organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of O-iso­propyl [bis­­(tri­methyl­sil­yl)amino](tert-butyl­amino)­phosphino­thio­ate

aDepartment of Inorganic Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska 64, 01601 Kyiv, Ukraine, bInstitute of Low Temperature and Structure Research, Okolna 2, 50-422 Wroclaw, Poland, and cFaculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland
*Correspondence e-mail: kovalenko.chem@gmail.com

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 27 November 2014; accepted 29 November 2014; online 1 January 2015)

[Bis(tri­methyl­sil­yl)amino](tert-butyl­imino)­thio­phospho­rane reacts in benzene with isopropyl alcohol via 1,2-addition of an iPrO–H bond across the P=N bond, resulting in the title compound, C13H35N2OPSSi2. In the mol­ecule, the P atom possesses a distorted tetra­hedral environment involving two N atoms from (Me3Si)2N– and tBuNH– groups, one O atom from an iPrO group and one S atom, therefore the mol­ecule has a stereocenter on the P atom but crystal symmetry leads to a racemate. In the crystal, a pair of enanti­omers form a centrosymmetric dimer via a pair of N—H⋯S hydrogen bonds.

1. Related literature

For details of the synthesis of [bis­(tri­methyl­sil­yl)amino](tert-butyl­imino)­thio­phospho­rane, see: Scherer & Kuhn (1974[Scherer, O. J. & Kuhn, N. (1974). J. Organomet. Chem. 82, C3-C6.]). For its chemical reactivity, see: Kovalenko et al. (2011a[Kovalenko, O. O., Boldog, I., Kinzhybalo, V., Lis, T. & Brusilovets, A. I. (2011a). Dalton Trans. 40, 711-717.],b[Kovalenko, O. O., Brusylovets, O. A., Kinzhybalo, V., Lis, T. & Brusilovets, A. I. (2011b). Dalton Trans. 40, 4814-4817.],c[Kovalenko, O. O., Kinzhybalo, V., Lis, T. & Brusilovets, A. I. (2011c). Phosphorus Sulfur Silicon Relat. Elem. 186, 814-821.], 2012[Kovalenko, O. O., Kinzhybalo, V., Lis, T., Khavryuchenko, O. V., Rusanov, E. B. & Brusilovets, A. I. (2012). Dalton Trans. 41, 5132-5136.]); Rusanov et al. (1992[Rusanov, E. B., Brusilovets, A. I. & Chernega, A. N. (1992). Zh. Obshch. Khim. (Russ. J. Gen. Chem.), 62, 2551-2558.]); Scherer et al. (1978[Scherer, O. J., Kulbach, N.-T. & Glässel, W. (1978). Z. Naturforsch. Teil B, 33, 652-656.]). For its applications in catalysis, see: Zhao et al. (2014a[Zhao, J., Pahovnik, D., Gnanou, Y. & Hadjichristidis, N. (2014a). Macromolecules, 47, 1693-1698.],b[Zhao, J., Pahovnik, D., Gnanou, Y. & Hadjichristidis, N. (2014b). Polym. Chem. 5, 3750-3753.]); Goldys & Dixon (2014[Goldys, A. M. & Dixon, D. J. (2014). Macromolecules, 47, 1277-1284.]); Samuel et al. (2014[Samuel, C., Chalamet, Y., Boisson, F., Majesté, J.-C., Becquart, F. & Fleury, E. (2014). J. Polym. Sci. Part A Polym. Chem. 52, 493-503.]); Kawalec et al. (2012[Kawalec, M., Coulembier, O., Gerbaux, P., Sobota, M., De Winter, J., Dubois, P., Kowalczuk, M. & Kurcok, P. (2012). React. Funct. Polym. 72, 509-520.]); Zhang et al. (2007[Zhang, L., Nederberg, F., Pratt, R. C., Waymouth, R. M., Hedrick, J. L. & Wade, C. G. (2007). Macromolecules, 40, 4154-4158.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C13H35N2OPSSi2

  • Mr = 354.64

  • Monoclinic, P 21 /n

  • a = 9.942 (3) Å

  • b = 11.907 (3) Å

  • c = 17.726 (5) Å

  • β = 100.52 (3)°

  • V = 2063.1 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.20 mm

2.2. Data collection

  • Oxford Xcalibur PX κ-geometry diffractometer with a CCD area detector

  • 36939 measured reflections

  • 7436 independent reflections

  • 5938 reflections with I > 2σ(I)

  • Rint = 0.033

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.115

  • S = 1.08

  • 7436 reflections

  • 184 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.84 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯Si 0.848 (16) 2.631 (16) 3.4326 (13) 158.2 (14)
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2003[Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Wrocław, Poland.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2003[Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Wrocław, Poland.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comments top

[Bis(tri­methyl­silyl)amino](tert-butyl­imino)­thio­phospho­rane was first synthesized by Scherer and Kuhn in 1974, see: Scherer & Kuhn (1974), and later some general chemical reactivity of this compound was studied, see: Scherer et al. (1978). Based on these early results, penta­valent tricoordinated σ3λ5-phospho­ranes recommended themselves as promising ligands for the obtaining of new organometallic metallacycles with specific features. Recently we have reported and characterized series of transition metal metallacycles, containing phospho­rus atom in cyclic moiety, see: Kovalenko et al. (2011a, 2011b, 2011c, 2012); Rusanov et al. (1992). In current communication we reported the reactivity of [bis­(tri­methyl­silyl)amino](tert-butyl­imino)-thio­phospho­rane with iso­propyl alcohol. The reaction proceeds through a 1,2-addition of iPrO–H bond across the P=N bond, resulting in the title compound. Resulted product was characterized by single X-ray analysis and 1H, 13C and 31P NMR spectroscopy. In these latter days it was discovered that low-coordinate phospho­rus compounds are catalytically active and might be efficiently applied in catalysis, see: Zhao et al. (2014a, 2014b); Goldys & Dixon (2014); Samuel et al. (2014); Kawalec et al. (2012); Zhang et al. (2007).

Central P atom posesses distorted tetra­hedral environment of four different substituents: (Me3Si)2N-, tBuNH- and iPrO- groups and S atom, resulting in stereocenter on phospho­rus. R and S isomers form centrosymmetric dimers due to the formation of a pair of N—H···S type hydrogen bonds. Geometrical parameters of O-iso­propyl [bis­(tri­methyl­silyl)amino](tert-butyl­amino)­phosphino­thio­ate are consistent with the values reported earlier (Rusanov et al., 1992; Kovalenko et al., 2011a, 2011b) for the compounds containing analogous phosphino­thio­ates, but deprotonated and coordinated to metal centers.

Experimental top

All procedures were carried out under a dry argon atmosphere using standard Schlenk and glovebox techniques. Benzene and hexane were distilled from sodium-potassium alloy directly before use. Iso­propyl alcohol was dried and distilled from magnesium and stored over 4 Å molecular sieves prior to use.

In a Schlenk flask, (0.884 g, 3.0 mmol) of [bis­(tri­methyl­silyl)amino](tert-butyl­imino)­thio­phospho­rane was dissolved in 3 ml of benzene and the solution of iso­propyl alcohol (0.23 ml, 3.0 mmol) in 1 ml of benzene was added dropwise. The mixture was stirred for 1.5 h at room temperature, thereafter solvent was removed in vacuo producing an almost colorless tar. The residue was dissolved in 1 ml of hexane and kept at 252 K in order to induce further crystallization. Yield: 0.76 g, 71% of colorless crystals. 1H NMR (400 MHz, C6D6, 298K): δ 5.00 (m, 1H), 2.45 (d, 2JP—H=10.3 Hz, 1H), 1.27 (d, 3JH—H=6.0 Hz, 3H), 1.19 (d, 3JH—H=6.0 Hz, 3H), 1.15 (s, 9H), 0.47 (18H); 13C{1H} NMR (100 MHz, C6D6, 298K): δ 71.52 (d, 2JP—C=4.6 Hz), 52.72 (d, 2JP—C=4.6 Hz), 31.58, 31.53, 23.98, 23.92, 5.26 (d, 3JP—C=2.3 Hz); 31P{1H} NMR (162 MHz, C6D6, 298K): δ 63.24 (dd, 2JP—H=10.3 Hz, 3JP—H=10.3 Hz).

Refinement top

Positions of hydrogen atoms bonded to carbon were generated in idealized geometries using a riding model with Uiso(H) = 1.5Ueq(C) or 1.2Ueq(C). The fractional coordinates of the H atom attached to N2 were identified from a difference Fourier map and refined freely with isotropic thermal displacement parameter.

Related literature top

For details of the synthesis of [bis(trimethylsilyl)amino](tert-butylimino)thiophosphorane, see: Scherer & Kuhn (1974). For its chemical reactivity, see: Kovalenko et al. (2011a,b,c, 2012); Rusanov et al. (1992); Scherer et al. (1978). For its applications in catalysis, see: Zhao et al. (2014a,b); Goldys & Dixon (2014); Samuel et al. (2014); Kawalec et al. (2012); Zhang et al. (2007).

Structure description top

[Bis(tri­methyl­silyl)amino](tert-butyl­imino)­thio­phospho­rane was first synthesized by Scherer and Kuhn in 1974, see: Scherer & Kuhn (1974), and later some general chemical reactivity of this compound was studied, see: Scherer et al. (1978). Based on these early results, penta­valent tricoordinated σ3λ5-phospho­ranes recommended themselves as promising ligands for the obtaining of new organometallic metallacycles with specific features. Recently we have reported and characterized series of transition metal metallacycles, containing phospho­rus atom in cyclic moiety, see: Kovalenko et al. (2011a, 2011b, 2011c, 2012); Rusanov et al. (1992). In current communication we reported the reactivity of [bis­(tri­methyl­silyl)amino](tert-butyl­imino)-thio­phospho­rane with iso­propyl alcohol. The reaction proceeds through a 1,2-addition of iPrO–H bond across the P=N bond, resulting in the title compound. Resulted product was characterized by single X-ray analysis and 1H, 13C and 31P NMR spectroscopy. In these latter days it was discovered that low-coordinate phospho­rus compounds are catalytically active and might be efficiently applied in catalysis, see: Zhao et al. (2014a, 2014b); Goldys & Dixon (2014); Samuel et al. (2014); Kawalec et al. (2012); Zhang et al. (2007).

Central P atom posesses distorted tetra­hedral environment of four different substituents: (Me3Si)2N-, tBuNH- and iPrO- groups and S atom, resulting in stereocenter on phospho­rus. R and S isomers form centrosymmetric dimers due to the formation of a pair of N—H···S type hydrogen bonds. Geometrical parameters of O-iso­propyl [bis­(tri­methyl­silyl)amino](tert-butyl­amino)­phosphino­thio­ate are consistent with the values reported earlier (Rusanov et al., 1992; Kovalenko et al., 2011a, 2011b) for the compounds containing analogous phosphino­thio­ates, but deprotonated and coordinated to metal centers.

All procedures were carried out under a dry argon atmosphere using standard Schlenk and glovebox techniques. Benzene and hexane were distilled from sodium-potassium alloy directly before use. Iso­propyl alcohol was dried and distilled from magnesium and stored over 4 Å molecular sieves prior to use.

In a Schlenk flask, (0.884 g, 3.0 mmol) of [bis­(tri­methyl­silyl)amino](tert-butyl­imino)­thio­phospho­rane was dissolved in 3 ml of benzene and the solution of iso­propyl alcohol (0.23 ml, 3.0 mmol) in 1 ml of benzene was added dropwise. The mixture was stirred for 1.5 h at room temperature, thereafter solvent was removed in vacuo producing an almost colorless tar. The residue was dissolved in 1 ml of hexane and kept at 252 K in order to induce further crystallization. Yield: 0.76 g, 71% of colorless crystals. 1H NMR (400 MHz, C6D6, 298K): δ 5.00 (m, 1H), 2.45 (d, 2JP—H=10.3 Hz, 1H), 1.27 (d, 3JH—H=6.0 Hz, 3H), 1.19 (d, 3JH—H=6.0 Hz, 3H), 1.15 (s, 9H), 0.47 (18H); 13C{1H} NMR (100 MHz, C6D6, 298K): δ 71.52 (d, 2JP—C=4.6 Hz), 52.72 (d, 2JP—C=4.6 Hz), 31.58, 31.53, 23.98, 23.92, 5.26 (d, 3JP—C=2.3 Hz); 31P{1H} NMR (162 MHz, C6D6, 298K): δ 63.24 (dd, 2JP—H=10.3 Hz, 3JP—H=10.3 Hz).

For details of the synthesis of [bis(trimethylsilyl)amino](tert-butylimino)thiophosphorane, see: Scherer & Kuhn (1974). For its chemical reactivity, see: Kovalenko et al. (2011a,b,c, 2012); Rusanov et al. (1992); Scherer et al. (1978). For its applications in catalysis, see: Zhao et al. (2014a,b); Goldys & Dixon (2014); Samuel et al. (2014); Kawalec et al. (2012); Zhang et al. (2007).

Refinement details top

Positions of hydrogen atoms bonded to carbon were generated in idealized geometries using a riding model with Uiso(H) = 1.5Ueq(C) or 1.2Ueq(C). The fractional coordinates of the H atom attached to N2 were identified from a difference Fourier map and refined freely with isotropic thermal displacement parameter.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2003); cell refinement: CrysAlis RED (Oxford Diffraction, 2003); data reduction: CrysAlis RED (Oxford Diffraction, 2003); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. An ORTEP view of the molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms.
O-Isopropyl [bis(trimethylsilyl)amino](tert-butylamino)phosphinothioate top
Crystal data top
C13H35N2OPSSi2F(000) = 776
Mr = 354.64Dx = 1.142 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.942 (3) ÅCell parameters from 25646 reflections
b = 11.907 (3) Åθ = 4–32.6°
c = 17.726 (5) ŵ = 0.35 mm1
β = 100.52 (3)°T = 100 K
V = 2063.1 (10) Å3Block, colourless
Z = 40.30 × 0.20 × 0.20 mm
Data collection top
Oxford Xcalibur PX κ-geometry
diffractometer with a CCD area detector
5938 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
Graphite monochromatorθmax = 32.6°, θmin = 4.7°
ω and φ scansh = 1514
36939 measured reflectionsk = 1718
7436 independent reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.071P)2]
where P = (Fo2 + 2Fc2)/3
7436 reflections(Δ/σ)max = 0.019
184 parametersΔρmax = 0.84 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C13H35N2OPSSi2V = 2063.1 (10) Å3
Mr = 354.64Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.942 (3) ŵ = 0.35 mm1
b = 11.907 (3) ÅT = 100 K
c = 17.726 (5) Å0.30 × 0.20 × 0.20 mm
β = 100.52 (3)°
Data collection top
Oxford Xcalibur PX κ-geometry
diffractometer with a CCD area detector
5938 reflections with I > 2σ(I)
36939 measured reflectionsRint = 0.033
7436 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.84 e Å3
7436 reflectionsΔρmin = 0.34 e Å3
184 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.06612 (3)0.50611 (2)0.38496 (2)0.01778 (8)
P0.03058 (3)0.34478 (2)0.38973 (2)0.01212 (8)
O10.06932 (9)0.29955 (7)0.31509 (5)0.01497 (17)
C110.19850 (13)0.35845 (11)0.28645 (7)0.0197 (2)
H110.21990.41030.32700.024*
C210.30994 (14)0.27054 (13)0.26853 (8)0.0265 (3)
H21A0.39760.30740.24920.040*
H21B0.28800.21890.22950.040*
H21C0.31630.22850.31530.040*
C310.18259 (16)0.42557 (13)0.21616 (9)0.0307 (3)
H31A0.26820.46530.19650.046*
H31B0.10840.48020.22990.046*
H31C0.16090.37470.17660.046*
Si10.18608 (4)0.19371 (3)0.30180 (2)0.01607 (8)
C10.05411 (14)0.08448 (11)0.26893 (8)0.0228 (3)
H1A0.07140.05050.22120.034*
H1B0.05840.02630.30840.034*
H1C0.03680.11910.25980.034*
C20.19037 (16)0.29925 (12)0.22471 (8)0.0257 (3)
H2A0.20190.26070.17740.038*
H2B0.10440.34170.21550.038*
H2C0.26710.35090.24060.038*
C30.35141 (14)0.11555 (12)0.31640 (9)0.0255 (3)
H3A0.36170.07850.26840.038*
H3B0.42720.16820.33190.038*
H3C0.35210.05890.35660.038*
Si20.31243 (3)0.29123 (3)0.46123 (2)0.01629 (8)
C40.43267 (13)0.38055 (12)0.41764 (8)0.0225 (3)
H4A0.51380.39730.45640.034*
H4B0.46020.34030.37470.034*
H4C0.38700.45080.39900.034*
C50.38927 (14)0.15588 (12)0.50201 (9)0.0253 (3)
H5A0.46970.17160.54150.038*
H5B0.32170.11420.52480.038*
H5C0.41660.11090.46100.038*
C60.27586 (13)0.37228 (13)0.54548 (8)0.0232 (3)
H6A0.36120.38450.58200.035*
H6B0.23530.44490.52810.035*
H6C0.21180.32990.57050.035*
N10.16513 (10)0.26205 (8)0.38890 (6)0.01379 (19)
N20.04109 (11)0.31950 (8)0.46402 (6)0.01388 (19)
H20.0419 (15)0.3767 (13)0.4924 (9)0.017*
C70.09601 (12)0.21560 (10)0.49410 (7)0.0143 (2)
C80.08932 (13)0.11580 (10)0.44119 (7)0.0186 (2)
H8A0.12610.04900.46260.028*
H8B0.14360.13200.39040.028*
H8C0.00600.10210.43650.028*
C90.24488 (13)0.23858 (12)0.50102 (8)0.0228 (3)
H9A0.28380.17150.52070.034*
H9B0.24820.30140.53630.034*
H9C0.29780.25760.45040.034*
C100.01281 (14)0.18979 (11)0.57379 (7)0.0204 (3)
H10A0.04830.12150.59400.031*
H10B0.08340.17860.57000.031*
H10C0.02030.25280.60840.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.02695 (17)0.01109 (14)0.01685 (16)0.00040 (11)0.00810 (12)0.00059 (10)
P0.01485 (14)0.01073 (14)0.01114 (15)0.00093 (10)0.00329 (10)0.00069 (10)
O10.0162 (4)0.0156 (4)0.0123 (4)0.0025 (3)0.0005 (3)0.0018 (3)
C110.0177 (6)0.0237 (6)0.0160 (6)0.0053 (5)0.0016 (4)0.0004 (5)
C210.0183 (6)0.0372 (8)0.0216 (7)0.0017 (6)0.0022 (5)0.0035 (6)
C310.0283 (7)0.0317 (8)0.0293 (8)0.0040 (6)0.0019 (6)0.0135 (6)
Si10.02069 (17)0.01375 (16)0.01521 (17)0.00146 (12)0.00709 (13)0.00205 (12)
C10.0300 (7)0.0182 (6)0.0211 (7)0.0017 (5)0.0072 (5)0.0070 (5)
C20.0360 (8)0.0242 (7)0.0199 (7)0.0012 (6)0.0135 (6)0.0019 (5)
C30.0258 (7)0.0239 (7)0.0290 (8)0.0058 (5)0.0105 (5)0.0047 (6)
Si20.01396 (16)0.01862 (17)0.01629 (18)0.00085 (12)0.00281 (12)0.00010 (13)
C40.0189 (6)0.0226 (6)0.0267 (7)0.0031 (5)0.0058 (5)0.0002 (5)
C50.0212 (6)0.0270 (7)0.0265 (7)0.0028 (5)0.0016 (5)0.0071 (6)
C60.0183 (6)0.0330 (7)0.0174 (6)0.0049 (5)0.0014 (5)0.0052 (5)
N10.0144 (4)0.0143 (4)0.0129 (5)0.0012 (4)0.0031 (3)0.0009 (4)
N20.0188 (5)0.0115 (4)0.0124 (5)0.0008 (4)0.0058 (4)0.0021 (4)
C70.0165 (5)0.0133 (5)0.0133 (5)0.0009 (4)0.0035 (4)0.0011 (4)
C80.0245 (6)0.0135 (5)0.0181 (6)0.0029 (4)0.0044 (5)0.0013 (5)
C90.0172 (6)0.0255 (7)0.0267 (7)0.0016 (5)0.0065 (5)0.0007 (5)
C100.0275 (7)0.0161 (6)0.0158 (6)0.0000 (5)0.0010 (5)0.0023 (5)
Geometric parameters (Å, º) top
S—P1.9578 (6)Si2—N11.7954 (12)
P—O11.5959 (10)Si2—C61.8687 (14)
P—N21.6356 (11)Si2—C41.8694 (14)
P—N11.6635 (11)Si2—C51.8713 (14)
O1—C111.4700 (15)C4—H4A0.9800
C11—C311.513 (2)C4—H4B0.9800
C11—C211.515 (2)C4—H4C0.9800
C11—H111.0000C5—H5A0.9800
C21—H21A0.9800C5—H5B0.9800
C21—H21B0.9800C5—H5C0.9800
C21—H21C0.9800C6—H6A0.9800
C31—H31A0.9800C6—H6B0.9800
C31—H31B0.9800C6—H6C0.9800
C31—H31C0.9800N2—C71.4898 (15)
Si1—N11.7907 (11)N2—H20.848 (16)
Si1—C21.8628 (14)C7—C81.5228 (17)
Si1—C11.8637 (14)C7—C91.5319 (17)
Si1—C31.8653 (14)C7—C101.5320 (18)
C1—H1A0.9800C8—H8A0.9800
C1—H1B0.9800C8—H8B0.9800
C1—H1C0.9800C8—H8C0.9800
C2—H2A0.9800C9—H9A0.9800
C2—H2B0.9800C9—H9B0.9800
C2—H2C0.9800C9—H9C0.9800
C3—H3A0.9800C10—H10A0.9800
C3—H3B0.9800C10—H10B0.9800
C3—H3C0.9800C10—H10C0.9800
O1—P—N2107.98 (6)N1—Si2—C5109.36 (6)
O1—P—N199.94 (5)C6—Si2—C5105.15 (7)
N2—P—N1111.55 (6)C4—Si2—C5113.76 (7)
O1—P—S112.66 (4)Si2—C4—H4A109.5
N2—P—S108.90 (4)Si2—C4—H4B109.5
N1—P—S115.40 (4)H4A—C4—H4B109.5
C11—O1—P119.84 (8)Si2—C4—H4C109.5
O1—C11—C31108.69 (11)H4A—C4—H4C109.5
O1—C11—C21107.59 (11)H4B—C4—H4C109.5
C31—C11—C21112.01 (12)Si2—C5—H5A109.5
O1—C11—H11109.5Si2—C5—H5B109.5
C31—C11—H11109.5H5A—C5—H5B109.5
C21—C11—H11109.5Si2—C5—H5C109.5
C11—C21—H21A109.5H5A—C5—H5C109.5
C11—C21—H21B109.5H5B—C5—H5C109.5
H21A—C21—H21B109.5Si2—C6—H6A109.5
C11—C21—H21C109.5Si2—C6—H6B109.5
H21A—C21—H21C109.5H6A—C6—H6B109.5
H21B—C21—H21C109.5Si2—C6—H6C109.5
C11—C31—H31A109.5H6A—C6—H6C109.5
C11—C31—H31B109.5H6B—C6—H6C109.5
H31A—C31—H31B109.5P—N1—Si1119.80 (6)
C11—C31—H31C109.5P—N1—Si2115.56 (6)
H31A—C31—H31C109.5Si1—N1—Si2119.70 (6)
H31B—C31—H31C109.5C7—N2—P133.08 (8)
N1—Si1—C2110.35 (6)C7—N2—H2114.3 (11)
N1—Si1—C1113.62 (6)P—N2—H2112.5 (11)
C2—Si1—C1110.52 (7)N2—C7—C8111.56 (10)
N1—Si1—C3110.20 (6)N2—C7—C9107.63 (10)
C2—Si1—C3107.50 (7)C8—C7—C9109.89 (11)
C1—Si1—C3104.33 (7)N2—C7—C10108.97 (10)
Si1—C1—H1A109.5C8—C7—C10109.54 (10)
Si1—C1—H1B109.5C9—C7—C10109.20 (11)
H1A—C1—H1B109.5C7—C8—H8A109.5
Si1—C1—H1C109.5C7—C8—H8B109.5
H1A—C1—H1C109.5H8A—C8—H8B109.5
H1B—C1—H1C109.5C7—C8—H8C109.5
Si1—C2—H2A109.5H8A—C8—H8C109.5
Si1—C2—H2B109.5H8B—C8—H8C109.5
H2A—C2—H2B109.5C7—C9—H9A109.5
Si1—C2—H2C109.5C7—C9—H9B109.5
H2A—C2—H2C109.5H9A—C9—H9B109.5
H2B—C2—H2C109.5C7—C9—H9C109.5
Si1—C3—H3A109.5H9A—C9—H9C109.5
Si1—C3—H3B109.5H9B—C9—H9C109.5
H3A—C3—H3B109.5C7—C10—H10A109.5
Si1—C3—H3C109.5C7—C10—H10B109.5
H3A—C3—H3C109.5H10A—C10—H10B109.5
H3B—C3—H3C109.5C7—C10—H10C109.5
N1—Si2—C6114.73 (6)H10A—C10—H10C109.5
N1—Si2—C4108.34 (6)H10B—C10—H10C109.5
C6—Si2—C4105.60 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···Si0.848 (16)2.631 (16)3.4326 (13)158.2 (14)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···Si0.848 (16)2.631 (16)3.4326 (13)158.2 (14)
Symmetry code: (i) x, y+1, z+1.
 

References

First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGoldys, A. M. & Dixon, D. J. (2014). Macromolecules, 47, 1277–1284.  Web of Science CrossRef CAS Google Scholar
First citationKawalec, M., Coulembier, O., Gerbaux, P., Sobota, M., De Winter, J., Dubois, P., Kowalczuk, M. & Kurcok, P. (2012). React. Funct. Polym. 72, 509–520.  Web of Science CrossRef CAS Google Scholar
First citationKovalenko, O. O., Boldog, I., Kinzhybalo, V., Lis, T. & Brusilovets, A. I. (2011a). Dalton Trans. 40, 711–717.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKovalenko, O. O., Brusylovets, O. A., Kinzhybalo, V., Lis, T. & Brusilovets, A. I. (2011b). Dalton Trans. 40, 4814–4817.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKovalenko, O. O., Kinzhybalo, V., Lis, T. & Brusilovets, A. I. (2011c). Phosphorus Sulfur Silicon Relat. Elem. 186, 814–821.  Web of Science CrossRef CAS Google Scholar
First citationKovalenko, O. O., Kinzhybalo, V., Lis, T., Khavryuchenko, O. V., Rusanov, E. B. & Brusilovets, A. I. (2012). Dalton Trans. 41, 5132–5136.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationOxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Wrocław, Poland.  Google Scholar
First citationRusanov, E. B., Brusilovets, A. I. & Chernega, A. N. (1992). Zh. Obshch. Khim. (Russ. J. Gen. Chem.), 62, 2551–2558.  CAS Google Scholar
First citationSamuel, C., Chalamet, Y., Boisson, F., Majesté, J.-C., Becquart, F. & Fleury, E. (2014). J. Polym. Sci. Part A Polym. Chem. 52, 493–503.  Web of Science CrossRef CAS Google Scholar
First citationScherer, O. J. & Kuhn, N. (1974). J. Organomet. Chem. 82, C3–C6.  CrossRef CAS Web of Science Google Scholar
First citationScherer, O. J., Kulbach, N.-T. & Glässel, W. (1978). Z. Naturforsch. Teil B, 33, 652–656.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, L., Nederberg, F., Pratt, R. C., Waymouth, R. M., Hedrick, J. L. & Wade, C. G. (2007). Macromolecules, 40, 4154–4158.  Web of Science CrossRef CAS Google Scholar
First citationZhao, J., Pahovnik, D., Gnanou, Y. & Hadjichristidis, N. (2014a). Macromolecules, 47, 1693–1698.  Web of Science CrossRef CAS Google Scholar
First citationZhao, J., Pahovnik, D., Gnanou, Y. & Hadjichristidis, N. (2014b). Polym. Chem. 5, 3750–3753.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds