organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 6,9-di­methyl-7H-[1,2,4]triazolo[4,3-b][1,2,4]triazepin-8(9H)-one 0.40-hydrate

aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétences Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bMoroccan Foundation for Advanced Science, Innovation and Research (MASCIR), Rabat, Morocco, and cLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: a_harmaoui@yahoo.fr

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 16 November 2014; accepted 24 November 2014; online 1 January 2015)

In the mol­ecule of the title compound, C7H9N5O·0.40H2O, the seven-membered heterocyclic ring exhibits a boat conformation, whereas the five-membered triazole ring is almost planar (r.m.s. deviation = 0.005 Å). In the crystal, centrosymmetric dimers are linked by pairs of C—H⋯O hydrogen bonds into dimers, which are further connected via O—H⋯N and C—H⋯N hydrogen bonds, forming a three-dimensional network. The structure contains a partially occupied water mol­ecule lying on a twofold axis with an occupancy factor of 0.4.

1. Related literature

For pharmacological and biological activities of 1,2,4-triazole and 1,2,4-triazepine derivatives, see: Gupta et al. (2011[Gupta, M., Paul, S. & Gupta, R. (2011). Eur. J. Med. Chem. 46, 631-635.]); Mathew et al. (2006[Mathew, V., Keshavayya, J. & Vaidya, J. P. (2006). Eur. J. Med. Chem. 41, 1048-1058.]); Reed et al. (2010[Reed, C. S., Huigens, R. W., Rogers, S. A. & Melander, C. (2010). Bioorg. Med. Chem. Lett. 20, 6310-6312.]). For related structures, see: Essassi et al. (1977[Essassi, E. M., Lavergne, J. P. & Viallffont, P. (1977). Tetrahedron, 33, 2807-2812.]); Doubia et al. (2007[Doubia, M. L., Bouhfid, R., Ahabchane, N. H., Essassi, E. M. & El Ammari, L. (2007). Acta Cryst. E63, o3306.]); Zemama et al. (2009[Zemama, R. M., Amari, I., Bouhfid, R., Essassi, E. M. & Ng, S. W. (2009). Acta Cryst. E65, o2152.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C7H9N5O·0.4H2O

  • Mr = 186.44

  • Monoclinic, C 2/c

  • a = 11.4970 (18) Å

  • b = 11.4527 (18) Å

  • c = 14.867 (2) Å

  • β = 109.615 (4)°

  • V = 1843.9 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.40 × 0.34 × 0.30 mm

2.2. Data collection

  • Bruker X8 APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.637, Tmax = 0.746

  • 14175 measured reflections

  • 2039 independent reflections

  • 1600 reflections with I > 2σ(I)

  • Rint = 0.033

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.125

  • S = 1.04

  • 2039 reflections

  • 123 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯N3i 0.97 2.58 3.449 (3) 149
C5—H5⋯O1ii 0.93 2.29 3.211 (2) 173
O2—H1⋯N3iii 0.87 2.08 2.939 (2) 167
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) [-x+1, y, -z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip,2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

1,2,4-Triazole derivatives are known to possess wide biological significance and diverse pharmacological activities (Mathew et al., 2006; Reed et al., 2010). 1,2,4-Triazepine derivatives were also reported to possess antibacterial, antiviral and psychotropic activities (Gupta et al., 2011). They are also the reactants for the synthesis of other heterocyclic compounds (Essassi et al., 1977; Doubia et al., 2007; Zemama et al., 2009). The aim of the present paper is to report the crystal structure of the title compound.

The molecule of the title compound is build up from two fused five- and seven-membered rings linked to two methyl groups and crystallizing with a partial water molecule as shown in Fig. 1. The triazepine ring adopts a boat conformation as indicated by the puckering amplitude Q = 0.7865 (17) Å and spherical polar angle θ = 88.80 (12)°, with φ = 60.07 (13)°. The triazole ring is close to be planar, with a maximum deviation of 0.007 (2) Å for atom C5. In the crystal, centrosymmetrically-related molecules are linked by pairs of weak C—H···O hydrogen bonds into dimeric units, which are further connected into a three-dimensional network by O—H···N and C—H···O hydrogen bonds (Fig. 2, Table 1).

Related literature top

For pharmacological and biological activities of 1,2,4-triazole and 1,2,4-triazepine derivatives, see: Gupta et al. (2011); Mathew et al. (2006); Reed et al. (2010). For related structures, see: Essassi et al. (1977); Doubia et al. (2007); Zemama et al. (2009).

Experimental top

To a solution of 1 g (0,06 mol) of6-methyl-7H-[1,2,4]triazolo[4,3-b][1,2,4]triazepin-8(9H)-one in 30 ml of sodium methoxide (prepared from 30 ml of methanol and 0.15 g of sodium) was added 1 g (0.007 mol) of methyl iodide and the mixture was heated for 5 h. The solution was then concentrated to dryness under reduced pressure and the residue was extracted with chloroform. The precipitate obtained was chromatographed on a silica column (eluent: chloroform/ethanol 95:5 v/v). The purified product was crystallized from ethanol to give colourless crystals with a yield of 50%.

Refinement top

All H atoms were located in a difference Fourier map and refineded as riding, with C—H = 0.93-0.97 Å, O–H = 0.90 Å, and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C, O) for methyl and water H atoms. The oxygen atom of the water molecule lies on a two-fold axis with an occupancy factor of 0.4.

Structure description top

1,2,4-Triazole derivatives are known to possess wide biological significance and diverse pharmacological activities (Mathew et al., 2006; Reed et al., 2010). 1,2,4-Triazepine derivatives were also reported to possess antibacterial, antiviral and psychotropic activities (Gupta et al., 2011). They are also the reactants for the synthesis of other heterocyclic compounds (Essassi et al., 1977; Doubia et al., 2007; Zemama et al., 2009). The aim of the present paper is to report the crystal structure of the title compound.

The molecule of the title compound is build up from two fused five- and seven-membered rings linked to two methyl groups and crystallizing with a partial water molecule as shown in Fig. 1. The triazepine ring adopts a boat conformation as indicated by the puckering amplitude Q = 0.7865 (17) Å and spherical polar angle θ = 88.80 (12)°, with φ = 60.07 (13)°. The triazole ring is close to be planar, with a maximum deviation of 0.007 (2) Å for atom C5. In the crystal, centrosymmetrically-related molecules are linked by pairs of weak C—H···O hydrogen bonds into dimeric units, which are further connected into a three-dimensional network by O—H···N and C—H···O hydrogen bonds (Fig. 2, Table 1).

For pharmacological and biological activities of 1,2,4-triazole and 1,2,4-triazepine derivatives, see: Gupta et al. (2011); Mathew et al. (2006); Reed et al. (2010). For related structures, see: Essassi et al. (1977); Doubia et al. (2007); Zemama et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip,2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with displacement ellipsoids drawn at the 50% probability level, showing the intermolecular O—H···N hydrogen bond (dashed line).
[Figure 2] Fig. 2. Partiel crystal packing of the title compound, showing molecules linked through C—H···O and O—H···N hydrogen bonds (dashed lines).
6,9-Dimethyl-7H-[1,2,4]triazolo[4,3-b][1,2,4]triazepin-8(9H)-one 0.40-hydrate top
Crystal data top
C7H9N5O·0.4H2OF(000) = 784
Mr = 186.44Dx = 1.343 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2039 reflections
a = 11.4970 (18) Åθ = 2.6–27.1°
b = 11.4527 (18) ŵ = 0.10 mm1
c = 14.867 (2) ÅT = 296 K
β = 109.615 (4)°Block, colourless
V = 1843.9 (5) Å30.40 × 0.34 × 0.30 mm
Z = 8
Data collection top
Bruker X8 APEX
diffractometer
2039 independent reflections
Radiation source: fine-focus sealed tube1600 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
φ and ω scansθmax = 27.1°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1414
Tmin = 0.637, Tmax = 0.746k = 1414
14175 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0565P)2 + 1.2827P]
where P = (Fo2 + 2Fc2)/3
2039 reflections(Δ/σ)max < 0.001
123 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C7H9N5O·0.4H2OV = 1843.9 (5) Å3
Mr = 186.44Z = 8
Monoclinic, C2/cMo Kα radiation
a = 11.4970 (18) ŵ = 0.10 mm1
b = 11.4527 (18) ÅT = 296 K
c = 14.867 (2) Å0.40 × 0.34 × 0.30 mm
β = 109.615 (4)°
Data collection top
Bruker X8 APEX
diffractometer
2039 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1600 reflections with I > 2σ(I)
Tmin = 0.637, Tmax = 0.746Rint = 0.033
14175 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.04Δρmax = 0.28 e Å3
2039 reflectionsΔρmin = 0.20 e Å3
123 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.33958 (13)0.65257 (14)0.16698 (10)0.0369 (3)
C20.34033 (16)0.52181 (14)0.16066 (11)0.0433 (4)
H2A0.41760.49620.15440.052*
H2B0.33440.48850.21900.052*
C30.23480 (17)0.47878 (14)0.07690 (12)0.0476 (4)
C40.33342 (14)0.57338 (13)0.02393 (10)0.0362 (3)
C50.46928 (15)0.70820 (15)0.00967 (12)0.0453 (4)
H50.52040.77250.01240.054*
C60.30729 (19)0.70739 (19)0.24624 (12)0.0571 (5)
H6A0.31020.79080.24120.086*
H6B0.36520.68280.30630.086*
H6C0.22560.68390.24240.086*
C70.1424 (2)0.4639 (2)0.09733 (15)0.0758 (7)
H7A0.15630.49340.15330.114*
H7B0.06230.48810.09760.114*
H7C0.14640.38020.09700.114*
N10.23754 (13)0.50997 (12)0.01151 (9)0.0445 (4)
N20.37481 (14)0.56109 (13)0.09512 (10)0.0478 (4)
N30.46286 (14)0.64862 (14)0.08511 (10)0.0508 (4)
N40.39103 (11)0.66406 (11)0.03305 (8)0.0346 (3)
N50.36603 (12)0.72045 (11)0.10833 (9)0.0388 (3)
O10.15060 (15)0.42096 (14)0.08579 (11)0.0790 (5)
O20.50000.7639 (2)0.25000.0618 (6)0.80
H10.50680.71960.29590.093*0.80
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0326 (7)0.0460 (8)0.0320 (7)0.0009 (6)0.0109 (6)0.0009 (6)
C20.0514 (9)0.0455 (9)0.0367 (8)0.0024 (7)0.0195 (7)0.0089 (7)
C30.0595 (10)0.0394 (9)0.0497 (9)0.0114 (7)0.0260 (8)0.0005 (7)
C40.0434 (8)0.0345 (7)0.0327 (7)0.0018 (6)0.0153 (6)0.0007 (6)
C50.0470 (9)0.0483 (9)0.0455 (9)0.0091 (7)0.0221 (7)0.0049 (7)
C60.0644 (11)0.0709 (12)0.0426 (9)0.0104 (10)0.0265 (9)0.0051 (9)
C70.0784 (15)0.0916 (16)0.0559 (12)0.0408 (13)0.0204 (11)0.0244 (11)
N10.0507 (8)0.0441 (7)0.0390 (7)0.0160 (6)0.0157 (6)0.0057 (6)
N20.0624 (9)0.0490 (8)0.0380 (7)0.0019 (7)0.0247 (7)0.0020 (6)
N30.0572 (9)0.0588 (9)0.0451 (8)0.0025 (7)0.0287 (7)0.0055 (7)
N40.0393 (7)0.0348 (6)0.0332 (6)0.0042 (5)0.0166 (5)0.0007 (5)
N50.0427 (7)0.0383 (7)0.0369 (6)0.0023 (5)0.0154 (5)0.0066 (5)
O10.0913 (11)0.0827 (11)0.0718 (10)0.0466 (9)0.0389 (9)0.0012 (8)
O20.0912 (18)0.0554 (13)0.0507 (13)0.0000.0395 (13)0.000
Geometric parameters (Å, º) top
C1—N51.2788 (19)C5—N41.3610 (19)
C1—C61.488 (2)C5—H50.9300
C1—C21.501 (2)C6—H6A0.9600
C2—C31.500 (2)C6—H6B0.9600
C2—H2A0.9700C6—H6C0.9600
C2—H2B0.9700C7—N11.472 (2)
C3—O11.216 (2)C7—H7A0.9600
C3—N11.373 (2)C7—H7B0.9600
C4—N21.306 (2)C7—H7C0.9600
C4—N41.3632 (19)N2—N31.397 (2)
C4—N11.383 (2)N4—N51.4029 (17)
C5—N31.294 (2)O2—H10.8745
N5—C1—C6117.59 (15)H6A—C6—H6B109.5
N5—C1—C2123.80 (14)C1—C6—H6C109.5
C6—C1—C2118.61 (14)H6A—C6—H6C109.5
C3—C2—C1111.08 (13)H6B—C6—H6C109.5
C3—C2—H2A109.4N1—C7—H7A109.5
C1—C2—H2A109.4N1—C7—H7B109.5
C3—C2—H2B109.4H7A—C7—H7B109.5
C1—C2—H2B109.4N1—C7—H7C109.5
H2A—C2—H2B108.0H7A—C7—H7C109.5
O1—C3—N1121.38 (17)H7B—C7—H7C109.5
O1—C3—C2122.69 (16)C3—N1—C4122.68 (14)
N1—C3—C2115.92 (14)C3—N1—C7119.17 (15)
N2—C4—N4110.65 (13)C4—N1—C7117.80 (14)
N2—C4—N1125.12 (14)C4—N2—N3106.54 (13)
N4—C4—N1124.04 (13)C5—N3—N2107.42 (13)
N3—C5—N4110.76 (15)C5—N4—C4104.61 (13)
N3—C5—H5124.6C5—N4—N5123.08 (13)
N4—C5—H5124.6C4—N4—N5131.27 (12)
C1—C6—H6A109.5C1—N5—N4115.05 (13)
C1—C6—H6B109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···N3i0.972.583.449 (3)149
C5—H5···O1ii0.932.293.211 (2)173
O2—H1···N3iii0.872.082.939 (2)167
Symmetry codes: (i) x+1, y+1, z; (ii) x+1/2, y+1/2, z; (iii) x+1, y, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···N3i0.972.583.449 (3)149
C5—H5···O1ii0.932.293.211 (2)173
O2—H1···N3iii0.872.082.939 (2)167
Symmetry codes: (i) x+1, y+1, z; (ii) x+1/2, y+1/2, z; (iii) x+1, y, z1/2.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationBruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDoubia, M. L., Bouhfid, R., Ahabchane, N. H., Essassi, E. M. & El Ammari, L. (2007). Acta Cryst. E63, o3306.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEssassi, E. M., Lavergne, J. P. & Viallffont, P. (1977). Tetrahedron, 33, 2807–2812.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGupta, M., Paul, S. & Gupta, R. (2011). Eur. J. Med. Chem. 46, 631–635.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMathew, V., Keshavayya, J. & Vaidya, J. P. (2006). Eur. J. Med. Chem. 41, 1048–1058.  Web of Science CrossRef PubMed CAS Google Scholar
First citationReed, C. S., Huigens, R. W., Rogers, S. A. & Melander, C. (2010). Bioorg. Med. Chem. Lett. 20, 6310–6312.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZemama, R. M., Amari, I., Bouhfid, R., Essassi, E. M. & Ng, S. W. (2009). Acta Cryst. E65, o2152.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds