organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages o115-o116

Crystal structure of 3-(adamantan-1-yl)-4-(4-chloro­phen­yl)-1H-1,2,4-triazole-5(4H)-thione

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riaydh 11451, Saudi Arabia, bKing Abdullah Institute for Nanotechnology (KAIN), King Saud University, Riyadh 11451, Saudi Arabia, cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and dDepartment of Chemistry, Alva's Institute of Engineering & Technology, Mijar, Moodbidri 574225, Karnataka, India
*Correspondence e-mail: elemam5@hotmail.com, hfun.c@ksu.edu.sa

Edited by J. Simpson, University of Otago, New Zealand (Received 8 January 2015; accepted 12 January 2015; online 17 January 2015)

The title compound, C18H20ClN3S, is a functionalized triazoline-3-thione derivative. The benzene ring is almost perpendic­ular to the planar 1,2,4-triazole ring [maximum deviation = 0.007 (1) Å] with a dihedral angle of 89.61 (5)° between them and there is an adamantane substituent at the 3-position of the triazole­thione ring. In the crystal, N—H⋯S hydrogen-bonding inter­actions link the mol­ecules into chains extending along the c-axis direction. The crystal packing is further stabilized by weak C—H⋯π inter­actions that link adjacent chains into a two-dimensional structure in the bc plane. The crystal studied was an inversion twin with a 0.50 (3):0.50 (3) domain ratio.

1. Related literature

For the biological activity of adamantane derivatives, see: Lorenzo et al. (2008[Lorenzo, P., Alvarez, R., Ortiz, M. A., Alvarez, S., Piedrafita, F. J. & de Lera, A. (2008). J. Med. Chem. 51, 5431-5440.]); Wang et al. (2013[Wang, J., Ma, C., Wang, J., Jo, H., Canturk, B., Fiorin, G., Pinto, L. H., Lamb, R. A., Klein, M. L. & DeGrado, W. F. (2013). J. Med. Chem. 56, 2804-2812.]); Kadi et al. (2010[Kadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Eur. J. Med. Chem. 45, 5006-5011.]); Balzarini et al. (2009[Balzarini, J., Orzeszko-Krzesińska, B., Maurin, J. K. & Orzeszko, A. (2009). Eur. J. Med. Chem. 44, 303-311.]); Protopopova et al. (2005[Protopopova, M., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Einck, L. & Nacy, C. A. (2005). J. Antimicrob. Chemother. 56, 968-974.]); Vernier et al. (1969[Vernier, V. G., Harmon, J. B., Stump, J. M., Lynes, T. L., Marvel, M. P. & Smith, D. H. (1969). Toxicol. Appl. Pharmacol. 15, 642-665.]). For the biological activity of adamantyl-1,2,4-triazole derivatives, see: El-Emam & Ibrahim (1991[El-Emam, A. A. & Ibrahim, T. M. (1991). Arzneim. Forsch. Drug. Res. 41, 1260-1264.]); Al-Abdullah et al. (2014[Al-Abdullah, E. S., Asiri, H. H., Lahsasni, S., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2014). J. Drug Des. Develop. Ther. 8, 505-518.]); El-Emam et al. (2004[El-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107-5113.], 2013[El-Emam, A. A., Al-Tamimi, A.-S., Al-Omar, M. A., Alrashood, K. A. & Habib, E. E. (2013). Eur. J. Med. Chem. 68, 96-102.]). For related adamantyl-1,2,4-triazole structures, see: El-Emam et al. (2012[El-Emam, A. A., El-Brollosy, N. R., Ghabbour, H. A., Quah, C. K. & Fun, H.-K. (2012). Acta Cryst. E68, o1347.]), Al-Tamimi et al. (2013[Al-Tamimi, A.-M. S., Al-Abdullah, E. S., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o685-o686.]), Al-Omary et al. (2014[Al-Omary, F. A. M., Ghabbour, H. A., El-Emam, A. A., Chidan Kumar, C. S. & Fun, H.-K. (2014). Acta Cryst. E70, o766-o767.]); Almutairi et al. (2012[Almutairi, M. S., Al-Shehri, M. M., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o656.]). For the synthesis of the title compound, see: Al-Deeb et al. (2006[Al-Deeb, O. A., Al-Omar, M. A., El-Brollosy, N. R., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2006). Arzneim. Forsch. Drug. Res. 56, 40-47.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C18H20ClN3S

  • Mr = 345.88

  • Tetragonal, [I \overline 4]

  • a = 23.1302 (5) Å

  • c = 6.4100 (2) Å

  • V = 3429.39 (18) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 150 K

  • 0.68 × 0.29 × 0.26 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • 106262 measured reflections

  • 11408 independent reflections

  • 10584 reflections with I > 2σ(I)

  • Rint = 0.033

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.082

  • S = 1.06

  • 11408 reflections

  • 213 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.31 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 5353 Friedel pairs

  • Absolute structure parameter: 0.50 (3)

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C6 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1N3⋯S1i 0.92 (2) 2.46 (2) 3.3253 (9) 158.4 (19)
C13—H13ACg2ii 0.98 2.97 3.8881 (13) 156
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) y-1, -x+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Chemical context top

Adamantane derivatives have long been known for their diverse biological activities (Wang et al., 2013) including anti­viral activity against influenza (Vernier et al., 1969) and HIV viruses (El-Emam et al., 2004; Balzarini et al., 2009). In addition, adamantane derivatives are known to exhibit marked anti­bacterial activity (Kadi et al., 2010; Protopopova et al., 2005). In an earlier publication, we reported the synthesis and potent anti­microbial and anti-inflammatory activities of the title compound and its related derivatives (Al-Deeb et al., 2006).

Structural commentary top

In the title compound (Fig. 1), the 1,2,4-triazole (N1—N3/C7/C8) ring is nearly planar with a maximum deviation of -0.007 (1) Å at atom N1. The phenyl (C1–C6) ring is almost perpendicular to the near planar 1,2,4-triazole ring with a dihedral angle of 89.61 (5) Å between them. An adamantane group is substituted at the 3-position of the triazole­thione ring. The crystal studied was an inversion twin with a 0.50 (3):0.50 (3) domain ratio.

Supra­molecular features top

In the crystal packing (Fig. 2), the molecules are linked by inter­molecular N3–H1N3···S1 hydrogen bonding inter­actions forming chains extending along along the c axis direction. The crystal packing is further stabilized by weak C–H···π (phenyl) inter­actions (Table 1) that link the adjacent chains into a two dimensional structure in the bc plane.

Synthesis and crystallization top

The title compound was prepared by a literature procedure (Al-Deeb et al., 2006) and crystallized from EtOH/CHCl3 (1:1) to yield colorless crystals. M·P.: >300 °C.

1H NMR (CDCl3, 700.17 MHz): δ 1.55-1.70 (m, 6H, Adamantane-H), 1.86-2.05 (m, 9H, Adamantane-H), 7.25 (d, 2H, Ar—H, J = 8.5 Hz), 7.45 (d, 2H, Ar—H, J = 8.5 Hz), 11.90 (br. s, 1H, NH). 13C NMR (CDCl3, 176.08 MHz): δ 27.68, 36.03, 36.44, 39.80 (Adamantane-C), 129.95, 131.02, 134.23, 136.42 (Ar—C), 158.41 (C=N), 170.0 (C=S).

Refinement details top

The nitro­gen-bound H-atom was located in a difference Fourier map and its coordinates and isotropic displacement parameter were refined freely with d(N–H) = 0.92 (2) Å. Other H atoms were positioned geometrically (d(C–H) 0.93–0.98 Å) and refined using a riding model with Uiso(H) = 1.2 Ueq(C). The crystal studied was an inversion twin with a 0.50 (3):0.50 (3) domain ratio.

Related literature top

For the biological activity of adamantane derivatives, see: Lorenzo et al. (2008); Wang et al. (2013); Kadi et al. (2010); Balzarini et al. (2009); Protopopova et al. (2005); Vernier et al. (1969). For the biological activity of adamantyl-1,2,4-triazole derivatives, see: El-Emam & Ibrahim (1991); Al-Abdullah et al. (2014); El-Emam et al. (2004, 2013). For related adamantyl-1,2,4-triazole structures, see: El-Emam et al. (2012), Al-Tamimi et al. (2013), Al-Omary et al. (2014); Almutairi et al. (2012). For the synthesis of the title compound, see: Al-Deeb et al. (2006).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Crystal packing of the title compound, showing the N–H···S hydrogen bonding interactions (Table 1) as dashed lines linking the molecules into chains extending along the c axis direction. Other H-atoms are omited for clarity.
3-(Adamantan-1-yl)-4-(4-chlorophenyl)-1H-1,2,4-triazole-5(4H)-thione top
Crystal data top
C18H20ClN3SDx = 1.340 Mg m3
Mr = 345.88Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I4Cell parameters from 9155 reflections
a = 23.1302 (5) Åθ = 2.5–40.8°
c = 6.4100 (2) ŵ = 0.35 mm1
V = 3429.39 (18) Å3T = 150 K
Z = 8Needle, colourless
F(000) = 14560.68 × 0.29 × 0.26 mm
Data collection top
Bruker APEXII CCD
diffractometer
Rint = 0.033
ϕ and ω scansθmax = 41.2°, θmin = 2.5°
106262 measured reflectionsh = 4242
11408 independent reflectionsk = 4242
10584 reflections with I > 2σ(I)l = 1111
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.0483P)2 + 0.551P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.082(Δ/σ)max = 0.002
S = 1.06Δρmax = 0.53 e Å3
11408 reflectionsΔρmin = 0.31 e Å3
213 parametersAbsolute structure: Flack (1983), 5353 Friedel pairs
0 restraintsAbsolute structure parameter: 0.50 (3)
Crystal data top
C18H20ClN3SZ = 8
Mr = 345.88Mo Kα radiation
Tetragonal, I4µ = 0.35 mm1
a = 23.1302 (5) ÅT = 150 K
c = 6.4100 (2) Å0.68 × 0.29 × 0.26 mm
V = 3429.39 (18) Å3
Data collection top
Bruker APEXII CCD
diffractometer
10584 reflections with I > 2σ(I)
106262 measured reflectionsRint = 0.033
11408 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.082Δρmax = 0.53 e Å3
S = 1.06Δρmin = 0.31 e Å3
11408 reflectionsAbsolute structure: Flack (1983), 5353 Friedel pairs
213 parametersAbsolute structure parameter: 0.50 (3)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.25120 (2)0.81338 (2)0.20570 (4)0.01558 (4)
Cl10.10286 (2)0.98207 (2)0.89359 (5)0.03118 (7)
N10.15119 (3)0.77326 (3)0.38819 (12)0.01309 (10)
N20.13872 (4)0.68822 (4)0.23712 (14)0.01734 (13)
N30.18691 (3)0.71564 (4)0.16208 (13)0.01642 (12)
C10.16658 (4)0.83033 (4)0.70574 (15)0.01686 (13)
H1A0.19010.80120.75880.020*
C20.15555 (5)0.87980 (4)0.82355 (16)0.01990 (15)
H2A0.17150.88400.95580.024*
C30.12041 (5)0.92258 (4)0.74046 (17)0.01972 (15)
C40.09818 (5)0.91871 (4)0.53962 (19)0.02225 (17)
H4A0.07610.94860.48430.027*
C50.10952 (4)0.86925 (4)0.42249 (16)0.01916 (15)
H5A0.09530.86600.28740.023*
C60.14220 (4)0.82486 (4)0.50837 (14)0.01374 (12)
C70.19637 (3)0.76715 (4)0.25068 (13)0.01323 (12)
C80.11738 (4)0.72353 (4)0.37613 (14)0.01404 (12)
C90.06417 (3)0.70942 (4)0.50180 (14)0.01456 (12)
C100.04492 (5)0.64750 (5)0.4465 (2)0.02441 (19)
H10A0.03680.64500.29830.029*
H10B0.07580.62060.47840.029*
C110.00943 (6)0.63104 (5)0.5707 (2)0.0292 (2)
H11A0.02140.59180.53300.035*
C120.05832 (5)0.67338 (6)0.5199 (2)0.0292 (2)
H12A0.06730.67160.37220.035*
H12B0.09280.66280.59710.035*
C130.03997 (4)0.73459 (6)0.5782 (2)0.02497 (19)
H13A0.07150.76150.54650.030*
C140.02609 (5)0.73732 (7)0.8112 (2)0.0307 (2)
H14A0.01450.77630.84870.037*
H14B0.06020.72740.89160.037*
C150.02267 (5)0.69501 (7)0.86116 (18)0.0303 (3)
H15A0.03130.69671.01070.036*
C160.07706 (4)0.71160 (6)0.73728 (16)0.0253 (2)
H16A0.10820.68500.77030.030*
H16B0.08930.75030.77590.030*
C170.00415 (6)0.63344 (7)0.8040 (3)0.0356 (3)
H17A0.03490.60650.83690.043*
H17B0.02980.62260.88380.043*
C180.01416 (4)0.75172 (5)0.45273 (18)0.02095 (16)
H18A0.02560.79080.48880.025*
H18B0.00550.75070.30470.025*
H1N30.2084 (9)0.6995 (9)0.057 (4)0.029 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01413 (8)0.01610 (8)0.01653 (8)0.00195 (6)0.00022 (6)0.00131 (6)
Cl10.04393 (16)0.01649 (9)0.03312 (14)0.00301 (9)0.01278 (12)0.00681 (9)
N10.0119 (2)0.0135 (2)0.0139 (3)0.00076 (19)0.0009 (2)0.0017 (2)
N20.0145 (3)0.0176 (3)0.0200 (3)0.0026 (2)0.0042 (2)0.0047 (2)
N30.0140 (3)0.0175 (3)0.0178 (3)0.0019 (2)0.0040 (2)0.0052 (2)
C10.0189 (3)0.0158 (3)0.0158 (3)0.0034 (2)0.0032 (3)0.0026 (3)
C20.0251 (4)0.0178 (3)0.0168 (4)0.0013 (3)0.0005 (3)0.0038 (3)
C30.0226 (4)0.0136 (3)0.0230 (4)0.0011 (3)0.0052 (3)0.0030 (3)
C40.0248 (4)0.0151 (3)0.0269 (5)0.0065 (3)0.0008 (3)0.0000 (3)
C50.0211 (4)0.0170 (3)0.0193 (4)0.0048 (3)0.0030 (3)0.0002 (3)
C60.0133 (3)0.0127 (3)0.0152 (3)0.0021 (2)0.0000 (2)0.0015 (2)
C70.0117 (3)0.0146 (3)0.0134 (3)0.0007 (2)0.0000 (2)0.0005 (2)
C80.0120 (3)0.0152 (3)0.0149 (3)0.0001 (2)0.0010 (2)0.0016 (2)
C90.0113 (3)0.0177 (3)0.0146 (3)0.0002 (2)0.0011 (2)0.0002 (3)
C100.0227 (4)0.0184 (4)0.0322 (5)0.0046 (3)0.0090 (4)0.0016 (3)
C110.0251 (5)0.0242 (4)0.0382 (6)0.0082 (4)0.0103 (4)0.0016 (4)
C120.0150 (4)0.0438 (6)0.0288 (5)0.0089 (4)0.0016 (3)0.0016 (5)
C130.0125 (3)0.0319 (5)0.0305 (5)0.0038 (3)0.0031 (3)0.0058 (4)
C140.0208 (4)0.0435 (7)0.0280 (5)0.0009 (4)0.0101 (4)0.0069 (5)
C150.0181 (4)0.0568 (8)0.0161 (4)0.0046 (4)0.0023 (3)0.0064 (4)
C160.0140 (3)0.0462 (6)0.0157 (4)0.0035 (4)0.0010 (3)0.0036 (4)
C170.0241 (5)0.0438 (7)0.0388 (7)0.0009 (5)0.0085 (5)0.0235 (6)
C180.0134 (3)0.0238 (4)0.0256 (4)0.0034 (3)0.0018 (3)0.0055 (3)
Geometric parameters (Å, º) top
S1—C71.6836 (9)C10—H10A0.9700
Cl1—C31.7384 (10)C10—H10B0.9700
N1—C71.3744 (11)C11—C171.529 (2)
N1—C81.3931 (11)C11—C121.531 (2)
N1—C61.4355 (11)C11—H11A0.9800
N2—C81.3056 (12)C12—C131.5246 (19)
N2—N31.3696 (11)C12—H12A0.9700
N3—C71.3379 (12)C12—H12B0.9700
N3—H1N30.92 (2)C13—C141.529 (2)
C1—C61.3909 (13)C13—C181.5399 (15)
C1—C21.3946 (13)C13—H13A0.9800
C1—H1A0.9300C14—C151.527 (2)
C2—C31.3869 (14)C14—H14A0.9700
C2—H2A0.9300C14—H14B0.9700
C3—C41.3892 (16)C15—C171.532 (2)
C4—C51.3933 (14)C15—C161.5362 (15)
C4—H4A0.9300C15—H15A0.9800
C5—C61.3889 (12)C16—H16A0.9700
C5—H5A0.9300C16—H16B0.9700
C8—C91.5067 (12)C17—H17A0.9700
C9—C161.5394 (14)C17—H17B0.9700
C9—C101.5413 (14)C18—H18A0.9700
C9—C181.5473 (13)C18—H18B0.9700
C10—C111.5359 (15)
C7—N1—C8107.83 (7)C17—C11—H11A109.4
C7—N1—C6122.67 (7)C12—C11—H11A109.4
C8—N1—C6129.42 (7)C10—C11—H11A109.4
C8—N2—N3104.93 (7)C13—C12—C11109.64 (9)
C7—N3—N2113.35 (7)C13—C12—H12A109.7
C7—N3—H1N3125.9 (14)C11—C12—H12A109.7
N2—N3—H1N3120.7 (14)C13—C12—H12B109.7
C6—C1—C2119.54 (8)C11—C12—H12B109.7
C6—C1—H1A120.2H12A—C12—H12B108.2
C2—C1—H1A120.2C12—C13—C14109.65 (11)
C3—C2—C1118.99 (9)C12—C13—C18109.72 (10)
C3—C2—H2A120.5C14—C13—C18109.20 (9)
C1—C2—H2A120.5C12—C13—H13A109.4
C2—C3—C4121.80 (9)C14—C13—H13A109.4
C2—C3—Cl1119.00 (8)C18—C13—H13A109.4
C4—C3—Cl1119.20 (8)C15—C14—C13109.46 (10)
C3—C4—C5118.85 (9)C15—C14—H14A109.8
C3—C4—H4A120.6C13—C14—H14A109.8
C5—C4—H4A120.6C15—C14—H14B109.8
C6—C5—C4119.73 (9)C13—C14—H14B109.8
C6—C5—H5A120.1H14A—C14—H14B108.2
C4—C5—H5A120.1C14—C15—C17109.82 (10)
C5—C6—C1120.93 (8)C14—C15—C16109.66 (11)
C5—C6—N1118.74 (8)C17—C15—C16109.74 (11)
C1—C6—N1120.33 (7)C14—C15—H15A109.2
N3—C7—N1103.86 (7)C17—C15—H15A109.2
N3—C7—S1128.03 (7)C16—C15—H15A109.2
N1—C7—S1128.11 (7)C15—C16—C9109.88 (8)
N2—C8—N1110.01 (8)C15—C16—H16A109.7
N2—C8—C9122.57 (8)C9—C16—H16A109.7
N1—C8—C9127.42 (8)C15—C16—H16B109.7
C8—C9—C16111.04 (7)C9—C16—H16B109.7
C8—C9—C10108.32 (7)H16A—C16—H16B108.2
C16—C9—C10108.17 (9)C11—C17—C15108.97 (10)
C8—C9—C18111.41 (8)C11—C17—H17A109.9
C16—C9—C18108.87 (8)C15—C17—H17A109.9
C10—C9—C18108.96 (8)C11—C17—H17B109.9
C11—C10—C9110.34 (9)C15—C17—H17B109.9
C11—C10—H10A109.6H17A—C17—H17B108.3
C9—C10—H10A109.6C13—C18—C9109.81 (8)
C11—C10—H10B109.6C13—C18—H18A109.7
C9—C10—H10B109.6C9—C18—H18A109.7
H10A—C10—H10B108.1C13—C18—H18B109.7
C17—C11—C12109.66 (11)C9—C18—H18B109.7
C17—C11—C10109.25 (11)H18A—C18—H18B108.2
C12—C11—C10109.63 (10)
C8—N2—N3—C70.12 (11)N1—C8—C9—C10175.22 (9)
C6—C1—C2—C30.08 (15)N2—C8—C9—C18115.92 (10)
C1—C2—C3—C43.09 (16)N1—C8—C9—C1864.95 (12)
C1—C2—C3—Cl1175.90 (8)C8—C9—C10—C11179.89 (10)
C2—C3—C4—C52.89 (17)C16—C9—C10—C1159.67 (12)
Cl1—C3—C4—C5176.10 (9)C18—C9—C10—C1158.54 (13)
C3—C4—C5—C60.48 (16)C9—C10—C11—C1760.75 (14)
C4—C5—C6—C13.62 (15)C9—C10—C11—C1259.44 (14)
C4—C5—C6—N1177.30 (9)C17—C11—C12—C1359.98 (13)
C2—C1—C6—C53.41 (14)C10—C11—C12—C1359.96 (14)
C2—C1—C6—N1177.52 (9)C11—C12—C13—C1459.57 (12)
C7—N1—C6—C588.15 (11)C11—C12—C13—C1860.37 (13)
C8—N1—C6—C588.12 (12)C12—C13—C14—C1559.55 (12)
C7—N1—C6—C190.93 (11)C18—C13—C14—C1560.70 (14)
C8—N1—C6—C192.80 (11)C13—C14—C15—C1759.99 (13)
N2—N3—C7—N10.81 (10)C13—C14—C15—C1660.67 (14)
N2—N3—C7—S1178.68 (7)C14—C15—C16—C960.06 (15)
C8—N1—C7—N31.15 (9)C17—C15—C16—C960.65 (14)
C6—N1—C7—N3175.82 (8)C8—C9—C16—C15178.05 (10)
C8—N1—C7—S1178.34 (7)C10—C9—C16—C1559.33 (13)
C6—N1—C7—S14.69 (12)C18—C9—C16—C1558.94 (13)
N3—N2—C8—N10.64 (10)C12—C11—C17—C1559.90 (12)
N3—N2—C8—C9178.62 (8)C10—C11—C17—C1560.27 (13)
C7—N1—C8—N21.17 (10)C14—C15—C17—C1160.10 (13)
C6—N1—C8—N2175.53 (9)C16—C15—C17—C1160.52 (13)
C7—N1—C8—C9178.05 (8)C12—C13—C18—C959.95 (12)
C6—N1—C8—C95.25 (15)C14—C13—C18—C960.26 (13)
N2—C8—C9—C16122.54 (11)C8—C9—C18—C13178.01 (9)
N1—C8—C9—C1656.58 (13)C16—C9—C18—C1359.20 (12)
N2—C8—C9—C103.91 (13)C10—C9—C18—C1358.56 (12)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 phenyl ring.
D—H···AD—HH···AD···AD—H···A
N3—H1N3···S1i0.92 (2)2.46 (2)3.3253 (9)158.4 (19)
C13—H13A···Cg2ii0.982.973.8881 (13)156
Symmetry codes: (i) x+1/2, y+3/2, z1/2; (ii) y1, x+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 phenyl ring.
D—H···AD—HH···AD···AD—H···A
N3—H1N3···S1i0.92 (2)2.46 (2)3.3253 (9)158.4 (19)
C13—H13A···Cg2ii0.98002.973.8881 (13)156.0
Symmetry codes: (i) x+1/2, y+3/2, z1/2; (ii) y1, x+1, z+1.
 

Footnotes

Thomson Reuters ResearcherID: C-3194-2011.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The financial support of the Deanship of Scientific Research and the Research Centre for Female Scientific and Medical Colleges, King Saud University, is greatly appreciated. CSCK thanks Universiti Sains Malaysia (USM) for a postdoctoral research fellowship.

References

First citationAl-Abdullah, E. S., Asiri, H. H., Lahsasni, S., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2014). J. Drug Des. Develop. Ther. 8, 505–518.  Google Scholar
First citationAl-Deeb, O. A., Al-Omar, M. A., El-Brollosy, N. R., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2006). Arzneim. Forsch. Drug. Res. 56, 40–47.  CAS Google Scholar
First citationAlmutairi, M. S., Al-Shehri, M. M., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o656.  CSD CrossRef IUCr Journals Google Scholar
First citationAl-Omary, F. A. M., Ghabbour, H. A., El-Emam, A. A., Chidan Kumar, C. S. & Fun, H.-K. (2014). Acta Cryst. E70, o766–o767.  CSD CrossRef IUCr Journals Google Scholar
First citationAl-Tamimi, A.-M. S., Al-Abdullah, E. S., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o685–o686.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBalzarini, J., Orzeszko-Krzesińska, B., Maurin, J. K. & Orzeszko, A. (2009). Eur. J. Med. Chem. 44, 303–311.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107–5113.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEl-Emam, A. A., Al-Tamimi, A.-S., Al-Omar, M. A., Alrashood, K. A. & Habib, E. E. (2013). Eur. J. Med. Chem. 68, 96–102.  CAS PubMed Google Scholar
First citationEl-Emam, A. A., El-Brollosy, N. R., Ghabbour, H. A., Quah, C. K. & Fun, H.-K. (2012). Acta Cryst. E68, o1347.  CSD CrossRef IUCr Journals Google Scholar
First citationEl-Emam, A. A. & Ibrahim, T. M. (1991). Arzneim. Forsch. Drug. Res. 41, 1260–1264.  CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Eur. J. Med. Chem. 45, 5006–5011.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLorenzo, P., Alvarez, R., Ortiz, M. A., Alvarez, S., Piedrafita, F. J. & de Lera, A. (2008). J. Med. Chem. 51, 5431–5440.  Web of Science CrossRef PubMed CAS Google Scholar
First citationProtopopova, M., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Einck, L. & Nacy, C. A. (2005). J. Antimicrob. Chemother. 56, 968–974.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVernier, V. G., Harmon, J. B., Stump, J. M., Lynes, T. L., Marvel, M. P. & Smith, D. H. (1969). Toxicol. Appl. Pharmacol. 15, 642–665.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWang, J., Ma, C., Wang, J., Jo, H., Canturk, B., Fiorin, G., Pinto, L. H., Lamb, R. A., Klein, M. L. & DeGrado, W. F. (2013). J. Med. Chem. 56, 2804–2812.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages o115-o116
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds