research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages 146-150

Crystal structures of two deca­vanadates(V) with penta­aqua­manganese(II) pendant groups: (NMe4)2[V10O28{Mn(H2O)5}2]·5H2O and [NH3C(CH2OH)3]2[V10O28{Mn(H2O)5}2]·2H2O

aDepartamento de Química, Universidade Federal do Paraná, Centro Politécnico, Jardim das Américas, 81530-900 Curitiba, PR, Brazil, and bSchool of Chemistry, University of East Anglia, Norwich NR4 7TJ, England
*Correspondence e-mail: d.l.hughes@uea.ac.uk

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 7 December 2014; accepted 29 December 2014; online 10 January 2015)

Two heterometallic deca­vanadate(V) compounds, bis­(tetra­methyl­ammonium) deca­aquadi-μ4-oxido-tetra-μ3-oxido-hexa­deca-μ2-oxido-hexa­oxidodimang­anese(II)­deca­vanadate(V) penta­hydrate, (Me4N)2[V10O28{Mn(H2O)5}2]·5H2O, A, and bis­{[tris­(hy­droxy­meth­yl)meth­yl]ammonium} deca­aquadi-μ4-oxido-tetra-μ3-oxido-hexa­deca-μ2-oxido-hexa­oxidodimanganese(II)deca­vanadate(V) dihydrate, [NH3C(CH2OH)3]2[V10O28{Mn(H2O)5}2]·2H2O, B, have been synthesized under mild reaction conditions in an aqueous medium. Both polyanions present two [Mn(OH2)5]2+ complex units bound to the deca­vanadate cluster through oxide bridges. In A, the deca­vanadate unit has 2/m symmetry, whereas in B it has twofold symmetry. Apart from this, the main differences between A and B rest on the organic cations, tetra­methyl­ammonium and [tris­(hy­droxy­meth­yl)meth­yl]ammonium, respectively, and on the number and arrangement of the water mol­ecules of crystallization. In both compounds, the H atoms from the coordinating water mol­ecules participate in extensive three-dimensional hydrogen-bonding networks, which link the cluster units both directly and through solvent mol­ecules and, in B, through the `tris­' cation hydroxyl groups. The cation in B also participates in N—H⋯O hydrogen bonds. A number of C—H⋯O inter­actions are also observed in both structures.

1. Chemical context

Research on the electronic properties, catalytic activities and biological roles of polyoxidovanadates has advanced enormously during the last few decades (Bošnjaković-Pavlović et al., 2009[Bošnjaković-Pavlović, N., Spasojević-de Biré, A., Tomaz, I., Bouhmaida, N., Avecilla, F., Mioč, U. B., Pessoa, J. C. & Ghermani, N. E. (2009). Inorg. Chem. 48, 9742-9753.]; Liu & Zhou, 2010[Liu, J. L. & Zhou, Y. Z. (2010). Prog. Chem. 22, 51-57.]). Among these aggregates, the deca­vanadate(V) anion is the most intensively studied because of its biological effect on the activities of several enzymes (Aureliano & Ohlin, 2014[Aureliano, M. & Ohlin, C. A. (2014). J. Inorg. Biochem. 137, 123-130.]) and its insulin-mimetic action (Chatkon et al., 2013[Chatkon, A., Chatterjee, P. B., Sedgwick, M. A., Haller, K. J., Crans, D. C. (2013). Eur. J. Inorg. Chem. pp. 1859-1868. ]; Aureliano, 2014[Aureliano, M. (2014). Inorg. Chim. Acta, 420, 4-7.]). The first functionalization of deca­vanadate anions, [HnV10O28](6−n)−, with transition metal complexes was reported in 2007 (Li et al., 2007[Li, T. H., Lu, J., Gao, S. Y., Li, F. & Cao, R. (2007). Chem. Lett. 36, 356-357.]). Since then, structures involving different binding modes with non-equivalent terminal and bridging oxido ligands have been described (Wang, Sun et al., 2008[Wang, L., Sun, X. P., Liu, M. L., Gao, Y. Q., Gu, W. & Liu, X. (2008). J. Cluster Sci. 19, 531-542.]; Wang, Yan et al., 2008[Wang, J. P., Yan, Q. X., Du, X. D. & Niu, J. Y. (2008). J. Clust Sci. 19, 491-498.]; Wang et al., 2011[Wang, L., Li, Y., Wang, Y. Y., Liang, Z. Q., Yu, J. H. & Xu, R. R. (2011). Inorg. Chem. Commun. 14, 1640-1643.]; Long et al., 2010[Long, D. L., Tsunashima, R. & Cronin, L. (2010). Angew. Chem. Int. Ed. 49, 1736-1758.]; Xu et al., 2012[Xu, W. T., Jiang, F. L., Zhou, Y. F., Xiong, K. C., Chen, L., Yang, M., Feng, R. & Hong, M. C. (2012). Dalton Trans. 41, 7737-7745.]) and examples with first-row, d-block metal ions include complexation with copper(II), mangan­ese(II) and zinc(II) (Wang, Sun et al., 2008[Wang, L., Sun, X. P., Liu, M. L., Gao, Y. Q., Gu, W. & Liu, X. (2008). J. Cluster Sci. 19, 531-542.]; Wang et al., 2011[Wang, L., Li, Y., Wang, Y. Y., Liang, Z. Q., Yu, J. H. & Xu, R. R. (2011). Inorg. Chem. Commun. 14, 1640-1643.]; Klištincová et al., 2009[Klištincová, L., Rakovský, E. & Schwendt, P. (2009). Acta Cryst. C65, m97-m99.], 2010[Klištincová, L., Rakovský, E. & Schwendt, P. (2010). Transition Met. Chem. 35, 229-236.]; Pavliuk et al., 2014[Pavliuk, M. V., Makhankova, V. G., Khavryuchenko, O. V., Kokozay, V. N., Omelchenko, I. V., Shishkin, O. V. & Jezierska, J. (2014). Polyhedron, 81, 597-606.]).

Polyoxidovanadates containing manganese cations have been synthesized as ionic pairs (Shan & Huang, 1999[Shan, Y. K. & Huang, S. D. (1999). J. Chem. Crystallogr. 29, 93-97.]; Lin et al., 2011[Lin, S. W., Wu, Q., Tan, H. Q. & Wang, E. B. (2011). J. Coord. Chem. 64, 3661-3669.]) or as heterometallic aggregates in which the oxidovanadate cluster acts as a metalloligand to the manganese complex (Inami et al., 2009[Inami, S., Nishio, M., Hayashi, Y., Isobe, K., Kameda, H. & Shimoda, T. (2009). Eur. J. Inorg. Chem. pp. 5253-5258.]; Klištincová et al., 2009[Klištincová, L., Rakovský, E. & Schwendt, P. (2009). Acta Cryst. C65, m97-m99.]). Recent inter­est in this kind of compound lies in a possible synergistic effect (involving the two metal elements) for the enhancement of the catalytic activity towards oxidation of organic substrates, such as in the photocatalytic degradation of dyes (Wu et al., 2012[Wu, Q., Hao, X. L., Feng, X. J., Wang, Y. H., Li, Y. G., Wang, E. B., Zhu, X. Q. & Pan, X. H. (2012). Inorg. Chem. Commun. 22, 137-140.]).

While the synthesis of deca­vanadates with different organic cations as building blocks for supra­molecular assemblies is largely explored (da Silva et al., 2003[Silva, J. L. F. da, da Piedade, M. F. M. & Duarte, M. T. (2003). Inorg. Chim. Acta, 356, 222-242.]), a systematic procedure for their functionalization with transition metal complexes has not been well established. Our research group is currently involved in the synthesis of heterometallic polyoxidovanadates containing manganese(II) because of their potential activity as catalysts of olefin epoxidation. In this context, the reaction between NH4VO3 and mannitol to give A was carried out in aqueous solution in the presence of tetra­methyl­ammonium chloride (molar proportion 2:1:2), following a procedure described earlier by our group to produce the mixed-valence polyoxidovanadate (Me4N)6[V15O36(Cl)] (Nunes et al., 2012[Nunes, G. G., Bonatto, A. C., de Albuquerque, C. G., Barison, A., Ribeiro, R. R., Back, D. F., Andrade, A. V. C., de Sá, E. L., Pedrosa, F. de O., Soares, J. F. & de Souza, E. M. (2012). J. Inorg. Biochem. 108, 36-46.]). The dark-green solution obtained after reflux for 24 h received one molar equivalent of Mn(OAc)2·4H2O and was kept under reflux for 24 more hours. A mixture of dark-green crystals of (Me4N)6[V15O36(Cl)] and yellow prisms of (NMe4)2[V10O28{Mn(H2O)5}2]·5H2O (A) was isolated after four weeks at room temperature, the latter in 9% yield. Product A contains two tetra­methyl­ammonium cations and the [V10O28]6– unit is covalently bound to two [Mn(OH2)5]2+ complexes by terminal oxido bridges.

[Scheme 1]

The rational synthesis of the heteropolyanion [V10O28{Mn(H2O)5}2]2–, in its turn, was achieved by reaction of NH4VO3 with tris­(hy­droxy­meth­yl)methyl­amine (`tris­') and manganese(II) chloride at pH 3 in a 5:3:1 molar proportion. Yellow crystals of [NH3C(CH2OH)3]2[V10O28{Mn(H2O)5}2]·2H2O (B) were isolated in 12% yield, as the only reaction product, after one week at room temperature. X-ray diffraction analyses revealed very similar structures for the heteropolyanions in A and B.

[Scheme 2]

2. Structural commentary

The anionic heteropolyanions are essentially identical in the two complexes. However, in A, the mol­ecule lies about the centre of the cell which is a point of 2/m symmetry, so that the unique part of the anionic cluster is one quarter of that heteropolyanion. The anion lies about a mirror plane which passes through the V2, V4 and manganese atoms, and there is a twofold symmetry axis which is perpendicular to the mirror plane and passes through V3 and the centre of the cell, Fig. 1[link].

[Figure 1]
Figure 1
View of the components of (NMe4)2[V10O28{Mn(H2O)5}2]·5H2O, A, indicating the atom-numbering scheme. No H atoms were identified on the disordered solvent water mol­ecules. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (1) 1 − x, y, 1 − z; (2) 1 − x, 1 − y, 1 − z; (3) x, 1 − y, z; (4) 1 − x, −y, −z; (5) 1 − x, y, −z.]

The V10O28 moiety in the structure of compound B lies about a twofold symmetry axis which passes through the vanadium atoms V6 and V7, Fig. 2[link]. This is the only crystallographic symmetry in this ion which, nevertheless, shows a very similar structure to that found in the ion in compound A; views showing this pseudo-symmetry are presented in Figs. 3[link], 4[link] and 5[link]. The unique part here is one half of the anion. The previously reported analysis of this anion [with a 2-(2-hy­droxy­eth­yl)pyridinium cation] showed the cluster to be lying about an inversion centre (Klištincová et al., 2009[Klištincová, L., Rakovský, E. & Schwendt, P. (2009). Acta Cryst. C65, m97-m99.]).

[Figure 2]
Figure 2
The corresponding view for [NH3C(CH2OH)3]2[V10O28{Mn(H2O)5}2]·2H2O, B. [Symmetry code: (1) 1 − x, y, [{1\over 2}] − z.]
[Figure 3]
Figure 3
The anion of compound B viewed approximately down the a axis of the V10O28 moiety. [Symmetry code: (1) 1 − x, y, [{1\over 2}] − z.]
[Figure 4]
Figure 4
The anion of compound B viewed approximately down the b axis of the V10O28 moiety. [Symmetry code: (1) 1 − x, y, [{1\over 2}] − z.]
[Figure 5]
Figure 5
The anion of compound B viewed approximately down the c axis of the V10O28 moiety. [Symmetry code: (1) 1 − x, y, [{1\over 2}] − z.]

Bond angles and lengths determined for [V10O28{Mn(H2O)5}2]2– are in the ranges reported in the literature (Klištincová et al., 2009[Klištincová, L., Rakovský, E. & Schwendt, P. (2009). Acta Cryst. C65, m97-m99.]). In both our compounds, there is a wide range of V—O bond lengths. The vanadium atoms on the outer shell of the heteropolyanions, e.g. V4 and V5 in A, and V2–V5 in B, are five-coordinate with a square-pyramidal pattern; there is a sixth oxygen atom in the direction of an octa­hedral site but, at ca 2.3 Å from the vanadium atom, rather longer than the normal coordination distance. Of the five bonded oxygen atoms, the apical site (opposite the distant, sixth, site) has the shortest V—O distance, ca 1.6 Å, corres­ponding to a vanadyl group. The more `inter­nal' vanadium atoms in each structure, viz V3 in A, and V6 and V7 in B, have more uniform V—O distances in more regular octa­hedral patterns.

3. Supra­molecular features

In both compounds, O—H⋯O hydrogen bonds from all the coordinating water mol­ecules link the anions with neighbouring anions, either directly, through both the cluster O atoms and the coordinating water mol­ecules, or indirectly through the solvent water mol­ecules (Tables 1[link] and 2[link]). In compound B, additional hydroxyl groups are available in the `tris­' cation, and these add further links in the extensive hydrogen bonding scheme. Additional C—H⋯O interactions are observed in the structures of both compounds.

Table 1
Hydrogen-bond geometry (Å, °) for compound A[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O11i 0.76 (2) 1.97 (2) 2.7199 (14) 168 (2)
O2—H2A⋯O7i 0.72 (2) 2.04 (2) 2.7457 (15) 167 (2)
O2—H2B⋯O3ii 0.78 (2) 2.05 (2) 2.8295 (18) 178 (2)
O3—H3A⋯O6ii 0.74 (3) 1.92 (3) 2.6573 (16) 174 (3)
O3—H3B⋯O13 0.87 (3) 1.91 (3) 2.737 (3) 158 (3)
C10—H10A⋯O11iii 0.96 2.51 3.362 (2) 148
C10—H10B⋯O11iv 0.96 2.51 3.362 (2) 148
C10—H10C⋯O2v 0.96 2.58 3.370 (3) 139
C10—H10C⋯O2vi 0.96 2.57 3.370 (3) 141
C11—H11A⋯O8vii 0.96 2.48 3.384 (3) 156
C12—H12A⋯O12iii 0.96 2.60 3.474 (4) 152
C12—H12C⋯O12iv 0.96 2.59 3.474 (4) 153
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (v) x+1, y, z; (vi) x+1, -y+1, z; (vii) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °) for compound B[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1A⋯O14i 0.70 (12) 2.01 (12) 2.703 (7) 167 (12)
O1W—H1B⋯O12ii 0.70 (7) 2.04 (8) 2.727 (8) 169 (8)
O2W—H2A⋯O5iii 0.60 (7) 2.12 (7) 2.716 (7) 172 (9)
O2W—H2B⋯O12A 0.87 (10) 2.01 (10) 2.858 (8) 164 (8)
O3W—H3A⋯O7iii 0.70 (9) 1.94 (9) 2.636 (7) 176 (10)
O3W—H3B⋯O11Aiv 0.88 (8) 1.91 (8) 2.752 (8) 160 (7)
O4W—H4A⋯O6v 0.82 (11) 1.90 (11) 2.708 (6) 167 (10)
O4W—H4B⋯O2Wv 0.76 (9) 2.12 (9) 2.871 (7) 169 (9)
O5W—H5A⋯O8v 0.55 (11) 2.18 (11) 2.725 (10) 170 (16)
O5W—H5B⋯O13Aiv 0.83 (14) 2.12 (13) 2.699 (12) 127 (12)
O5W—H5B⋯O13Biv 0.83 (14) 1.95 (14) 2.77 (2) 168 (13)
N1—H1C⋯O3Wv 0.89 2.03 2.898 (7) 164
N1—H1D⋯O2 0.89 2.31 3.032 (7) 138
N1—H1D⋯O4W 0.89 2.45 3.105 (7) 130
N1—H1E⋯O4v 0.89 1.91 2.787 (6) 166
C11—H11C⋯O11v 0.97 2.46 3.392 (9) 160
O11A—H11A⋯O6WAv 0.82 1.96 2.758 (12) 166
O12A—H12A⋯O3iii 0.82 1.94 2.756 (7) 174
C13—H13E⋯O2 0.97 2.40 3.280 (10) 151
O13B—H13B⋯O6WBvi 0.77 1.92 2.60 (2) 148
O6WA—H6A⋯O3 0.82 (2) 2.23 (9) 2.966 (9) 150 (15)
O6WA—H6B⋯O10vii 0.82 (2) 2.16 (5) 2.952 (10) 165 (17)
O6WB—H6C⋯O3 0.82 (2) 2.03 (13) 2.802 (17) 156 (29)
O6WB—H6D⋯O10vii 0.82 (2) 1.93 (8) 2.720 (19) 161 (24)
Symmetry codes: (i) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x, -y+1, z-{\script{1\over 2}}]; (v) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [x, -y+1, z+{\script{1\over 2}}]; (vii) -x+1, -y+1, -z.

4. Database survey

For structures with the [V10O28{Mn(H2O)5}2]2– heteropolyanion, see: Klištincová et al. (2009[Klištincová, L., Rakovský, E. & Schwendt, P. (2009). Acta Cryst. C65, m97-m99.]). For structures with manganese(II) coordination complexes as counter-ions for [V10O28]6–, see: Klištincová et al. (2010[Klištincová, L., Rakovský, E. & Schwendt, P. (2010). Transition Met. Chem. 35, 229-236.]); Shan & Huang (1999[Shan, Y. K. & Huang, S. D. (1999). J. Chem. Crystallogr. 29, 93-97.]); Lin et al. (2011[Lin, S. W., Wu, Q., Tan, H. Q. & Wang, E. B. (2011). J. Coord. Chem. 64, 3661-3669.]) and Mestiri et al. (2013[Mestiri, I., Ayed, B. & Haddad, A. (2013). J. Cluster Sci. 24, 85-96.]).

5. Synthesis and crystallization

General

All reactions were performed in air with purified (Milli-Q®) water. Commercial reagents were used without purification. The starting materials NH4VO3, MnCl2·4H2O and Mn(OAc)2·4H2O were supplied by Aldrich, while mannitol [C6H8(OH)6] and (Me4N)Cl were purchased from USB and Merck, respectively. Infrared (FTIR) spectra were recorded on a BIORAD FTS-3500GX spectrophotometer from KBr pellets in the 400–4000 cm−1 region.

Synthesis of (NMe4)2[V10O28{Mn(H2O)5}2]·5H2O (A)

Solid NH4VO3 (0.500 g, 4.27 mmol) and [(CH3)4N]Cl (0.468 g, 4.27 mmol) were added to a solution of mannitol (0.366 g, 2.13 mmol) in 60 mL of water to produce a suspension that turned into a deep blue–greenish solution after one hour under reflux. After 24 more hours, a solution of Mn(OAc)2·4H2O (1.04 g, 4.27 mmol) in 10 mL of water was added to this reaction mixture, which remained under reflux for one more day. The solution was concentrated to one third of its initial volume and, after four weeks at room temperature, a mixture of deep-green crystals of (Me4N)6[V15O36(Cl)] (Nunes et al., 2012[Nunes, G. G., Bonatto, A. C., de Albuquerque, C. G., Barison, A., Ribeiro, R. R., Back, D. F., Andrade, A. V. C., de Sá, E. L., Pedrosa, F. de O., Soares, J. F. & de Souza, E. M. (2012). J. Inorg. Biochem. 108, 36-46.]) and yellow prisms of A was obtained, the latter in 9% yield based on vanadium (56 mg). The FTIR spectrum recorded for A shows the characteristic bands of the Me4N+ cation at 3031, 1639, 1485 and 1263 cm−1 and of the inorganic anion at 966, 833, 744, 584 and 455 cm−1.

Synthesis of [NH3C(CH2OH)3]2[V10O28{Mn(H2O)5}2]·2H2O (B)

A solution containing tris­(hy­droxy­meth­yl)methyl­amine (0.720 g, 6.0 mmol) in 20 mL of water was added to a solution of NH4VO3 (1.17 g, 10.0 mmol) in the same volume of solvent. This reaction mixture was then refluxed until it became a clear solution, after which its pH was adjusted to 3 with aqueous HCl. A solution of MnCl2·4H2O (0.394 g, 2.0 mmol) in 10 mL of water was then added as a layer on top of the reaction mixture and, after two weeks at room temperature, yellow crystals of B were obtained (180 mg) in 12% yield based on vanadium. The FTIR spectrum of B shows characteristic bands of the tris­H+ cation at 3188, 2927, 2856, 1743, 1637, 1417, 1161 and 1112 cm−1 and of the inorganic anion at 941, 842 and 684 cm−1.

6. Refinement details

Crystal data, data collection and structure refinement details for the two structures are summarized in Table 3[link].

Table 3
Experimental details

  Compound A Compound B
Crystal data
Chemical formula (C4H12N)2·[Mn2V10O28(H2O)10]·5H2O (C4H12NO3)2[Mn2V10O28(H2O)10]·2H2O
Mr 1485.81 1527.76
Crystal system, space group Monoclinic, I2/m Monoclinic, C2/c
Temperature (K) 292 295
a, b, c (Å) 13.2434 (7), 9.6402 (5), 17.7628 (13) 19.3147 (8), 9.7733 (4), 22.7952 (10)
β (°) 98.626 (2) 96.392 (1)
V3) 2242.1 (2) 4276.3 (3)
Z 2 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 2.64 2.78
Crystal size (mm) 0.48 × 0.38 × 0.15 0.49 × 0.26 × 0.13
 
Data collection
Diffractometer Bruker D8 Venture/Photon 100 CMOS Bruker D8 Venture/Photon 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2012[Bruker (2012). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.562, 0.746 0.542, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 81983, 2953, 2752 71752, 3936, 3280
Rint 0.025 0.039
(sin θ/λ)max−1) 0.668 0.605
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.060, 1.09 0.052, 0.114, 1.12
No. of reflections 2953 3936
No. of parameters 194 385
No. of restraints 0 6
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
  w = 1/[σ2(Fo2) + (0.0329P)2 + 2.2668P] where P = (Fo2 + 2Fc2)/3 w = 1/[σ2(Fo2) + (0.0062P)2 + 110.7865P] where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å−3) 0.58, −0.34 0.78, −1.11
Computer programs: APEX2 and SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97, SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013 and SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Hydrogen atoms on the cation were included in idealized positions (with methyl and methyl­ene group C—H distances set at 0.96 and 0.97 Å, N—H at 0.89 Å and O—H at 0.82 Å) and their Uiso values were set to ride on the Ueq values of the parent atoms. Hydrogen atoms in the anions (on coordinating water mol­ecules) were located in difference maps and were refined freely.

There are two independent solvent water mol­ecules, one of which is disordered over two sites close to a centre of symmetry, in compound A. No hydrogen atoms were identified in these water mol­ecules.

In B, there is one solvent water mol­ecule which is disordered over two sites; the hydrogen atoms here were located in difference maps and were refined with distance restraints [O—H = 0.82 (2) Å].

Supporting information


Chemical context top

Research on the electronic properties, catalytic activities and biological roles of polyoxovanadates has advanced enormously during the last few decades (Bošnjaković-Pavlović et al., 2009; Liu & Zhou, 2010). Among these aggregates, the decavanadate(V) anion is the most intensively studied because of its biological effect on the activities of several enzymes (Aureliano & Ohlin, 2014) and its insulin-mimetic action (Chatkon et al., 2013; Aureliano, 2014). The first functionalization of decavanadate anions, [HnV10O28](6-n)-, with transition metal complexes was reported in 2007 (Li et al., 2007). Since then, structures involving different binding modes with non-equivalent terminal and bridging oxido ligands have been described (Wang, Sun et al. OK?, 2008, 2011; Long et al., 2010; Xu et al., 2012) and examples with first-row, d-block metal ions include complexation with copper(II), manganese(II) and zinc(II) (Wang, Sun et al. OK?, 2008; Klištincová et al., 2009, 2010; Pavliuk et al., 2014).

Polyoxovanadates containing manganese cations have been synthesized as ionic pairs (Shan & Huang, 1999; Lin et al., 2011) or as heterometallic aggregates in which the oxovanadate cluster acts as a metalloligand to the manganese complex (Inami et al., 2009; Klištincová et al., 2009). Recent inter­est in this kind of compound lies in a possible synergistic effect (involving the two metal elements) for the enhancement of the catalytic activity towards oxidation of organic substrates, such as in the photocatalytic degradation of dyes (Wu et al., 2012).

While the synthesis of decavanadates with different organic cations as building blocks for supra­molecular assemblies is largely explored (da Silva et al., 2003), a systematic procedure for their functionalization with transition metal complexes has not been well established. Our research group is currently involved in the synthesis of heterometallic polyoxovanadates containing manganese(II) because of their potential activity as catalysts of olefin epoxidation. In this context, the reaction between NH4VO3 and mannitol to give A was carried out in aqueous solution in the presence of tetra­methyl­ammonium chloride (molar proportion 2:1:2), following a procedure described earlier by our group to produce the mixed-valence polyoxovanadate (Me4N)6[V15O36(Cl)] (Nunes et al., 2012). The dark-green solution obtained after reflux for 24 h received one molar equivalent of Mn(OAc)2·4H2O and was kept under reflux for 24 more hours. A mixture of dark-green crystals of (Me4N)6[V15O36(Cl)] and yellow prisms of (NMe4)2[V10O28{Mn(H2O)5}2]·5H2O (A) was isolated after four weeks at room temperature, the latter in 9% yield. Product A contains two tetra­methyl­ammonium cations and the [V10O28]6– unit is covalently bound to two [Mn(OH2)5]2+ complexes by terminal oxido bridges (Scheme 1).

The rational synthesis of the heteropolyanion [V10O28{Mn(H2O)5}2]2–, in its turn, was achieved by reaction of NH4VO3 with tris­(hy­droxy­methyl)­methyl­amine ('tris­') and manganese(II) chloride at pH 3 in a 5:3:1 molar proportion. Yellow crystals of [(NH3C(CH2OH)3]2[V10O28{Mn(H2O)5}2]·2H2O (B, Scheme 2) were isolated in 12% yield, as the only reaction product, after one week at room temperature. X-ray diffraction analyses revealed the same molecular structure for the heteropolyanion in A and B.

Structural commentary top

The anionic clusters are essentially identical in the two complexes. However, in A, the molecule lies about the centre of the cell which is a point of 2/m symmetry, so that the unique part of the anionic cluster is one quarter of that cluster. The anion lies about a mirror plane which passes through V2 and V4 and the manganese atoms, and there is a twofold symmetry axis which is perpendicular to the mirror plane and passes through V3 and the centre of the cell, Fig. 1.

The V10O28 cluster in compound B lies about a twofold symmetry axis which passes through the vanadium atoms V6 and V7, Fig. 2. This is the only crystallographic symmetry in this ion which, nevertheless, shows a very similar structure to that found in the ion in compound A; views showing this pseudo-symmetry are presented in Figs. 3, 4 and 5. The unique part here is one half of the anion. The previously reported analysis of this anion [with a 2-(2-hy­droxy­ethyl)­pyridinium cation] showed the cluster to be lying about an inversion centre (Klištincová et al., 2009).

Bond angles and distances determined for [V10O28{Mn(H2O)5}2]2– are in the range reported in the literature (Klištincová et al., 2009). In both our compounds, there is a wide range of V—O bond lengths. The vanadium atoms on the outer shell of the clusters, e.g. V4 and V5 in A, and V2–V5 in B, are five-coordinate with a square-pyramidal pattern; there is a sixth oxygen atom in the direction of an o­cta­hedral site but, at ca 2.3 Å from the vanadium atom, rather longer than the normal coordination distance. Of the five bonded oxygen atoms, the apical site (opposite the distant, sixth, site) has the shortest V—O distance, ca 1.6 Å, corresponding to a vanadyl group. The more `inter­nal' vanadium atoms in each structure, viz V3 in A, and V6 and V7 in B, have more uniform V—O distances in more regular o­cta­hedral patterns.

Supra­molecular features top

In both compounds, O—H···O hydrogen bonds from all the coordinating water molecules link the anions with neighbouring anions, either directly, through both the cluster O atoms and the coordinating water molecules, or indirectly through the solvent water molecules (Tables 1 and 2). In compound B, additional hydroxyl groups are available in the 'tris­' cation, and these add further links in the extensive hydrogen bonding scheme.

Database survey top

For structures with the [V10O28{Mn(H2O)5}2]2– heteropolyanion, see: Klištincová et al. (2009) and Inami et al. (2009). For structures with manganese(II) coordination complexes as counter-ions for [V10O28]6–, see: Klištincová et al. (2010); Shan & Huang (1999); Lin et al. (2011) and Mestiri et al. (2013).

Synthesis and crystallization top

General

All reactions were performed in air with purified (Milli-Q®) water. Commercial reagents were used without purification. The starting materials NH4VO3, MnCl2·4H2O and Mn(OAc)2·4H2O were supplied by Aldrich, while mannitol (C6H8(OH)6) and (Me4N)Cl were purchased from USB and Merck, respectively. Infrared (FTIR) spectra were recorded on a BIORAD FTS-3500GX spectrophotometer from KBr pellets in the 400–4000 cm-1 region.

Synthesis of (NMe4)2[V10O28{Mn(H2O)5}2]·5H2O (A)

Solid NH4VO3 (0.500 g, 4.27 mmol) and [(CH3)4N]Cl (0.468 g, 4.27 mmol) were added to a solution of mannitol (0.366 g, 2.13 mmol) in 60 ml of water to produce a suspension that turned into a deep blue–greenish solution after one hour under reflux. After 24 more hours, a solution of Mn(OAc)2·4H2O (1.04 g, 4.27 mmol) in 10 ml of water was added to this reaction mixture, which remained under reflux for one more day. The solution was concentrated to 1/3 of its initial volume and, after four weeks at room temperature, a mixture of deep-green crystals of (Me4N)6[V15O36(Cl)] (Nunes et al., 2012) and yellow prisms of A was obtained, the latter in 9% yield based on vanadium (56 mg). The FTIR spectrum recorded for A shows the characteristic bands of the Me4N+ cation at 3031, 1639, 1485 and 1263 cm-1 and of the inorganic anion at 966, 833, 744, 584 and 455 cm-1.

Synthesis of [NH3C(CH2OH)3]2[V10O28{Mn(H2O)5}2]·2H2O (B)

A solution containing tris­(hy­droxy­methyl)­methyl­amine (0.720 g, 6.0 mmol) in 20 mL of water was added to a solution of NH4VO3 (1.17 g, 10.0 mmol) in the same volume of solvent. This reaction mixture was then refluxed until it became a clear solution, after which its pH was adjusted to 3 with aqueous HCl. A solution of MnCl2·4H2O (0.394 g, 2.0 mmol) in 10 mL of water was then added as a layer on top of the reaction mixture and, after two weeks at room temperature, yellow crystals of B were obtained (180 mg) in 12% yield based on vanadium. The FTIR spectrum of B shows characteristic bands of the tris­H+ cation at 3188, 2927, 2856, 1743, 1637, 1417, 1161 and 1112 cm-1 and of the inorganic anion at 941, 842 and 684 cm-1.

Refinement details top

Crystal data, data collection and structure refinement details for the two structures are summarized in Table 3.

Hydrogen atoms on the cation atoms were included in idealized positions (with methyl and methyl­ene group C—H distances set at 0.96 and 0.97 Å, N—H at 0.89 Å and O—H at 0.82 Å) and their Uiso values were set to ride on the Ueq values of the parent atoms. Hydrogen atoms in the anions (on coordinating water molecules) were located in difference maps and were refined freely.

There are two independent solvent water molecules, one of which is disordered over two sites close to a centre of symmetry, in compound A. No hydrogen atoms were identified in these water molecules.

In B, there is one solvent water molecule which is disordered over two sites; the hydrogen atoms here were located in difference maps and were refined with distance restraints [O—H = 0.82 (2) Å].

Related literature top

For related literature, see: Aureliano (2014); Aureliano & Ohlin (2014); Bošnjaković-Pavlović, Spasojevic-de Bire, Tomaz, Bouhmaida, Avecilla, Mioc, Pessoa & Ghermani (2009); Inami et al. (2009); Klištincová et al. (2009, 2010); Li et al. (2007); Lin et al. (2011); Liu & Zhou (2010); Long et al. (2010); Mestiri et al. (2013); Nunes et al. (2012); Pavliuk et al. (2014); Shan & Huang (1999); Silva et al. (2003); Wang et al. (2011); Wang, Sun, Liu, Gao, Gu & Liu (2008); Wang, Yan, Du & Niu (2008); Wu et al. (2012); Xu et al. (2012).

Computing details top

For both compounds, data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010). Program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) for Compound-A; SHELXS97 (Sheldrick 2008) for Compound-B. Program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015) for Compound-A; SHELXL2014 (Sheldrick, 2015) for Compound-B. For both compounds, molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. View of the components of (NMe4)2[V10O28{Mn(H2O)5}2]·5H2O, A, indicating the atom-numbering scheme. No H atoms were identified on the disordered solvent water molecules. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (1) 1 - x, y, 1 - z; (2) 1 - x, 1 - y, 1 - z; (3) x, 1 - y, z; (4) 1 - x, -y, -z; (5) 1 - x, y, -z.]
[Figure 2] Fig. 2. The corresponding view for [NH3C(CH2OH)3]2[V10O28{Mn(H2O)5}2]·2H2O, B. [Symmetry code: (1) 1 - x, y, 1/2 - z.]
[Figure 3] Fig. 3. The anion of compound B viewed approximately down the a axis of the V10O28 cluster. [Symmetry code: (1) 1 - x, y, 1/2 - z.]
[Figure 4] Fig. 4. The anion of compound B viewed approximately down the b axis of the V10O28 cluster. [Symmetry code: (1) 1 - x, y, 1/2 - z.]
[Figure 5] Fig. 5. The anion of compound B viewed approximately down the c axis of the V10O28 cluster. [Symmetry code: (1) 1 - x, y, 1/2 - z.]
(Compound-A) Bis(tetramethylammonium) decaaquadi-µ4oxido-tetra-µ3-oxido-hexadeca-µ2-oxido-hexaoxidodimanganesedecavanadate pentahydrate top
Crystal data top
(C4H12N)2·[Mn2V10O28(H2O)10]·5H2OF(000) = 1480
Mr = 1485.81Dx = 2.201 Mg m3
Monoclinic, I2/mMo Kα radiation, λ = 0.71073 Å
a = 13.2434 (7) ÅCell parameters from 9256 reflections
b = 9.6402 (5) Åθ = 3.1–28.3°
c = 17.7628 (13) ŵ = 2.64 mm1
β = 98.626 (2)°T = 292 K
V = 2242.1 (2) Å3Prism, yellow
Z = 20.48 × 0.38 × 0.15 mm
Data collection top
Bruker D8 Venture/Photon 100 CMOS
diffractometer
2953 independent reflections
Radiation source: fine-focus sealed tube2752 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 10.4167 pixels mm-1θmax = 28.4°, θmin = 3.1°
ϕ and ω scansh = 1717
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
k = 1212
Tmin = 0.562, Tmax = 0.746l = 2323
81983 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: mixed
wR(F2) = 0.060H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0329P)2 + 2.2668P]
where P = (Fo2 + 2Fc2)/3
2953 reflections(Δ/σ)max = 0.001
194 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
(C4H12N)2·[Mn2V10O28(H2O)10]·5H2OV = 2242.1 (2) Å3
Mr = 1485.81Z = 2
Monoclinic, I2/mMo Kα radiation
a = 13.2434 (7) ŵ = 2.64 mm1
b = 9.6402 (5) ÅT = 292 K
c = 17.7628 (13) Å0.48 × 0.38 × 0.15 mm
β = 98.626 (2)°
Data collection top
Bruker D8 Venture/Photon 100 CMOS
diffractometer
2953 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
2752 reflections with I > 2σ(I)
Tmin = 0.562, Tmax = 0.746Rint = 0.025
81983 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0200 restraints
wR(F2) = 0.060H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.58 e Å3
2953 reflectionsΔρmin = 0.34 e Å3
194 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.23106 (3)0.50000.18528 (2)0.02403 (8)
V20.32741 (2)0.50000.39643 (2)0.01725 (8)
V30.50000.66921 (3)0.50000.01425 (8)
V40.54714 (3)0.50000.35620 (2)0.01948 (8)
V50.28084 (2)0.65841 (2)0.54017 (2)0.02209 (7)
O10.15020 (19)0.50000.07177 (11)0.0480 (6)
O20.13101 (10)0.32849 (12)0.20645 (7)0.0293 (2)
O30.33574 (10)0.33360 (12)0.15931 (7)0.0310 (3)
O40.28574 (12)0.50000.30500 (8)0.0253 (3)
O50.50366 (14)0.50000.26708 (8)0.0328 (4)
O60.25845 (7)0.36038 (10)0.43170 (6)0.0223 (2)
O70.44883 (7)0.62838 (10)0.39540 (5)0.01665 (18)
O80.64321 (8)0.36184 (11)0.36540 (5)0.0230 (2)
O90.40458 (10)0.50000.51485 (7)0.0153 (2)
O100.20825 (11)0.50000.54989 (9)0.0257 (3)
O110.40317 (7)0.77369 (10)0.51675 (5)0.02001 (19)
O120.20299 (9)0.78080 (13)0.55243 (7)0.0365 (3)
H1A0.1272 (17)0.437 (2)0.0491 (13)0.053 (7)*
H2A0.1052 (16)0.285 (2)0.1767 (12)0.038 (6)*
H2B0.1397 (15)0.285 (2)0.2440 (13)0.038 (6)*
H3A0.3060 (19)0.283 (3)0.1339 (14)0.053 (7)*
H3B0.392 (2)0.359 (3)0.1441 (17)0.087 (10)*
N10.85954 (17)0.50000.23196 (11)0.0348 (4)
C100.9084 (2)0.50000.16133 (14)0.0373 (5)
H10A0.88830.41810.13210.056*0.5
H10B0.88700.58070.13150.056*0.5
H10C0.98130.50110.17500.056*
C110.8902 (2)0.3739 (2)0.27733 (14)0.0706 (8)
H11A0.86990.29300.24730.106*
H11B0.96300.37350.29200.106*
H11C0.85770.37350.32210.106*
C120.7469 (3)0.50000.2091 (2)0.0895 (16)
H12A0.72690.41840.17970.134*0.5
H12B0.71420.50070.25390.134*
H12C0.72700.58100.17910.134*0.5
O130.5022 (2)0.3567 (5)0.0856 (2)0.1752 (17)
O14A0.50000.0973 (14)0.00000.143 (14)0.280 (18)
O14B0.4760 (18)0.00000.0562 (15)0.158 (18)0.220 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.03393 (17)0.01631 (15)0.01903 (15)0.0000.00521 (12)0.000
V20.01907 (15)0.01704 (15)0.01409 (15)0.0000.00259 (11)0.000
V30.01883 (15)0.01043 (13)0.01303 (14)0.0000.00088 (10)0.000
V40.02432 (16)0.02264 (17)0.01183 (14)0.0000.00388 (11)0.000
V50.02267 (12)0.01995 (13)0.02474 (13)0.00444 (9)0.00709 (9)0.00058 (9)
O10.0908 (17)0.0167 (8)0.0266 (9)0.0000.0232 (9)0.000
O20.0407 (6)0.0190 (5)0.0250 (6)0.0052 (4)0.0054 (5)0.0005 (4)
O30.0325 (6)0.0240 (5)0.0345 (6)0.0022 (5)0.0016 (5)0.0062 (5)
O40.0290 (7)0.0270 (8)0.0168 (6)0.0000.0066 (5)0.000
O50.0423 (9)0.0413 (9)0.0144 (7)0.0000.0030 (6)0.000
O60.0219 (5)0.0214 (5)0.0223 (5)0.0047 (4)0.0010 (4)0.0013 (4)
O70.0214 (4)0.0149 (4)0.0128 (4)0.0009 (3)0.0001 (3)0.0016 (3)
O80.0285 (5)0.0222 (5)0.0195 (4)0.0022 (4)0.0078 (4)0.0029 (4)
O90.0191 (6)0.0138 (6)0.0128 (6)0.0000.0011 (5)0.000
O100.0216 (7)0.0268 (7)0.0301 (8)0.0000.0082 (6)0.000
O110.0256 (5)0.0141 (4)0.0202 (4)0.0030 (4)0.0031 (4)0.0001 (3)
O120.0341 (6)0.0312 (6)0.0458 (7)0.0121 (5)0.0113 (5)0.0029 (5)
N10.0484 (12)0.0300 (10)0.0304 (10)0.0000.0201 (9)0.000
C100.0470 (14)0.0381 (13)0.0311 (12)0.0000.0204 (10)0.000
C110.128 (2)0.0406 (12)0.0531 (13)0.0137 (13)0.0449 (15)0.0168 (10)
C120.051 (2)0.153 (5)0.071 (3)0.0000.0329 (19)0.000
O130.0805 (18)0.238 (4)0.220 (4)0.022 (2)0.064 (2)0.065 (3)
O14A0.027 (5)0.059 (8)0.33 (4)0.0000.022 (10)0.000
O14B0.101 (15)0.21 (4)0.135 (19)0.0000.077 (14)0.000
Geometric parameters (Å, º) top
Mn1—O12.1365 (18)V5—O101.8264 (8)
Mn1—O42.1412 (14)V5—O8iii1.8322 (10)
Mn1—O22.1863 (12)V5—O6i1.9136 (10)
Mn1—O2i2.1863 (12)V5—O112.0579 (10)
Mn1—O32.2136 (12)V5—O92.3326 (10)
Mn1—O3i2.2136 (12)V5—V5i3.0543 (5)
V2—O41.6350 (14)V5—V4iii3.1068 (4)
V2—O61.7916 (10)O1—H1A0.76 (2)
V2—O6i1.7916 (10)O2—H2A0.72 (2)
V2—O7i2.0314 (10)O2—H2B0.78 (2)
V2—O72.0314 (10)O3—H3A0.74 (3)
V2—O92.1964 (12)O3—H3B0.87 (3)
V2—V43.0988 (5)O6—V5i1.9137 (10)
V2—V53.1152 (4)O8—V5iii1.8322 (10)
V2—V5i3.1153 (4)O9—V3iii2.1041 (9)
V3—O111.6917 (10)O9—V4iii2.2840 (12)
V3—O11ii1.6918 (10)O9—V5i2.3327 (10)
V3—O71.9205 (9)O10—V5i1.8264 (8)
V3—O7ii1.9205 (9)N1—C11i1.481 (2)
V3—O92.1041 (9)N1—C111.481 (2)
V3—O9iii2.1041 (9)N1—C121.486 (4)
V3—V53.0928 (3)N1—C101.496 (3)
V3—V5ii3.0928 (3)C10—H10A0.9600
V4—O51.6013 (15)C10—H10B0.9600
V4—O8i1.8322 (10)C10—H10C0.9600
V4—O81.8322 (10)C11—H11A0.9600
V4—O71.9959 (10)C11—H11B0.9600
V4—O7i1.9959 (10)C11—H11C0.9600
V4—O9iii2.2840 (12)C12—H12A0.9600
V4—V5ii3.1069 (4)C12—H12B0.9600
V4—V5iii3.1069 (4)C12—H12C0.9600
V5—O121.6030 (11)
O1—Mn1—O4169.83 (9)O5—V4—V5iii135.13 (5)
O1—Mn1—O286.07 (6)O8i—V4—V5iii82.35 (3)
O4—Mn1—O287.28 (4)O8—V4—V5iii32.02 (3)
O1—Mn1—O2i86.07 (6)O7—V4—V5iii123.83 (3)
O4—Mn1—O2i87.28 (4)O7i—V4—V5iii86.97 (3)
O2—Mn1—O2i98.27 (7)O9iii—V4—V5iii48.37 (3)
O1—Mn1—O392.53 (6)V2—V4—V5iii119.596 (11)
O4—Mn1—O394.47 (4)V5ii—V4—V5iii58.884 (11)
O2—Mn1—O384.40 (5)O12—V5—O10104.13 (6)
O2i—Mn1—O3176.89 (5)O12—V5—O8iii103.30 (6)
O1—Mn1—O3i92.53 (6)O10—V5—O8iii92.80 (6)
O4—Mn1—O3i94.47 (4)O12—V5—O6i101.58 (6)
O2—Mn1—O3i176.88 (5)O10—V5—O6i90.67 (6)
O2i—Mn1—O3i84.40 (5)O8iii—V5—O6i153.19 (5)
O3—Mn1—O3i92.89 (7)O12—V5—O1199.90 (6)
O4—V2—O6103.51 (5)O10—V5—O11155.80 (5)
O4—V2—O6i103.51 (5)O8iii—V5—O1184.37 (4)
O6—V2—O6i97.40 (7)O6i—V5—O1181.68 (4)
O4—V2—O7i98.09 (5)O12—V5—O9173.12 (5)
O6—V2—O7i89.49 (4)O10—V5—O982.29 (4)
O6i—V2—O7i155.03 (4)O8iii—V5—O978.56 (4)
O4—V2—O798.09 (5)O6i—V5—O975.59 (4)
O6—V2—O7155.03 (4)O11—V5—O973.59 (3)
O6i—V2—O789.49 (4)O12—V5—V5i137.39 (5)
O7i—V2—O775.07 (5)O10—V5—V5i33.27 (4)
O4—V2—O9172.10 (7)O8iii—V5—V5i83.88 (3)
O6—V2—O981.57 (4)O6i—V5—V5i84.57 (3)
O6i—V2—O981.57 (4)O11—V5—V5i122.69 (3)
O7i—V2—O975.72 (4)O9—V5—V5i49.10 (2)
O7—V2—O975.72 (4)O12—V5—V3130.66 (5)
O4—V2—V487.69 (6)O10—V5—V3125.13 (4)
O6—V2—V4128.77 (3)O8iii—V5—V379.01 (3)
O6i—V2—V4128.77 (3)O6i—V5—V377.29 (3)
O7i—V2—V439.28 (3)O11—V5—V330.76 (3)
O7—V2—V439.28 (3)O9—V5—V342.84 (2)
O9—V2—V484.41 (4)V5i—V5—V391.929 (7)
O4—V2—V5137.34 (4)O12—V5—V4iii135.29 (5)
O6—V2—V584.70 (3)O10—V5—V4iii83.26 (4)
O6i—V2—V534.01 (3)O8iii—V5—V4iii32.02 (3)
O7i—V2—V5124.08 (3)O6i—V5—V4iii122.63 (3)
O7—V2—V587.88 (3)O11—V5—V4iii81.71 (3)
O9—V2—V548.39 (3)O9—V5—V4iii47.04 (3)
V4—V2—V5119.816 (10)V5i—V5—V4iii60.558 (6)
O4—V2—V5i137.34 (4)V3—V5—V4iii61.520 (9)
O6—V2—V5i34.02 (3)O12—V5—V2133.04 (5)
O6i—V2—V5i84.70 (3)O10—V5—V280.75 (4)
O7i—V2—V5i87.88 (3)O8iii—V5—V2123.30 (3)
O7—V2—V5i124.08 (3)O6i—V5—V231.58 (3)
O9—V2—V5i48.39 (3)O11—V5—V280.81 (3)
V4—V2—V5i119.816 (10)O9—V5—V244.75 (3)
V5—V2—V5i58.710 (11)V5i—V5—V260.645 (6)
O11—V3—O11ii106.92 (7)V3—V5—V261.274 (8)
O11—V3—O797.20 (4)V4iii—V5—V291.545 (10)
O11ii—V3—O796.82 (4)Mn1—O1—H1A127.0 (17)
O11—V3—O7ii96.82 (4)Mn1—O2—H2A123.2 (17)
O11ii—V3—O7ii97.20 (4)Mn1—O2—H2B122.5 (15)
O7—V3—O7ii156.35 (6)H2A—O2—H2B108 (2)
O11—V3—O987.37 (4)Mn1—O3—H3A108.1 (19)
O11ii—V3—O9165.69 (5)Mn1—O3—H3B117 (2)
O7—V3—O980.27 (4)H3A—O3—H3B114 (3)
O7ii—V3—O981.45 (4)V2—O4—Mn1179.96 (10)
O11—V3—O9iii165.69 (5)V2—O6—V5i114.40 (5)
O11ii—V3—O9iii87.38 (4)V3—O7—V4108.10 (4)
O7—V3—O9iii81.45 (4)V3—O7—V2106.33 (4)
O7ii—V3—O9iii80.27 (4)V4—O7—V2100.60 (4)
O9—V3—O9iii78.34 (6)V5iii—O8—V4115.96 (5)
O11—V3—V538.47 (3)V3iii—O9—V3101.66 (6)
O11ii—V3—V5145.38 (4)V3iii—O9—V294.70 (4)
O7—V3—V590.52 (3)V3—O9—V294.70 (4)
O7ii—V3—V588.69 (3)V3iii—O9—V4iii92.45 (4)
O9—V3—V548.93 (3)V3—O9—V4iii92.45 (4)
O9iii—V3—V5127.22 (3)V2—O9—V4iii168.68 (7)
O11—V3—V5ii145.38 (4)V3iii—O9—V5169.81 (5)
O11ii—V3—V5ii38.47 (3)V3—O9—V588.231 (11)
O7—V3—V5ii88.68 (3)V2—O9—V586.86 (4)
O7ii—V3—V5ii90.52 (3)V4iii—O9—V584.59 (4)
O9—V3—V5ii127.22 (3)V3iii—O9—V5i88.232 (11)
O9iii—V3—V5ii48.93 (3)V3—O9—V5i169.81 (5)
V5—V3—V5ii176.145 (13)V2—O9—V5i86.86 (4)
O5—V4—O8i103.31 (5)V4iii—O9—V5i84.59 (4)
O5—V4—O8103.30 (5)V5—O9—V5i81.79 (4)
O8i—V4—O893.26 (7)V5i—O10—V5113.47 (8)
O5—V4—O7100.85 (6)V3—O11—V5110.76 (5)
O8i—V4—O789.92 (4)C11i—N1—C11110.3 (3)
O8—V4—O7154.18 (4)C11i—N1—C12109.32 (18)
O5—V4—O7i100.85 (6)C11—N1—C12109.32 (18)
O8i—V4—O7i154.18 (4)C11i—N1—C10109.79 (14)
O8—V4—O7i89.92 (4)C11—N1—C10109.79 (14)
O7—V4—O7i76.64 (6)C12—N1—C10108.3 (2)
O5—V4—O9iii175.24 (8)N1—C10—H10A109.5
O8i—V4—O9iii79.88 (4)N1—C10—H10B109.5
O8—V4—O9iii79.88 (4)H10A—C10—H10B109.5
O7—V4—O9iii75.47 (4)N1—C10—H10C109.5
O7i—V4—O9iii75.48 (4)H10A—C10—H10C109.5
O5—V4—V290.98 (7)H10B—C10—H10C109.5
O8i—V4—V2130.01 (3)N1—C11—H11A109.5
O8—V4—V2130.01 (3)N1—C11—H11B109.5
O7—V4—V240.12 (3)H11A—C11—H11B109.5
O7i—V4—V240.12 (3)N1—C11—H11C109.5
O9iii—V4—V284.26 (3)H11A—C11—H11C109.5
O5—V4—V5ii135.13 (5)H11B—C11—H11C109.5
O8i—V4—V5ii32.02 (3)N1—C12—H12A109.5
O8—V4—V5ii82.35 (3)N1—C12—H12B109.5
O7—V4—V5ii86.97 (3)H12A—C12—H12B109.5
O7i—V4—V5ii123.83 (3)N1—C12—H12C109.5
O9iii—V4—V5ii48.37 (3)H12A—C12—H12C109.5
V2—V4—V5ii119.596 (11)H12B—C12—H12C109.5
O4—V2—O6—V5i174.84 (6)O12—V5—O10—V5i178.86 (8)
O6i—V2—O6—V5i68.97 (7)O8iii—V5—O10—V5i74.39 (8)
O7i—V2—O6—V5i86.96 (6)O6i—V5—O10—V5i79.02 (8)
O7—V2—O6—V5i35.96 (13)O11—V5—O10—V5i8.1 (2)
O9—V2—O6—V5i11.32 (5)O9—V5—O10—V5i3.67 (8)
V4—V2—O6—V5i87.13 (6)V3—V5—O10—V5i4.14 (11)
V5—V2—O6—V5i37.34 (5)V4iii—V5—O10—V5i43.77 (7)
O5—V4—O8—V5iii174.45 (7)V2—V5—O10—V5i48.91 (7)
O8i—V4—O8—V5iii69.96 (7)O11ii—V3—O11—V5178.88 (6)
O7—V4—O8—V5iii26.63 (13)O7—V3—O11—V581.71 (5)
O7i—V4—O8—V5iii84.41 (6)O7ii—V3—O11—V579.19 (5)
O9iii—V4—O8—V5iii9.15 (5)O9—V3—O11—V51.87 (5)
V2—V4—O8—V5iii82.75 (6)O9iii—V3—O11—V51.9 (2)
V5ii—V4—O8—V5iii39.78 (5)V5ii—V3—O11—V5179.893 (6)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+1; (iii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O11iv0.76 (2)1.97 (2)2.7199 (14)168 (2)
O2—H2A···O7iv0.72 (2)2.04 (2)2.7457 (15)167 (2)
O2—H2B···O3v0.78 (2)2.05 (2)2.8295 (18)178 (2)
O3—H3A···O6v0.74 (3)1.92 (3)2.6573 (16)174 (3)
O3—H3B···O130.87 (3)1.91 (3)2.737 (3)158 (3)
C10—H10A···O11vi0.962.513.362 (2)148
C10—H10B···O11vii0.962.513.362 (2)148
C10—H10C···O2viii0.962.583.370 (3)139
C10—H10C···O2ix0.962.573.370 (3)141
C11—H11A···O8x0.962.483.384 (3)156
C12—H12A···O12vi0.962.603.474 (4)152
C12—H12C···O12vii0.962.593.474 (4)153
Symmetry codes: (iv) x+1/2, y1/2, z+1/2; (v) x+1/2, y+1/2, z+1/2; (vi) x+1/2, y1/2, z1/2; (vii) x+1/2, y+3/2, z1/2; (viii) x+1, y, z; (ix) x+1, y+1, z; (x) x+3/2, y+1/2, z+1/2.
(Compound-B) Bis{[tris(hydroxymethyl)methyl]ammonium} decaaquadi-µ4oxido-tetra-µ3-oxido-hexadeca-µ2-oxido-hexaoxidodimanganesedecavanadate dihydrate top
Crystal data top
(C4H12NO3)2[Mn2V10O28(H2O)10]·2H2OF(000) = 3032
Mr = 1527.76Dx = 2.373 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 19.3147 (8) ÅCell parameters from 38099 reflections
b = 9.7733 (4) Åθ = 3.0–25.4°
c = 22.7952 (10) ŵ = 2.78 mm1
β = 96.392 (1)°T = 295 K
V = 4276.3 (3) Å3Plate, yellow
Z = 40.49 × 0.26 × 0.13 mm
Data collection top
Bruker D8 Venture/Photon 100 CMOS
diffractometer
3936 independent reflections
Radiation source: fine-focus sealed tube3280 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 10.4167 pixels mm-1θmax = 25.5°, θmin = 2.9°
ϕ and ω scansh = 2323
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
k = 1111
Tmin = 0.542, Tmax = 0.745l = 2727
71752 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: mixed
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0062P)2 + 110.7865P]
where P = (Fo2 + 2Fc2)/3
3936 reflections(Δ/σ)max < 0.001
385 parametersΔρmax = 0.78 e Å3
6 restraintsΔρmin = 1.11 e Å3
Crystal data top
(C4H12NO3)2[Mn2V10O28(H2O)10]·2H2OV = 4276.3 (3) Å3
Mr = 1527.76Z = 4
Monoclinic, C2/cMo Kα radiation
a = 19.3147 (8) ŵ = 2.78 mm1
b = 9.7733 (4) ÅT = 295 K
c = 22.7952 (10) Å0.49 × 0.26 × 0.13 mm
β = 96.392 (1)°
Data collection top
Bruker D8 Venture/Photon 100 CMOS
diffractometer
3936 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
3280 reflections with I > 2σ(I)
Tmin = 0.542, Tmax = 0.745Rint = 0.039
71752 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0526 restraints
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0062P)2 + 110.7865P]
where P = (Fo2 + 2Fc2)/3
3936 reflectionsΔρmax = 0.78 e Å3
385 parametersΔρmin = 1.11 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.80093 (5)0.43409 (10)0.18078 (4)0.0239 (2)
V20.60396 (5)0.43006 (10)0.17920 (4)0.0172 (2)
V30.62652 (5)0.43454 (11)0.31542 (4)0.0182 (2)
V40.47896 (5)0.58914 (11)0.11421 (5)0.0226 (3)
V50.47615 (5)0.27690 (11)0.11376 (5)0.0222 (2)
V60.50000.59971 (13)0.25000.0165 (3)
V70.50000.26656 (14)0.25000.0153 (3)
O10.6885 (2)0.4257 (4)0.17944 (18)0.0228 (9)
O20.7094 (2)0.4358 (5)0.31283 (18)0.0239 (9)
O30.5769 (2)0.5689 (4)0.12912 (18)0.0223 (9)
O40.5757 (2)0.2948 (4)0.12929 (18)0.0195 (9)
O50.59743 (19)0.5594 (4)0.24810 (17)0.0185 (8)
O60.59724 (18)0.3057 (4)0.24851 (17)0.0148 (8)
O70.6131 (2)0.5718 (4)0.36695 (18)0.0234 (9)
O80.6144 (2)0.2967 (4)0.36707 (18)0.0220 (9)
O90.4718 (3)0.7085 (5)0.0667 (2)0.0362 (12)
O100.4714 (2)0.4332 (5)0.06979 (18)0.0255 (9)
O110.4680 (2)0.1569 (5)0.0664 (2)0.0324 (11)
O120.4913 (2)0.7043 (4)0.19037 (19)0.0251 (10)
O130.49147 (19)0.4337 (4)0.19135 (17)0.0157 (8)
O140.4907 (2)0.1636 (4)0.18997 (18)0.0186 (9)
O1W0.9115 (3)0.4350 (7)0.1854 (4)0.056 (2)
O2W0.8106 (3)0.2701 (6)0.2493 (2)0.0282 (12)
O3W0.7972 (3)0.2741 (5)0.1120 (2)0.0260 (10)
O4W0.8094 (3)0.5982 (5)0.2475 (2)0.0255 (10)
O5W0.7904 (4)0.5909 (8)0.1149 (3)0.0463 (17)
H1A0.929 (6)0.497 (12)0.182 (5)0.08 (4)*
H1B0.936 (4)0.383 (8)0.187 (3)0.015 (19)*
H2A0.832 (4)0.227 (8)0.248 (3)0.01 (2)*
H2B0.820 (5)0.297 (10)0.286 (4)0.06 (3)*
H3A0.820 (5)0.220 (10)0.119 (4)0.05 (3)*
H3B0.799 (4)0.295 (8)0.075 (4)0.03 (2)*
H4A0.841 (6)0.653 (11)0.245 (4)0.08 (4)*
H4B0.775 (5)0.636 (9)0.245 (4)0.04 (3)*
H5A0.812 (6)0.626 (12)0.119 (5)0.06 (5)*
H5B0.774 (7)0.564 (14)0.082 (6)0.11 (5)*
N10.8230 (3)0.5979 (5)0.3845 (2)0.0246 (12)
H1C0.78810.65090.39320.029*
H1D0.80900.54740.35290.029*
H1E0.85880.65000.37700.029*
C100.8451 (3)0.5061 (7)0.4357 (3)0.0275 (14)
C110.8775 (4)0.5944 (7)0.4861 (3)0.0341 (16)
H11B0.88850.53860.52110.041*
H11C0.92050.63430.47580.041*
O11A0.8302 (3)0.7007 (6)0.4981 (3)0.0517 (15)
H11A0.84620.77510.48990.078*
C120.8985 (4)0.4081 (8)0.4159 (4)0.047 (2)
H12B0.93740.45880.40340.056*
H12C0.91590.34890.44840.056*
O12A0.8665 (4)0.3279 (6)0.3681 (3)0.0591 (18)
H12A0.88600.25340.36790.089*
C130.7796 (5)0.4328 (9)0.4506 (4)0.050 (2)
H13C0.74420.49970.45730.061*0.694 (13)
H13D0.76150.37550.41770.061*0.694 (13)
H13E0.74420.43830.41700.061*0.306 (13)
H13F0.79020.33690.45800.061*0.306 (13)
O13A0.7939 (7)0.3553 (10)0.4991 (4)0.073 (4)0.694 (13)
H13A0.80640.27910.48960.110*0.694 (13)
O13B0.7539 (9)0.487 (3)0.4988 (9)0.062 (8)0.306 (13)
H13B0.73 (2)0.44 (3)0.510 (12)0.093*0.306 (13)
O6WA0.6367 (5)0.4696 (11)0.0226 (4)0.051 (3)0.694 (13)
H6A0.617 (6)0.465 (16)0.053 (3)0.077*0.694 (13)
H6B0.612 (6)0.509 (16)0.003 (4)0.077*0.694 (13)
O6WB0.6316 (9)0.596 (3)0.0209 (8)0.046 (6)0.306 (13)
H6C0.627 (13)0.58 (4)0.055 (4)0.069*0.306 (13)
H6D0.595 (8)0.58 (3)0.000 (8)0.069*0.306 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0168 (4)0.0170 (5)0.0383 (6)0.0012 (4)0.0049 (4)0.0002 (4)
V20.0119 (4)0.0152 (5)0.0248 (5)0.0002 (4)0.0037 (4)0.0007 (4)
V30.0119 (4)0.0167 (5)0.0258 (5)0.0004 (4)0.0012 (4)0.0009 (4)
V40.0206 (5)0.0193 (6)0.0279 (6)0.0007 (4)0.0024 (4)0.0071 (4)
V50.0191 (5)0.0225 (6)0.0252 (6)0.0010 (4)0.0029 (4)0.0040 (4)
V60.0137 (7)0.0058 (6)0.0301 (8)0.0000.0025 (6)0.000
V70.0103 (6)0.0120 (7)0.0240 (7)0.0000.0029 (5)0.000
O10.0148 (19)0.022 (2)0.032 (2)0.0009 (18)0.0057 (17)0.0007 (19)
O20.0143 (19)0.027 (2)0.030 (2)0.0033 (19)0.0016 (17)0.0001 (19)
O30.020 (2)0.021 (2)0.027 (2)0.0017 (19)0.0046 (17)0.0027 (19)
O40.017 (2)0.016 (2)0.026 (2)0.0000 (17)0.0064 (17)0.0027 (18)
O50.0172 (19)0.014 (2)0.024 (2)0.0007 (17)0.0026 (16)0.0001 (17)
O60.0073 (17)0.0087 (19)0.029 (2)0.0015 (15)0.0031 (15)0.0002 (16)
O70.020 (2)0.021 (2)0.028 (2)0.0034 (19)0.0000 (17)0.0054 (19)
O80.016 (2)0.020 (2)0.029 (2)0.0006 (17)0.0030 (17)0.0019 (18)
O90.035 (3)0.032 (3)0.041 (3)0.000 (2)0.002 (2)0.019 (2)
O100.022 (2)0.031 (2)0.023 (2)0.000 (2)0.0011 (17)0.005 (2)
O110.027 (2)0.036 (3)0.034 (3)0.004 (2)0.002 (2)0.009 (2)
O120.022 (2)0.019 (2)0.034 (3)0.0004 (19)0.0054 (18)0.0065 (19)
O130.0134 (18)0.0105 (18)0.023 (2)0.0000 (17)0.0030 (15)0.0035 (16)
O140.0148 (19)0.0076 (18)0.034 (2)0.0003 (16)0.0046 (17)0.0011 (17)
O1W0.016 (3)0.014 (3)0.139 (7)0.002 (3)0.013 (3)0.002 (3)
O2W0.031 (3)0.021 (3)0.033 (3)0.010 (2)0.005 (2)0.000 (2)
O3W0.026 (3)0.017 (2)0.035 (3)0.002 (2)0.004 (2)0.001 (2)
O4W0.015 (2)0.018 (2)0.045 (3)0.003 (2)0.007 (2)0.004 (2)
O5W0.055 (4)0.038 (4)0.046 (4)0.014 (3)0.003 (3)0.007 (3)
N10.024 (3)0.015 (3)0.035 (3)0.004 (2)0.002 (2)0.001 (2)
C100.032 (4)0.020 (3)0.030 (3)0.001 (3)0.001 (3)0.002 (3)
C110.037 (4)0.034 (4)0.031 (4)0.002 (3)0.003 (3)0.004 (3)
O11A0.082 (4)0.033 (3)0.039 (3)0.010 (3)0.002 (3)0.013 (3)
C120.049 (5)0.041 (5)0.046 (5)0.018 (4)0.012 (4)0.008 (4)
O12A0.082 (5)0.043 (3)0.046 (3)0.038 (3)0.020 (3)0.021 (3)
C130.069 (6)0.040 (5)0.045 (5)0.030 (5)0.020 (4)0.005 (4)
O13A0.122 (10)0.053 (6)0.041 (5)0.038 (7)0.005 (5)0.013 (4)
O13B0.010 (8)0.13 (2)0.049 (11)0.012 (10)0.010 (7)0.020 (13)
O6WA0.059 (6)0.061 (7)0.035 (5)0.007 (5)0.009 (4)0.002 (4)
O6WB0.024 (9)0.081 (18)0.034 (10)0.008 (10)0.007 (7)0.001 (10)
Geometric parameters (Å, º) top
Mn1—O1W2.126 (5)V7—O61.921 (4)
Mn1—O5W2.139 (7)V7—O6i1.921 (4)
Mn1—O12.169 (4)V7—O132.106 (4)
Mn1—O4W2.204 (5)V7—O13i2.106 (4)
Mn1—O3W2.209 (5)V7—V5i3.0900 (11)
Mn1—O2W2.231 (5)O7—V4i1.884 (4)
V2—O11.634 (4)O8—V5i1.860 (4)
V2—O41.789 (4)O13—V3i2.267 (4)
V2—O31.812 (4)O1W—H1A0.70 (12)
V2—O62.009 (4)O1W—H1B0.70 (7)
V2—O52.031 (4)O2W—H2A0.60 (7)
V2—O132.221 (4)O2W—H2B0.87 (10)
V2—V33.0875 (14)O3W—H3A0.70 (9)
V2—V43.1056 (14)O3W—H3B0.88 (8)
V3—O21.609 (4)O4W—H4A0.82 (11)
V3—O71.821 (4)O4W—H4B0.76 (9)
V3—O81.821 (4)O5W—H5A0.55 (11)
V3—O51.992 (4)O5W—H5B0.83 (14)
V3—O62.010 (4)N1—C101.496 (8)
V3—O13i2.267 (4)N1—H1C0.8900
V3—V5i3.1025 (14)N1—H1D0.8900
V4—O91.587 (5)N1—H1E0.8900
V4—O101.826 (5)C10—C121.513 (10)
V4—O7i1.884 (4)C10—C111.517 (9)
V4—O31.895 (4)C10—C131.525 (10)
V4—O122.061 (5)C11—O11A1.431 (9)
V4—O132.316 (4)C11—H11B0.9700
V4—V53.0521 (15)C11—H11C0.9700
V4—V63.0786 (11)O11A—H11A0.8200
V5—O111.590 (5)C12—O12A1.426 (9)
V5—O101.824 (5)C12—H12B0.9700
V5—O8i1.860 (4)C12—H12C0.9700
V5—O41.925 (4)O12A—H12A0.8200
V5—O142.053 (4)C13—O13A1.343 (12)
V5—O132.334 (4)C13—O13B1.36 (2)
V5—V73.0900 (11)C13—H13C0.9700
V5—V3i3.1025 (14)C13—H13D0.9700
V6—O121.694 (4)C13—H13E0.9700
V6—O12i1.694 (4)C13—H13F0.9700
V6—O51.928 (4)O13A—H13A0.8200
V6—O5i1.928 (4)O13B—H13B0.8 (4)
V6—O13i2.097 (4)O6WA—H6A0.82 (2)
V6—O132.097 (4)O6WA—H6B0.82 (2)
V6—V4i3.0786 (11)O6WB—H6C0.82 (2)
V7—O141.692 (4)O6WB—H6D0.82 (2)
V7—O14i1.692 (4)
O1W—Mn1—O5W92.8 (3)O12—V6—O12i105.8 (3)
O1W—Mn1—O1177.2 (2)O12—V6—O596.61 (19)
O5W—Mn1—O190.0 (3)O12i—V6—O597.57 (19)
O1W—Mn1—O4W88.0 (2)O12—V6—O5i97.57 (19)
O5W—Mn1—O4W87.5 (3)O12i—V6—O5i96.61 (19)
O1—Mn1—O4W91.99 (18)O5—V6—O5i156.4 (3)
O1W—Mn1—O3W89.5 (2)O12—V6—O13i166.4 (2)
O5W—Mn1—O3W90.9 (3)O12i—V6—O13i87.80 (18)
O1—Mn1—O3W90.57 (17)O5—V6—O13i81.29 (16)
O4W—Mn1—O3W177.02 (19)O5i—V6—O13i80.50 (16)
O1W—Mn1—O2W87.9 (3)O12—V6—O1387.80 (18)
O5W—Mn1—O2W179.3 (3)O12i—V6—O13166.4 (2)
O1—Mn1—O2W89.35 (19)O5—V6—O1380.50 (16)
O4W—Mn1—O2W92.61 (19)O5i—V6—O1381.28 (16)
O3W—Mn1—O2W88.9 (2)O13i—V6—O1378.6 (2)
O1—V2—O4102.5 (2)O12—V6—V439.04 (15)
O1—V2—O3103.9 (2)O12i—V6—V4144.81 (16)
O4—V2—O396.10 (18)O5—V6—V489.45 (12)
O1—V2—O697.69 (18)O5i—V6—V489.76 (12)
O4—V2—O690.65 (17)O13i—V6—V4127.39 (11)
O3—V2—O6155.37 (17)O13—V6—V448.76 (10)
O1—V2—O599.30 (19)O12—V6—V4i144.81 (16)
O4—V2—O5155.64 (17)O12i—V6—V4i39.04 (15)
O3—V2—O589.03 (18)O5—V6—V4i89.76 (12)
O6—V2—O575.72 (15)O5i—V6—V4i89.45 (12)
O1—V2—O13172.67 (19)O13i—V6—V4i48.76 (10)
O4—V2—O1381.85 (16)O13—V6—V4i127.39 (11)
O3—V2—O1381.31 (16)V4—V6—V4i176.15 (6)
O6—V2—O1376.23 (14)O14—V7—O14i107.0 (3)
O5—V2—O1375.39 (15)O14—V7—O696.90 (17)
O1—V2—V388.16 (15)O14i—V7—O696.68 (17)
O4—V2—V3130.47 (14)O14—V7—O6i96.68 (17)
O3—V2—V3128.43 (14)O14i—V7—O6i96.90 (17)
O6—V2—V339.82 (11)O6—V7—O6i157.1 (2)
O5—V2—V339.40 (12)O14—V7—O1387.36 (17)
O13—V2—V384.54 (10)O14i—V7—O13165.61 (18)
O1—V2—V4137.61 (16)O6—V7—O1380.91 (15)
O4—V2—V484.31 (13)O6i—V7—O1381.34 (15)
O3—V2—V433.93 (13)O14—V7—O13i165.61 (18)
O6—V2—V4124.28 (11)O14i—V7—O13i87.36 (17)
O5—V2—V486.88 (11)O6—V7—O13i81.34 (15)
O13—V2—V448.09 (10)O6i—V7—O13i80.91 (15)
V3—V2—V4119.20 (4)O13—V7—O13i78.3 (2)
O2—V3—O7103.4 (2)O14—V7—V538.37 (13)
O2—V3—O8103.3 (2)O14i—V7—V5145.37 (15)
O7—V3—O895.17 (19)O6—V7—V590.71 (12)
O2—V3—O599.42 (19)O6i—V7—V588.54 (12)
O7—V3—O589.87 (18)O13—V7—V549.01 (11)
O8—V3—O5154.91 (18)O13i—V7—V5127.24 (12)
O2—V3—O6100.03 (19)O14—V7—V5i145.37 (15)
O7—V3—O6154.59 (17)O14i—V7—V5i38.37 (13)
O8—V3—O688.95 (18)O6—V7—V5i88.54 (12)
O5—V3—O676.57 (15)O6i—V7—V5i90.71 (12)
O2—V3—O13i174.03 (19)O13—V7—V5i127.24 (12)
O7—V3—O13i80.37 (16)O13i—V7—V5i49.01 (11)
O8—V3—O13i80.84 (16)V5—V7—V5i176.25 (7)
O5—V3—O13i75.79 (15)V2—O1—Mn1176.3 (3)
O6—V3—O13i75.54 (14)V2—O3—V4113.8 (2)
O2—V3—V289.59 (15)V2—O4—V5114.3 (2)
O7—V3—V2130.18 (15)V6—O5—V3107.48 (19)
O8—V3—V2128.75 (14)V6—O5—V2106.83 (18)
O5—V3—V240.33 (12)V3—O5—V2100.27 (18)
O6—V3—V239.80 (11)V7—O6—V2106.44 (18)
O13i—V3—V284.45 (10)V7—O6—V3107.72 (18)
O2—V3—V5i136.00 (16)V2—O6—V3100.38 (17)
O7—V3—V5i83.42 (14)V3—O7—V4i114.8 (2)
O8—V3—V5i32.94 (13)V3—O8—V5i114.9 (2)
O5—V3—V5i124.28 (12)V5—O10—V4113.5 (2)
O6—V3—V5i86.64 (11)V6—O12—V4109.8 (2)
O13i—V3—V5i48.52 (10)V6—O13—V7101.55 (16)
V2—V3—V5i119.30 (4)V6—O13—V294.78 (15)
O9—V4—O10103.9 (2)V7—O13—V293.34 (14)
O9—V4—O7i102.1 (2)V6—O13—V3i92.73 (14)
O10—V4—O7i91.83 (19)V7—O13—V3i93.04 (14)
O9—V4—O3102.0 (2)V2—O13—V3i168.98 (19)
O10—V4—O391.66 (19)V6—O13—V488.32 (14)
O7i—V4—O3154.04 (18)V7—O13—V4170.1 (2)
O9—V4—O1299.6 (2)V2—O13—V486.37 (13)
O10—V4—O12156.56 (19)V3i—O13—V485.80 (13)
O7i—V4—O1283.15 (18)V6—O13—V5170.2 (2)
O3—V4—O1283.47 (18)V7—O13—V588.06 (14)
O9—V4—O13173.7 (2)V2—O13—V586.46 (13)
O10—V4—O1382.46 (17)V3i—O13—V584.79 (13)
O7i—V4—O1377.84 (16)V4—O13—V582.05 (13)
O3—V4—O1377.14 (16)V7—O14—V5110.9 (2)
O12—V4—O1374.10 (15)Mn1—O1W—H1A120 (9)
O9—V4—V5137.1 (2)Mn1—O1W—H1B132 (6)
O10—V4—V533.24 (13)H1A—O1W—H1B107 (10)
O7i—V4—V583.91 (14)Mn1—O2W—H2A119 (7)
O3—V4—V585.01 (14)Mn1—O2W—H2B116 (6)
O12—V4—V5123.32 (13)H2A—O2W—H2B101 (9)
O13—V4—V549.23 (10)Mn1—O3W—H3A115 (8)
O9—V4—V6130.8 (2)Mn1—O3W—H3B121 (5)
O10—V4—V6125.37 (14)H3A—O3W—H3B107 (9)
O7i—V4—V678.24 (13)Mn1—O4W—H4A115 (7)
O3—V4—V678.80 (13)Mn1—O4W—H4B108 (6)
O12—V4—V631.19 (12)H4A—O4W—H4B109 (9)
O13—V4—V642.92 (10)Mn1—O5W—H5A108 (10)
V5—V4—V692.13 (4)Mn1—O5W—H5B114 (9)
O9—V4—V2134.20 (18)H5A—O5W—H5B126 (10)
O10—V4—V281.76 (13)C10—N1—H1C109.5
O7i—V4—V2123.37 (13)C10—N1—H1D109.5
O3—V4—V232.27 (13)H1C—N1—H1D109.5
O12—V4—V281.98 (12)C10—N1—H1E109.5
O13—V4—V245.54 (9)H1C—N1—H1E109.5
V5—V4—V260.90 (3)H1D—N1—H1E109.5
V6—V4—V261.87 (3)N1—C10—C12107.0 (6)
O11—V5—O10104.4 (2)N1—C10—C11107.9 (5)
O11—V5—O8i102.2 (2)C12—C10—C11110.4 (6)
O10—V5—O8i92.89 (19)N1—C10—C13106.5 (6)
O11—V5—O4102.3 (2)C12—C10—C13112.3 (7)
O10—V5—O490.75 (18)C11—C10—C13112.4 (6)
O8i—V5—O4153.41 (18)O11A—C11—C10109.8 (6)
O11—V5—O1499.8 (2)O11A—C11—H11B109.7
O10—V5—O14155.59 (19)C10—C11—H11B109.7
O8i—V5—O1484.32 (17)O11A—C11—H11C109.7
O4—V5—O1481.60 (17)C10—C11—H11C109.7
O11—V5—O13173.5 (2)H11B—C11—H11C108.2
O10—V5—O1382.00 (17)C11—O11A—H11A109.5
O8i—V5—O1378.27 (16)O12A—C12—C10108.9 (6)
O4—V5—O1376.18 (15)O12A—C12—H12B109.9
O14—V5—O1373.68 (14)C10—C12—H12B109.9
O11—V5—V4137.74 (19)O12A—C12—H12C109.9
O10—V5—V433.29 (14)C10—C12—H12C109.9
O8i—V5—V484.94 (14)H12B—C12—H12C108.3
O4—V5—V483.76 (13)C12—O12A—H12A109.5
O14—V5—V4122.39 (12)O13A—C13—C10110.4 (9)
O13—V5—V448.72 (10)O13B—C13—C10112.4 (11)
O11—V5—V7130.60 (19)O13A—C13—H13C109.6
O10—V5—V7124.92 (15)C10—C13—H13C109.6
O8i—V5—V778.82 (13)O13A—C13—H13D109.6
O4—V5—V777.53 (12)C10—C13—H13D109.6
O14—V5—V730.77 (11)H13C—C13—H13D108.1
O13—V5—V742.93 (10)O13B—C13—H13E109.1
V4—V5—V791.65 (4)C10—C13—H13E109.1
O11—V5—V3i134.32 (17)O13B—C13—H13F109.1
O10—V5—V3i82.75 (14)C10—C13—H13F109.1
O8i—V5—V3i32.17 (13)H13E—C13—H13F107.8
O4—V5—V3i122.87 (13)C13—O13A—H13A109.5
O14—V5—V3i82.10 (11)C13—O13B—H13B109.5
O13—V5—V3i46.69 (9)H6A—O6WA—H6B110 (4)
V4—V5—V3i60.92 (3)H6C—O6WB—H6D110 (4)
V7—V5—V3i61.69 (3)
O1—V2—O3—V4174.8 (2)O14—V5—O10—V46.4 (6)
O4—V2—O3—V470.3 (2)O13—V5—O10—V41.5 (2)
O6—V2—O3—V434.8 (6)V7—V5—O10—V42.1 (3)
O5—V2—O3—V485.9 (2)V3i—V5—O10—V445.64 (19)
O13—V2—O3—V410.5 (2)O9—V4—O10—V5178.9 (3)
V3—V2—O3—V486.4 (2)O7i—V4—O10—V576.0 (2)
O9—V4—O3—V2176.2 (3)O3—V4—O10—V578.3 (2)
O10—V4—O3—V271.7 (2)O12—V4—O10—V51.0 (6)
O7i—V4—O3—V225.9 (6)O13—V4—O10—V51.5 (2)
O12—V4—O3—V285.3 (2)V6—V4—O10—V50.9 (3)
O13—V4—O3—V210.2 (2)V2—V4—O10—V547.49 (19)
V5—V4—O3—V239.1 (2)O12i—V6—O12—V4179.3 (3)
V6—V4—O3—V254.1 (2)O5—V6—O12—V480.9 (2)
O1—V2—O4—V5176.1 (2)O5i—V6—O12—V480.2 (2)
O3—V2—O4—V570.4 (2)O13i—V6—O12—V40.7 (9)
O6—V2—O4—V585.9 (2)O13—V6—O12—V40.73 (19)
O5—V2—O4—V530.8 (6)V4i—V6—O12—V4179.93 (3)
O13—V2—O4—V59.9 (2)O14i—V7—O14—V5178.4 (3)
V3—V2—O4—V585.5 (2)O6—V7—O14—V582.4 (2)
V4—V2—O4—V538.54 (19)O6i—V7—O14—V579.1 (2)
O2—V3—O7—V4i174.8 (2)O13—V7—O14—V51.86 (18)
O8—V3—O7—V4i69.9 (2)O13i—V7—O14—V50.3 (8)
O5—V3—O7—V4i85.5 (2)V5i—V7—O14—V5179.85 (2)
O6—V3—O7—V4i28.6 (6)N1—C10—C11—O11A54.2 (7)
O13i—V3—O7—V4i9.9 (2)C12—C10—C11—O11A170.8 (6)
V2—V3—O7—V4i84.1 (3)C13—C10—C11—O11A63.0 (8)
V5i—V3—O7—V4i39.0 (2)N1—C10—C12—O12A62.1 (8)
O2—V3—O8—V5i174.5 (2)C11—C10—C12—O12A179.3 (6)
O7—V3—O8—V5i69.4 (2)C13—C10—C12—O12A54.4 (9)
O5—V3—O8—V5i31.4 (6)N1—C10—C13—O13A175.5 (8)
O6—V3—O8—V5i85.5 (2)C12—C10—C13—O13A67.7 (10)
O13i—V3—O8—V5i9.9 (2)C11—C10—C13—O13A57.5 (10)
V2—V3—O8—V5i85.1 (2)N1—C10—C13—O13B102.3 (14)
O11—V5—O10—V4179.6 (2)C12—C10—C13—O13B140.9 (14)
O8i—V5—O10—V476.2 (2)C11—C10—C13—O13B15.8 (15)
O4—V5—O10—V477.4 (2)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O14ii0.70 (12)2.01 (12)2.703 (7)167 (12)
O1W—H1B···O12iii0.70 (7)2.04 (8)2.727 (8)169 (8)
O2W—H2A···O5iv0.60 (7)2.12 (7)2.716 (7)172 (9)
O2W—H2B···O12A0.87 (10)2.01 (10)2.858 (8)164 (8)
O3W—H3A···O7iv0.70 (9)1.94 (9)2.636 (7)176 (10)
O3W—H3B···O11Av0.88 (8)1.91 (8)2.752 (8)160 (7)
O4W—H4A···O6vi0.82 (11)1.90 (11)2.708 (6)167 (10)
O4W—H4B···O2Wvi0.76 (9)2.12 (9)2.871 (7)169 (9)
O5W—H5A···O8vi0.55 (11)2.18 (11)2.725 (10)170 (16)
O5W—H5B···O13Av0.83 (14)2.12 (13)2.699 (12)127 (12)
O5W—H5B···O13Bv0.83 (14)1.95 (14)2.77 (2)168 (13)
N1—H1C···O3Wvi0.892.032.898 (7)164
N1—H1D···O20.892.313.032 (7)138
N1—H1D···O4W0.892.453.105 (7)130
N1—H1E···O4vi0.891.912.787 (6)166
C11—H11C···O11vi0.972.463.392 (9)160
O11A—H11A···O6WAvi0.821.962.758 (12)166
O12A—H12A···O3iv0.821.942.756 (7)174
C13—H13E···O20.972.403.280 (10)151
O13B—H13B···O6WBvii0.771.922.60 (2)148
O6WA—H6A···O30.82 (2)2.23 (9)2.966 (9)150 (15)
O6WA—H6B···O10viii0.82 (2)2.16 (5)2.952 (10)165 (17)
O6WB—H6C···O30.82 (2)2.03 (13)2.802 (17)156 (29)
O6WB—H6D···O10viii0.82 (2)1.93 (8)2.720 (19)161 (24)
Symmetry codes: (ii) x+1/2, y+1/2, z; (iii) x+1/2, y1/2, z; (iv) x+3/2, y1/2, z+1/2; (v) x, y+1, z1/2; (vi) x+3/2, y+1/2, z+1/2; (vii) x, y+1, z+1/2; (viii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) for (Compound-A) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O11i0.76 (2)1.97 (2)2.7199 (14)168 (2)
O2—H2A···O7i0.72 (2)2.04 (2)2.7457 (15)167 (2)
O2—H2B···O3ii0.78 (2)2.05 (2)2.8295 (18)178 (2)
O3—H3A···O6ii0.74 (3)1.92 (3)2.6573 (16)174 (3)
O3—H3B···O130.87 (3)1.91 (3)2.737 (3)158 (3)
C10—H10A···O11iii0.962.513.362 (2)148
C10—H10B···O11iv0.962.513.362 (2)148
C10—H10C···O2v0.962.583.370 (3)139
C10—H10C···O2vi0.962.573.370 (3)141
C11—H11A···O8vii0.962.483.384 (3)156
C12—H12A···O12iii0.962.603.474 (4)152
C12—H12C···O12iv0.962.593.474 (4)153
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y1/2, z1/2; (iv) x+1/2, y+3/2, z1/2; (v) x+1, y, z; (vi) x+1, y+1, z; (vii) x+3/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (Compound-B) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O14i0.70 (12)2.01 (12)2.703 (7)167 (12)
O1W—H1B···O12ii0.70 (7)2.04 (8)2.727 (8)169 (8)
O2W—H2A···O5iii0.60 (7)2.12 (7)2.716 (7)172 (9)
O2W—H2B···O12A0.87 (10)2.01 (10)2.858 (8)164 (8)
O3W—H3A···O7iii0.70 (9)1.94 (9)2.636 (7)176 (10)
O3W—H3B···O11Aiv0.88 (8)1.91 (8)2.752 (8)160 (7)
O4W—H4A···O6v0.82 (11)1.90 (11)2.708 (6)167 (10)
O4W—H4B···O2Wv0.76 (9)2.12 (9)2.871 (7)169 (9)
O5W—H5A···O8v0.55 (11)2.18 (11)2.725 (10)170 (16)
O5W—H5B···O13Aiv0.83 (14)2.12 (13)2.699 (12)127 (12)
O5W—H5B···O13Biv0.83 (14)1.95 (14)2.77 (2)168 (13)
N1—H1C···O3Wv0.892.032.898 (7)164
N1—H1D···O20.892.313.032 (7)138
N1—H1D···O4W0.892.453.105 (7)130
N1—H1E···O4v0.891.912.787 (6)166
C11—H11C···O11v0.972.463.392 (9)160
O11A—H11A···O6WAv0.821.962.758 (12)166
O12A—H12A···O3iii0.821.942.756 (7)174
C13—H13E···O20.972.403.280 (10)151
O13B—H13B···O6WBvi0.771.922.60 (2)148
O6WA—H6A···O30.82 (2)2.23 (9)2.966 (9)150 (15)
O6WA—H6B···O10vii0.82 (2)2.16 (5)2.952 (10)165 (17)
O6WB—H6C···O30.82 (2)2.03 (13)2.802 (17)156 (29)
O6WB—H6D···O10vii0.82 (2)1.93 (8)2.720 (19)161 (24)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y1/2, z; (iii) x+3/2, y1/2, z+1/2; (iv) x, y+1, z1/2; (v) x+3/2, y+1/2, z+1/2; (vi) x, y+1, z+1/2; (vii) x+1, y+1, z.

Experimental details

(Compound-A)(Compound-B)
Crystal data
Chemical formula(C4H12N)2·[Mn2V10O28(H2O)10]·5H2O(C4H12NO3)2[Mn2V10O28(H2O)10]·2H2O
Mr1485.811527.76
Crystal system, space groupMonoclinic, I2/mMonoclinic, C2/c
Temperature (K)292295
a, b, c (Å)13.2434 (7), 9.6402 (5), 17.7628 (13)19.3147 (8), 9.7733 (4), 22.7952 (10)
β (°) 98.626 (2) 96.392 (1)
V3)2242.1 (2)4276.3 (3)
Z24
Radiation typeMo KαMo Kα
µ (mm1)2.642.78
Crystal size (mm)0.48 × 0.38 × 0.150.49 × 0.26 × 0.13
Data collection
DiffractometerBruker D8 Venture/Photon 100 CMOS
diffractometer
Bruker D8 Venture/Photon 100 CMOS
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2012)
Multi-scan
(SADABS; Bruker, 2012)
Tmin, Tmax0.562, 0.7460.542, 0.745
No. of measured, independent and
observed [I > 2σ(I)] reflections
81983, 2953, 2752 71752, 3936, 3280
Rint0.0250.039
(sin θ/λ)max1)0.6680.605
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.060, 1.09 0.052, 0.114, 1.12
No. of reflections29533936
No. of parameters194385
No. of restraints06
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0329P)2 + 2.2668P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0062P)2 + 110.7865P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.58, 0.340.78, 1.11

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), SHELXS97 (Sheldrick 2008), SHELXL2013 (Sheldrick, 2015), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 2012).

 

Acknowledgements

Financial support from the Brazilian agencies CNPq (grant No. 307592/2012–0) and CAPES (grant PVE A099/2013) is gratefully acknowledged. The authors also thank CNPq, CAPES and Fundação Araucária (Brazil) for fellowships.

References

First citationAureliano, M. (2014). Inorg. Chim. Acta, 420, 4–7.  Google Scholar
First citationAureliano, M. & Ohlin, C. A. (2014). J. Inorg. Biochem. 137, 123–130.  Google Scholar
First citationBošnjaković-Pavlović, N., Spasojević-de Biré, A., Tomaz, I., Bouhmaida, N., Avecilla, F., Mioč, U. B., Pessoa, J. C. & Ghermani, N. E. (2009). Inorg. Chem. 48, 9742–9753.  Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2012). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChatkon, A., Chatterjee, P. B., Sedgwick, M. A., Haller, K. J., Crans, D. C. (2013). Eur. J. Inorg. Chem. pp. 1859–1868.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationInami, S., Nishio, M., Hayashi, Y., Isobe, K., Kameda, H. & Shimoda, T. (2009). Eur. J. Inorg. Chem. pp. 5253–5258.  Google Scholar
First citationKlištincová, L., Rakovský, E. & Schwendt, P. (2009). Acta Cryst. C65, m97–m99.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKlištincová, L., Rakovský, E. & Schwendt, P. (2010). Transition Met. Chem. 35, 229–236.  Google Scholar
First citationLi, T. H., Lu, J., Gao, S. Y., Li, F. & Cao, R. (2007). Chem. Lett. 36, 356–357.  Google Scholar
First citationLin, S. W., Wu, Q., Tan, H. Q. & Wang, E. B. (2011). J. Coord. Chem. 64, 3661–3669.  Google Scholar
First citationLiu, J. L. & Zhou, Y. Z. (2010). Prog. Chem. 22, 51–57.  Google Scholar
First citationLong, D. L., Tsunashima, R. & Cronin, L. (2010). Angew. Chem. Int. Ed. 49, 1736–1758.  Google Scholar
First citationMestiri, I., Ayed, B. & Haddad, A. (2013). J. Cluster Sci. 24, 85–96.  Google Scholar
First citationNunes, G. G., Bonatto, A. C., de Albuquerque, C. G., Barison, A., Ribeiro, R. R., Back, D. F., Andrade, A. V. C., de Sá, E. L., Pedrosa, F. de O., Soares, J. F. & de Souza, E. M. (2012). J. Inorg. Biochem. 108, 36–46.  Google Scholar
First citationPavliuk, M. V., Makhankova, V. G., Khavryuchenko, O. V., Kokozay, V. N., Omelchenko, I. V., Shishkin, O. V. & Jezierska, J. (2014). Polyhedron, 81, 597–606.  Google Scholar
First citationShan, Y. K. & Huang, S. D. (1999). J. Chem. Crystallogr. 29, 93–97.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSilva, J. L. F. da, da Piedade, M. F. M. & Duarte, M. T. (2003). Inorg. Chim. Acta, 356, 222–242.  Google Scholar
First citationWang, L., Li, Y., Wang, Y. Y., Liang, Z. Q., Yu, J. H. & Xu, R. R. (2011). Inorg. Chem. Commun. 14, 1640–1643.  Google Scholar
First citationWang, L., Sun, X. P., Liu, M. L., Gao, Y. Q., Gu, W. & Liu, X. (2008). J. Cluster Sci. 19, 531–542.  Google Scholar
First citationWang, J. P., Yan, Q. X., Du, X. D. & Niu, J. Y. (2008). J. Clust Sci. 19, 491–498.  Google Scholar
First citationWu, Q., Hao, X. L., Feng, X. J., Wang, Y. H., Li, Y. G., Wang, E. B., Zhu, X. Q. & Pan, X. H. (2012). Inorg. Chem. Commun. 22, 137–140.  Google Scholar
First citationXu, W. T., Jiang, F. L., Zhou, Y. F., Xiong, K. C., Chen, L., Yang, M., Feng, R. & Hong, M. C. (2012). Dalton Trans. 41, 7737–7745.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages 146-150
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds