research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of γ-ethyl-L-glutamate N-carb­­oxy anhydride

aFaculty of Symbiotic Systems Science, Fukushima University, 1 Kanayagawa, Fukushima, 960-1296, Japan
*Correspondence e-mail: kana@sss.fukushima-u.ac.jp

Edited by H. Ishida, Okayama University, Japan (Received 24 November 2014; accepted 11 December 2014; online 1 January 2015)

In the title compound (alternative name N-carboxy-L-glutamic anhydride γ-ethyl ester), C8H11NO5, the oxazolidine ring is essentially planar, with a maximum deviation of 0.019 (2) Å. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds between the imino group and the carbonyl O atom in the ethyl ester group, forming a tape structure along the c-axis direction. The oxazolidine rings of adjacent tapes are arranged into a layer parallel to the ac plane. This arrangement is favourable for the polymerization of the title compound in the solid state.

1. Chemical context

N-Carb­oxy anhydrides (NCAs) of amino acids are extensively used as monomers in the preparation of high mol­ecular weight polypeptides (Kricheldorf, 2006[Kricheldorf, H. R. (2006). Angew. Chem. Int. Ed. 45, 5752-5784.]). Amino acid NCAs are easily soluble but the resulting polypeptides are not soluble in general organic solvents. Only a few amino acid ester NCAs such as γ-benzyl-L-glutamate NCA and β-benzyl-L-aspartate NCA can be polymerized in solutions, because the resulting polypeptides are soluble in them. Thus, the polymerization of these amino acid ester NCAs has been investigated by many researchers. We found that every amino acid NCA crystal is polymerized in the solid state in hexane by the initiation of amines, and have studied the solid-state polymerization of amino acid NCAs with reference to the crystal structures (Kanazawa, 1992[Kanazawa, H. (1992). Polymer, 33, 2557-2566.]; Kanazawa & Magoshi, 2003[Kanazawa, H. & Magoshi, J. (2003). Acta Cryst. C59, o159-o161.]; Kanazawa et al., 2006[Kanazawa, H., Inada, A. & Kawana, N. (2006). Macromol. Symp. 242, 104-112.]).

[Scheme 1]

The title compound, γ-ethyl-L-glutamate NCA (ELG NCA) is polymerized both in dioxane solution and in the solid state in hexane, using butyl­amine as initiator. However, ELG NCA is very reactive in the solid state in hexane using the same initiator. Therefore, it is important to determine the crystal structure in order to consider the difference in the reactivity of ELG NCA in solution and in the solid state.

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The oxazolidine ring is essentially planar, with a maximum deviation of 0.019 (2) Å for atom C1. The side chain has an extended conformation with the torsion angles C3—C4—C5—C6 and C4—C5—C6—O5 being 177.65 (13) and −172.05 (13)°, respectively.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound showing atom labels and 50% probability displacement ellipsoids for non-H atoms.

3. Supra­molecular features

In the crystal, ELG NCA mol­ecules are linked by N1—H1⋯O4 hydrogen bonds along the c axis (Table 1[link] and Fig. 2[link]). The five-membered oxazolidine rings are packed in a layer and the –CH2CH2COOCH2CH3 groups are packed in another layer; these two different layers are stacked alternately. This sandwich structure is one of the important requirements for high reactivity in the solid state, because the five-membered rings can react with each other in the layer.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4i 0.76 (2) 2.13 (2) 2.8766 (17) 170 (2)
Symmetry code: (i) x, y, z-1.
[Figure 2]
Figure 2
A crystal packing diagram of the title compound, viewed approximately along the a axis, showing the hydrogen bonds as dashed lines (see Table 1[link] for details).

4. Database survey

A search of the Cambridge Structural Database (Version 5.35, May 2014; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) revealed the presence of 20 hits for 4-methyl­oxazolidine-2,5-dione derivatives. A number of these compounds involve amino acid sides chains (amino acid NCAs). These include two polymorphs of a compound involving L-aspartate, namely N-carb­oxy-β-benzyl-L-aspartate anhydride (SOHRIQ: Kanazawa, 1998[Kanazawa, H. (1998). Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A. Mol. Cryst. Liq. Cryst. 313, 205-210.]; no coordinates were deposited) and (SOHRIQ01: Kanazawa & Magoshi, 2003[Kanazawa, H. & Magoshi, J. (2003). Acta Cryst. C59, o159-o161.]). Two other compounds involving L-glutamate have also been reported. They are very similar to the title compound and are polymorphs of N-carb­oxy-γ-benzyl-L-glutamate anhydride (ANCBGL; Kanazawa et al., 1978[Kanazawa, H., Kawai, T., Ohashi, Y. & Sasada, Y. (1978). Bull. Chem. Soc. Jpn, 51, 2200-2204.]) and (WIPDUV; Kanazawa et al., 2006[Kanazawa, H., Inada, A. & Kawana, N. (2006). Macromol. Symp. 242, 104-112.]). For the latter, unfortunately no coordinates have been deposited. The structural overlay of the title compound and ANCBGL indicates that the N-carb­oxy-L-glutamate anhydride moieties have very similar conformations (Fig. 3[link]).

[Figure 3]
Figure 3
A view of the structural overlay of the title compound (blue) and ANCBGL (red; Kanazawa et al., 1978[Kanazawa, H., Kawai, T., Ohashi, Y. & Sasada, Y. (1978). Bull. Chem. Soc. Jpn, 51, 2200-2204.]).

5. Synthesis and crystallization

The synthesis of γ-ethyl-L-glutamate (ELG) was carried out by the reaction of L-glutamic acid with ethanol in a manner similar to that of γ-benzyl-L-glutamate (BLG) (Kanazawa, 1992[Kanazawa, H. (1992). Polymer, 33, 2557-2566.]). The title compound was obtained by the reaction of γ-ethyl-L-glutamate with tri­chloro­methyl chloro­formate or triphosgene in tetra­hydro­furan, as reported previously for β-benzyl-L-aspartate (BLA) NCA (Kanazawa & Magoshi, 2003[Kanazawa, H. & Magoshi, J. (2003). Acta Cryst. C59, o159-o161.]). The reaction product was recrystallized in a mixture of ethyl acetate and hexane (1:50 v/v), avoiding moisture contamination.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The N-bound H atom was found in a difference Fourier map and its position was refined with Uiso(H) = 1.5Ueq(N). C-bound H atoms were positioned geometrically (C—H = 0.96–0.98 Å) and treated as riding with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C8H11NO5
Mr 201.18
Crystal system, space group Orthorhombic, P21212
Temperature (K) 293
a, b, c (Å) 7.9337 (19), 20.581 (5), 5.8405 (14)
V3) 953.7 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.12
Crystal size (mm) 0.66 × 0.39 × 0.14
 
Data collection
Diffractometer Rigaku XtaLAB mini
Absorption correction Multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.926, 0.984
No. of measured, independent and observed [I > 2σ(I)] reflections 9982, 2190, 2042
Rint 0.024
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.081, 1.03
No. of reflections 2190
No. of parameters 131
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.16, −0.16
Computer programs: CrystalClear (Rigaku, 2009[Rigaku (2009). CrystalClear. Rigaku Corporation, Tokyo, Japan.]), SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

Data collection: CrystalClear (Rigaku, 2009); cell refinement: CrystalClear (Rigaku, 2009); data reduction: CrystalClear (Rigaku, 2009); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010) and Mercury (Macrae et al., 2008); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

(S)-4-[2-(Ethoxycarbonyl)ethyl]-1,3-oxazolidine-2,5-dione top
Crystal data top
C8H11NO5F(000) = 424
Mr = 201.18Dx = 1.401 Mg m3
Orthorhombic, P21212Mo Kα radiation, λ = 0.71069 Å
Hall symbol: P 2 2abθ = 3.2–27.5°
a = 7.9337 (19) ŵ = 0.12 mm1
b = 20.581 (5) ÅT = 293 K
c = 5.8405 (14) ÅPrism, colorless
V = 953.7 (4) Å30.66 × 0.39 × 0.14 mm
Z = 4
Data collection top
Rigaku XtaLAB mini
diffractometer
2190 independent reflections
Radiation source: fine-focus sealed tube2042 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 6.827 pixels mm-1θmax = 27.5°, θmin = 3.2°
ω scansh = 1010
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
k = 2626
Tmin = 0.926, Tmax = 0.984l = 77
9982 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0385P)2 + 0.167P]
where P = (Fo2 + 2Fc2)/3
2190 reflections(Δ/σ)max = 0.010
131 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.16 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.02731 (16)0.77067 (6)0.0480 (2)0.0538 (4)
O20.10460 (14)0.72562 (4)0.25649 (18)0.0385 (3)
O30.27691 (18)0.70878 (5)0.5536 (2)0.0548 (4)
O40.19733 (14)0.94889 (5)0.93375 (19)0.0417 (3)
O50.26952 (18)1.03085 (5)0.7069 (2)0.0539 (4)
N10.15491 (17)0.82887 (6)0.1795 (2)0.0344 (3)
C10.06782 (19)0.77729 (7)0.1092 (3)0.0355 (3)
C20.22322 (19)0.74470 (6)0.4126 (3)0.0340 (3)
C30.26475 (17)0.81536 (6)0.3704 (2)0.0283 (3)
C40.23203 (19)0.85660 (6)0.5828 (3)0.0318 (3)
C50.2829 (3)0.92684 (7)0.5461 (3)0.0425 (4)
C60.24451 (18)0.96852 (6)0.7513 (3)0.0336 (3)
C70.2257 (3)1.07707 (7)0.8886 (4)0.0504 (5)
C80.3640 (3)1.08564 (9)1.0556 (4)0.0575 (5)
H10.156 (3)0.8596 (10)0.108 (4)0.0517*
H30.38270.81970.32310.0339*
H4A0.11320.85470.62100.0381*
H4B0.29500.83890.71080.0381*
H5A0.40270.92880.51390.0509*
H5B0.22340.94390.41400.0509*
H7A0.12611.06170.96820.0604*
H7B0.19901.11880.82040.0604*
H8A0.46231.10170.97820.0689*
H8B0.38951.04461.12590.0689*
H8C0.33011.11611.17110.0689*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0582 (7)0.0549 (7)0.0482 (7)0.0087 (6)0.0192 (6)0.0092 (6)
O20.0425 (6)0.0261 (4)0.0470 (6)0.0067 (4)0.0017 (5)0.0028 (5)
O30.0817 (9)0.0355 (5)0.0473 (6)0.0005 (6)0.0118 (7)0.0098 (5)
O40.0598 (7)0.0274 (4)0.0380 (6)0.0052 (5)0.0094 (6)0.0030 (4)
O50.0899 (9)0.0257 (5)0.0461 (6)0.0118 (6)0.0003 (7)0.0003 (5)
N10.0486 (7)0.0267 (5)0.0280 (5)0.0060 (5)0.0048 (5)0.0024 (5)
C10.0387 (7)0.0328 (7)0.0349 (7)0.0035 (6)0.0014 (6)0.0044 (6)
C20.0431 (7)0.0275 (6)0.0313 (7)0.0004 (6)0.0049 (7)0.0027 (6)
C30.0323 (6)0.0269 (6)0.0256 (6)0.0043 (5)0.0016 (5)0.0021 (5)
C40.0411 (7)0.0278 (6)0.0264 (6)0.0037 (5)0.0040 (6)0.0032 (5)
C50.0633 (10)0.0333 (7)0.0308 (7)0.0130 (7)0.0052 (8)0.0035 (6)
C60.0402 (7)0.0245 (6)0.0361 (7)0.0054 (5)0.0046 (6)0.0002 (5)
C70.0536 (9)0.0243 (6)0.0732 (11)0.0023 (7)0.0051 (9)0.0090 (7)
C80.0606 (10)0.0450 (9)0.0668 (12)0.0006 (8)0.0007 (10)0.0164 (9)
Geometric parameters (Å, º) top
O1—C11.1964 (18)C4—C51.5159 (18)
O2—C21.3677 (18)C4—H4A0.9700
O2—C11.3985 (18)C4—H4B0.9700
O3—C21.1861 (17)C5—C61.505 (2)
O4—C61.1997 (18)C5—H5A0.9700
O5—C61.3237 (15)C5—H5B0.9700
O5—C71.467 (2)C7—C81.478 (3)
N1—C11.3314 (18)C7—H7A0.9700
N1—C31.4423 (18)C7—H7B0.9700
N1—H10.76 (2)C8—H8A0.9600
C2—C31.5113 (17)C8—H8B0.9600
C3—C41.5251 (17)C8—H8C0.9600
C3—H30.9800
C2—O2—C1109.58 (10)H4A—C4—H4B107.9
C6—O5—C7116.82 (14)C6—C5—C4112.17 (12)
C1—N1—C3113.46 (12)C6—C5—H5A109.2
C1—N1—H1119.9 (15)C4—C5—H5A109.2
C3—N1—H1125.7 (15)C6—C5—H5B109.2
O1—C1—N1130.91 (15)C4—C5—H5B109.2
O1—C1—O2121.12 (13)H5A—C5—H5B107.9
N1—C1—O2107.97 (12)O4—C6—O5123.17 (14)
O3—C2—O2122.09 (13)O4—C6—C5125.34 (12)
O3—C2—C3129.38 (14)O5—C6—C5111.49 (13)
O2—C2—C3108.53 (11)O5—C7—C8112.25 (14)
N1—C3—C2100.35 (11)O5—C7—H7A109.2
N1—C3—C4114.75 (11)C8—C7—H7A109.2
C2—C3—C4111.48 (11)O5—C7—H7B109.2
N1—C3—H3110.0C8—C7—H7B109.2
C2—C3—H3110.0H7A—C7—H7B107.9
C4—C3—H3110.0C7—C8—H8A109.5
C5—C4—C3111.76 (11)C7—C8—H8B109.5
C5—C4—H4A109.3H8A—C8—H8B109.5
C3—C4—H4A109.3C7—C8—H8C109.5
C5—C4—H4B109.3H8A—C8—H8C109.5
C3—C4—H4B109.3H8B—C8—H8C109.5
C3—N1—C1—O1176.31 (16)O3—C2—C3—C457.2 (2)
C3—N1—C1—O23.49 (17)O2—C2—C3—C4122.05 (12)
C2—O2—C1—O1176.53 (14)N1—C3—C4—C570.08 (16)
C2—O2—C1—N13.30 (16)C2—C3—C4—C5176.72 (13)
C1—O2—C2—O3178.76 (14)C3—C4—C5—C6177.65 (13)
C1—O2—C2—C31.89 (15)C7—O5—C6—O44.1 (2)
C1—N1—C3—C22.23 (15)C7—O5—C6—C5176.04 (14)
C1—N1—C3—C4121.83 (14)C4—C5—C6—O48.0 (2)
O3—C2—C3—N1179.18 (16)C4—C5—C6—O5172.05 (13)
O2—C2—C3—N10.11 (14)C6—O5—C7—C884.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.76 (2)2.13 (2)2.8766 (17)170 (2)
Symmetry code: (i) x, y, z1.
 

Acknowledgements

HK thanks Mr Kazuyoshi Nakamura of Fukushima Technology Centre for assistance with the synthesis of the title compound.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationKanazawa, H. (1992). Polymer, 33, 2557–2566.  CrossRef CAS Google Scholar
First citationKanazawa, H. (1998). Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A. Mol. Cryst. Liq. Cryst. 313, 205–210.  CrossRef CAS Google Scholar
First citationKanazawa, H., Inada, A. & Kawana, N. (2006). Macromol. Symp. 242, 104–112.  Web of Science CSD CrossRef CAS Google Scholar
First citationKanazawa, H., Kawai, T., Ohashi, Y. & Sasada, Y. (1978). Bull. Chem. Soc. Jpn, 51, 2200–2204.  CrossRef CAS Google Scholar
First citationKanazawa, H. & Magoshi, J. (2003). Acta Cryst. C59, o159–o161.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKricheldorf, H. R. (2006). Angew. Chem. Int. Ed. 45, 5752–5784.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2009). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds