)1.5468 (6)0.0954 (11)
H13A1.03100.39411.46350.143*
H13B1.00990.31861.62290.143*
H13C0.99300.45241.62890.143*
N10.1840 (4)0.0710 (2)0.6087 (4)0.0827 (8)
H1A0.11130.11240.51370.099*
H1B0.13950.00920.63640.099*
N20.3582 (3)0.3627 (2)1.2152 (4)0.0722 (6)
O10.9921 (3)0.30989 (17)1.0123 (3)0.0808 (6)
H11.109 (2)0.324 (3)1.076 (5)0.121*
O21.0516 (3)0.15755 (17)1.1996 (3)0.0778 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0545 (16)0.0584 (15)0.0526 (15)0.0071 (14)0.0173 (13)0.0070 (14)
C20.0599 (17)0.0581 (15)0.0489 (15)0.0009 (12)0.0118 (13)0.0088 (12)
C30.0582 (16)0.0536 (13)0.0509 (15)0.0050 (13)0.0175 (13)0.0058 (12)
C40.0529 (14)0.0490 (12)0.0442 (13)0.0040 (12)0.0135 (12)0.0026 (12)
C50.0671 (18)0.0516 (14)0.0484 (16)0.0021 (13)0.0124 (14)0.0046 (12)
C60.077 (2)0.0518 (14)0.0590 (17)0.0076 (14)0.0273 (15)0.0048 (13)
C70.0563 (17)0.0532 (13)0.0583 (17)0.0045 (13)0.0150 (14)0.0003 (14)
C80.0630 (18)0.0626 (16)0.081 (2)0.0031 (15)0.0172 (16)0.0007 (16)
C90.068 (2)0.0617 (17)0.0665 (19)0.0085 (14)0.0150 (16)0.0042 (13)
C100.0579 (18)0.0740 (17)0.0585 (17)0.0045 (16)0.0225 (14)0.0063 (15)
C110.0680 (19)0.0723 (18)0.078 (2)0.0015 (15)0.0325 (18)0.0048 (16)
C120.077 (2)0.0747 (19)0.074 (2)0.0158 (17)0.0260 (17)0.0171 (16)
C130.0604 (19)0.105 (2)0.104 (3)0.0070 (17)0.0163 (18)0.002 (2)
N10.0655 (16)0.0852 (18)0.0809 (18)0.0163 (13)0.0132 (14)0.0063 (15)
N20.0567 (14)0.0719 (15)0.0766 (16)0.0059 (13)0.0157 (12)0.0023 (13)
O10.0588 (11)0.0691 (12)0.0883 (16)0.0105 (10)0.0035 (11)0.0130 (11)
O20.0678 (13)0.0726 (12)0.0665 (12)0.0068 (10)0.0006 (10)0.0090 (10)
Geometric parameters (Å, º) top
C1—N11.359 (4)C8—H80.9300
C1—C21.387 (3)C9—C101.371 (4)
C1—C61.397 (4)C9—H90.9300
C2—C31.361 (4)C10—C111.363 (4)
C2—H20.9300C10—C131.493 (5)
C3—C41.380 (3)C11—C121.366 (4)
C3—H30.9300C11—H110.9300
C4—C51.379 (3)C12—N21.319 (4)
C4—C71.452 (3)C12—H120.9300
C5—C61.364 (4)C13—H13A0.9600
C5—H50.9300C13—H13B0.9600
C6—H60.9300C13—H13C0.9600
C7—O21.224 (3)N1—H1A0.8600
C7—O11.319 (3)N1—H1B0.8600
C8—N21.323 (3)O1—H10.836 (10)
C8—C91.365 (4)
N1—C1—C2120.8 (2)C8—C9—C10119.9 (3)
N1—C1—C6121.2 (2)C8—C9—H9120.0
C2—C1—C6118.0 (2)C10—C9—H9120.0
C3—C2—C1120.2 (2)C11—C10—C9116.6 (3)
C3—C2—H2119.9C11—C10—C13121.7 (3)
C1—C2—H2119.9C9—C10—C13121.7 (3)
C2—C3—C4122.2 (2)C10—C11—C12120.2 (3)
C2—C3—H3118.9C10—C11—H11119.9
C4—C3—H3118.9C12—C11—H11119.9
C5—C4—C3117.4 (2)N2—C12—C11123.4 (3)
C5—C4—C7120.4 (2)N2—C12—H12118.3
C3—C4—C7122.1 (2)C11—C12—H12118.3
C6—C5—C4121.5 (2)C10—C13—H13A109.5
C6—C5—H5119.2C10—C13—H13B109.5
C4—C5—H5119.2H13A—C13—H13B109.5
C5—C6—C1120.6 (2)C10—C13—H13C109.5
C5—C6—H6119.7H13A—C13—H13C109.5
C1—C6—H6119.7H13B—C13—H13C109.5
O2—C7—O1120.9 (3)C1—N1—H1A120.0
O2—C7—C4124.1 (2)C1—N1—H1B120.0
O1—C7—C4115.0 (2)H1A—N1—H1B120.0
N2—C8—C9123.3 (3)C12—N2—C8116.6 (3)
N2—C8—H8118.4C7—O1—H1112 (3)
C9—C8—H8118.4
N1—C1—C2—C3178.1 (3)C3—C4—C7—O2179.2 (3)
C6—C1—C2—C30.5 (4)C5—C4—C7—O1176.1 (2)
C1—C2—C3—C40.9 (4)C3—C4—C7—O11.3 (3)
C2—C3—C4—C50.5 (4)N2—C8—C9—C100.0 (5)
C2—C3—C4—C7178.1 (2)C8—C9—C10—C110.2 (4)
C3—C4—C5—C60.2 (4)C8—C9—C10—C13179.7 (3)
C7—C4—C5—C6177.4 (2)C9—C10—C11—C120.4 (4)
C4—C5—C6—C10.5 (4)C13—C10—C11—C12179.9 (3)
N1—C1—C6—C5178.8 (3)C10—C11—C12—N20.4 (5)
C2—C1—C6—C50.2 (4)C11—C12—N2—C80.1 (5)
C5—C4—C7—O21.7 (4)C9—C8—N2—C120.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N2i0.84 (1)1.81 (1)2.644 (3)177 (4)
N1—H1A···O2ii0.862.323.049 (3)142
N1—H1B···O2iii0.862.173.031 (3)174
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z1; (iii) x1, y, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N2i0.836 (10)1.809 (11)2.644 (3)177 (4)
N1—H1A···O2ii0.862.323.049 (3)142
N1—H1B···O2iii0.862.173.031 (3)174
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z1; (iii) x1, y, z1/2.
 

Acknowledgements

The authors wish to acknowledge the SAIF, IIT, Madras, for the data collection.

References

First citationAkkurt, M., Karaca, S., Jarrahpour, A. A., Zarei, M. & Büyükgüngör, O. (2005). Acta Cryst. E61, o776–o778.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o2151–o2152.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKannan, V., Sugumar, P., Brahadeeswaran, S. & Ponnuswamy, M. N. (2012). Acta Cryst. E68, o3187.  Google Scholar
First citationKatritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). In Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.  Google Scholar
First citationMuralidharan, S., Elavarasu, N., Srinivasan, T., Gopalakrishnan, R. & Velmurugan, D. (2013). Acta Cryst. E69, o910.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, G. & Wermuth, U. D. (2010). Acta Cryst. E66, o1254.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThanigaimani, K., Farhadikoutenaei, A., Khalib, N. C., Arshad, S. & Razak, I. A. (2012). Acta Cryst. E68, o3196–o3197.  Google Scholar
First citationTomaru, S., Matsumoto, S., Kurihara, T., Suzuki, H., Ooba, N. & Kaino, T. (1991). Appl. Phys. Lett. 58, 2583–2585.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages o125-o126
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds