Download citation
Download citation
link to html
Cocrystals of thio­urea with 4-nitro­pyridine N-oxide, C5H4N2O3·2CH4N2S, (I), and 3-bromo­pyridine N-oxide, C5H4BrNO·CH4N2S, (II), crystallize in the monoclinic space group P21/c. In the crystals, mol­ecules of both components are linked by N—H...O hydrogen bonds, creating R21(6) synthons. The bromine substituent of the N-oxide component in (II) is a centre for C—Br...S halogen bonding to the thio­urea mol­ecule. Computations based on quantum chemistry methods (quantum theory of atoms in mol­ecules, QTAIM) and atoms in mol­ecules (AIM) theory were performed for a more detailed description of the observed type of halogen-bonding inter­action.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229620000947/dg3003sup1.cif
Contains datablocks global, structure_I, structure_II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229620000947/dg3003structure_Isup2.hkl
Contains datablock structure_I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229620000947/dg3003structure_IIsup3.hkl
Contains datablock structure_II

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229620000947/dg3003structure_Isup4.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229620000947/dg3003structure_IIsup5.cml
Supplementary material

CCDC references: 1979836; 1979835

Computing details top

For both structures, data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b).

4-Nitropyridine N-oxide–thiourea (1/2) (structure_I) top
Crystal data top
C5H4N2O3·2CH4N2SF(000) = 608
Mr = 292.35Dx = 1.532 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 9.1446 (2) ÅCell parameters from 6151 reflections
b = 13.8603 (3) Åθ = 3.2–76.3°
c = 10.6447 (2) ŵ = 3.95 mm1
β = 109.989 (3)°T = 100 K
V = 1267.91 (5) Å3Plate, yellow
Z = 40.15 × 0.09 × 0.05 mm
Data collection top
Rigaku SuperNova (Cu) X-ray Source
diffractometer
2331 independent reflections
Radiation source: micro-focus sealed X-ray tube2168 reflections with I > 2σ(I)
Detector resolution: 10.4052 pixels mm-1Rint = 0.042
ω scansθmax = 68.5°, θmin = 5.2°
Absorption correction: analytical
(CrysAlis PRO; Rigaku OD, 2015; Clark & Reid, 1995)
h = 1110
Tmin = 0.956, Tmax = 0.982k = 1616
12163 measured reflectionsl = 1212
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.058H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.0577P)2 + 4.4349P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2331 reflectionsΔρmax = 1.21 e Å3
195 parametersΔρmin = 0.50 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S12A0.29723 (10)0.60095 (6)0.06020 (8)0.0207 (2)
S12B1.10630 (10)0.64116 (6)1.55686 (8)0.0211 (2)
N13A0.3011 (3)0.6508 (2)0.1815 (3)0.0163 (6)
N11B1.0279 (4)0.7262 (2)1.3202 (3)0.0176 (6)
N11A0.4971 (3)0.5509 (2)0.1772 (3)0.0192 (6)
O10.5215 (3)0.6035 (2)0.4396 (2)0.0296 (6)
O410.7607 (3)0.6965 (2)1.0409 (3)0.0366 (7)
O420.9447 (3)0.6057 (2)1.0290 (3)0.0303 (6)
N13B0.9161 (4)0.5793 (2)1.3225 (3)0.0207 (6)
N10.5949 (4)0.6121 (2)0.5647 (3)0.0242 (7)
N40.8178 (4)0.6477 (2)0.9743 (3)0.0251 (7)
C12B1.0103 (4)0.6491 (2)1.3884 (3)0.0145 (6)
C12A0.3697 (4)0.6008 (2)0.1108 (3)0.0145 (6)
C50.8071 (4)0.5761 (2)0.7616 (3)0.0165 (7)
H50.9021370.5430500.8046610.020*
C30.6021 (4)0.6828 (3)0.7703 (4)0.0273 (8)
H30.5573380.7231340.8196020.033*
C60.7306 (4)0.5664 (3)0.6266 (4)0.0255 (8)
H60.7742320.5267340.5757710.031*
C20.5309 (4)0.6706 (3)0.6379 (4)0.0268 (8)
H20.4351350.7026100.5938750.032*
C40.7421 (4)0.6356 (3)0.8338 (4)0.0230 (7)
H14A0.234 (5)0.687 (3)0.138 (5)0.029 (12)*
H13A0.333 (5)0.648 (3)0.264 (5)0.026 (11)*
H13B0.877 (5)0.582 (3)1.246 (5)0.031 (13)*
H11B0.981 (5)0.731 (3)1.246 (5)0.024 (12)*
H12B1.087 (5)0.765 (3)1.359 (5)0.024 (11)*
H14B0.911 (6)0.529 (4)1.359 (5)0.039 (14)*
H12A0.532 (5)0.551 (3)0.261 (5)0.023 (11)*
H11A0.552 (6)0.520 (4)0.134 (5)0.043 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S12A0.0235 (4)0.0237 (5)0.0123 (4)0.0087 (3)0.0026 (3)0.0021 (3)
S12B0.0312 (5)0.0165 (4)0.0109 (4)0.0083 (3)0.0011 (3)0.0005 (3)
N13A0.0202 (14)0.0149 (14)0.0122 (14)0.0046 (11)0.0035 (12)0.0012 (11)
N11B0.0222 (15)0.0156 (14)0.0112 (14)0.0038 (12)0.0008 (12)0.0005 (12)
N11A0.0208 (14)0.0214 (15)0.0136 (14)0.0067 (12)0.0036 (12)0.0006 (11)
O10.0328 (14)0.0372 (15)0.0125 (12)0.0016 (12)0.0005 (11)0.0010 (11)
O410.0386 (16)0.0484 (18)0.0231 (14)0.0013 (14)0.0111 (12)0.0149 (13)
O420.0266 (14)0.0360 (16)0.0225 (13)0.0064 (12)0.0011 (11)0.0033 (11)
N13B0.0297 (16)0.0165 (15)0.0118 (15)0.0062 (12)0.0019 (13)0.0018 (12)
N10.0250 (15)0.0233 (15)0.0200 (15)0.0015 (12)0.0020 (13)0.0056 (12)
N40.0349 (17)0.0190 (15)0.0258 (16)0.0037 (13)0.0160 (14)0.0025 (12)
C12B0.0168 (15)0.0136 (15)0.0144 (15)0.0007 (12)0.0069 (12)0.0006 (12)
C12A0.0152 (15)0.0121 (15)0.0153 (15)0.0015 (12)0.0041 (12)0.0003 (12)
C50.0161 (15)0.0140 (15)0.0194 (16)0.0011 (12)0.0059 (13)0.0006 (12)
C30.0222 (18)0.0190 (17)0.044 (2)0.0067 (14)0.0150 (17)0.0041 (16)
C60.0269 (18)0.0243 (18)0.0272 (19)0.0040 (15)0.0116 (15)0.0020 (15)
C20.0281 (19)0.0250 (19)0.028 (2)0.0095 (15)0.0098 (16)0.0021 (15)
C40.0261 (18)0.0214 (18)0.0208 (18)0.0030 (14)0.0070 (15)0.0001 (14)
Geometric parameters (Å, º) top
S12A—C12A1.711 (3)N13B—C12B1.326 (4)
S12B—C12B1.709 (3)N1—C61.347 (5)
N13A—C12A1.328 (4)N1—C21.385 (5)
N11B—C12B1.331 (4)N4—C41.427 (5)
N11A—C12A1.331 (4)C5—C61.373 (5)
O1—N11.275 (4)C5—C41.391 (5)
O41—N41.218 (4)C3—C21.346 (6)
O42—N41.250 (4)C3—C41.391 (5)
O1—N1—C6122.3 (3)N13A—C12A—S12A121.0 (3)
O1—N1—C2118.0 (3)N11A—C12A—S12A121.0 (3)
C6—N1—C2119.7 (3)C6—C5—C4118.3 (3)
O41—N4—O42120.1 (3)C2—C3—C4119.0 (3)
O41—N4—C4121.6 (3)N1—C6—C5121.4 (3)
O42—N4—C4118.2 (3)C3—C2—N1121.1 (3)
N13B—C12B—N11B118.3 (3)C3—C4—C5120.4 (3)
N13B—C12B—S12B121.1 (3)C3—C4—N4119.3 (3)
N11B—C12B—S12B120.6 (3)C5—C4—N4120.2 (3)
N13A—C12A—N11A117.9 (3)
O1—N1—C6—C5179.5 (3)C2—C3—C4—N4179.6 (3)
C2—N1—C6—C50.4 (5)C6—C5—C4—C30.8 (5)
C4—C5—C6—N10.8 (5)C6—C5—C4—N4180.0 (3)
C4—C3—C2—N10.1 (6)O41—N4—C4—C32.1 (5)
O1—N1—C2—C3179.9 (3)O42—N4—C4—C3179.0 (3)
C6—N1—C2—C30.1 (6)O41—N4—C4—C5177.2 (3)
C2—C3—C4—C50.3 (5)O42—N4—C4—C51.7 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11B—H12B···O10.88 (5)2.10 (5)2.867 (4)145 (4)
N13B—H14B···O10.86 (5)2.04 (5)2.819 (4)151 (4)
N13A—H13A···O410.81 (5)2.58 (5)3.242 (4)140 (4)
N11A—H12A···O420.79 (5)2.43 (5)3.165 (4)157 (5)
N11B—H11B···S12Ai0.82 (5)2.66 (4)3.413 (3)154 (4)
N11A—H11A···S12Bii0.81 (5)2.58 (5)3.359 (3)167 (4)
N13A—H14A···S12Aiii0.84 (5)2.52 (5)3.345 (3)172 (5)
N13B—H13B···S12Biv0.89 (5)2.48 (5)3.334 (3)164 (4)
Symmetry codes: (i) x1, y+3/2, z3/2; (ii) x+1, y+3/2, z+3/2; (iii) x+2, y+1, z+3; (iv) x+1, y+1, z.
3-Bromopyridine N-oxide–thiourea (1/1) (structure_II) top
Crystal data top
C5H4BrNO·CH4N2SF(000) = 496
Mr = 250.12Dx = 1.845 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.9440 (3) ÅCell parameters from 8749 reflections
b = 12.4204 (2) Åθ = 2.8–32.5°
c = 8.3042 (2) ŵ = 4.75 mm1
β = 102.506 (3)°T = 100 K
V = 900.61 (4) Å3Plate, colorless
Z = 40.33 × 0.12 × 0.03 mm
Data collection top
Rigaku SuperNova Dual Source
diffractometer with an Atlas detector
2065 independent reflections
Radiation source: micro-focus sealed X-ray tube1891 reflections with I > 2σ(I)
Detector resolution: 10.4052 pixels mm-1Rint = 0.045
ω scansθmax = 27.5°, θmin = 2.9°
Absorption correction: analytical
(CrysAlis PRO; Rigaku OD, 2019)
h = 1111
Tmin = 0.393, Tmax = 0.886k = 1616
18912 measured reflectionsl = 1010
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.020H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.050 w = 1/[σ2(Fo2) + (0.0212P)2 + 0.774P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2065 reflectionsΔρmax = 0.39 e Å3
125 parametersΔρmin = 0.30 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br30.23177 (2)0.52622 (2)0.09504 (2)0.01826 (7)
S120.46557 (5)1.29005 (3)0.12455 (6)0.01538 (10)
O10.19740 (17)0.93678 (11)0.04294 (18)0.0222 (3)
N10.13610 (18)0.84827 (12)0.08721 (19)0.0155 (3)
C30.1368 (2)0.65962 (14)0.1202 (2)0.0143 (3)
N110.3612 (2)1.10976 (14)0.2350 (2)0.0174 (3)
C120.4014 (2)1.15944 (14)0.1089 (2)0.0135 (3)
N130.38890 (19)1.10512 (13)0.0308 (2)0.0158 (3)
C20.2021 (2)0.75165 (15)0.0720 (2)0.0155 (4)
H20.2920360.7472730.0289390.019*
C40.0075 (2)0.66377 (15)0.1860 (2)0.0166 (4)
H40.0349880.6003780.2218910.020*
C50.0579 (2)0.76412 (15)0.1975 (2)0.0178 (4)
H50.1475090.7699200.2409850.021*
C60.0063 (2)0.85540 (15)0.1463 (2)0.0174 (4)
H60.0403960.9235260.1523760.021*
H11A0.321 (3)1.0463 (19)0.220 (3)0.016 (5)*
H11B0.384 (3)1.135 (2)0.331 (3)0.029 (7)*
H13A0.358 (3)1.041 (2)0.035 (3)0.024 (6)*
H13B0.413 (3)1.1351 (19)0.111 (3)0.022 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br30.02166 (11)0.01115 (10)0.02216 (11)0.00290 (7)0.00513 (8)0.00010 (7)
S120.0212 (2)0.0113 (2)0.0145 (2)0.00159 (17)0.00583 (17)0.00075 (16)
O10.0263 (8)0.0113 (6)0.0305 (8)0.0057 (6)0.0090 (6)0.0042 (6)
N10.0182 (8)0.0105 (7)0.0168 (8)0.0027 (6)0.0019 (6)0.0005 (6)
C30.0167 (9)0.0096 (8)0.0147 (9)0.0022 (7)0.0006 (7)0.0007 (6)
N110.0238 (9)0.0140 (8)0.0154 (8)0.0029 (7)0.0064 (7)0.0005 (6)
C120.0116 (8)0.0126 (8)0.0161 (9)0.0025 (6)0.0022 (7)0.0009 (6)
N130.0209 (8)0.0114 (8)0.0166 (8)0.0012 (6)0.0074 (7)0.0006 (6)
C20.0156 (9)0.0146 (8)0.0161 (9)0.0007 (7)0.0028 (7)0.0007 (7)
C40.0192 (9)0.0124 (8)0.0172 (9)0.0016 (7)0.0017 (7)0.0021 (7)
C50.0162 (9)0.0171 (9)0.0200 (9)0.0003 (7)0.0041 (7)0.0001 (7)
C60.0190 (9)0.0130 (8)0.0202 (9)0.0012 (7)0.0043 (7)0.0008 (7)
Geometric parameters (Å, º) top
Br3—C31.8940 (18)C12—N131.326 (2)
S12—C121.7163 (18)N13—H13A0.85 (3)
O1—N11.3159 (19)N13—H13B0.83 (3)
N1—C21.355 (2)C2—H20.9500
N1—C61.357 (2)C4—C51.389 (3)
C3—C21.382 (3)C4—H40.9500
C3—C41.383 (3)C5—C61.379 (3)
N11—C121.330 (2)C5—H50.9500
N11—H11A0.86 (2)C6—H60.9500
N11—H11B0.84 (3)
O1—N1—C2119.83 (15)H13A—N13—H13B122 (2)
O1—N1—C6119.15 (15)N1—C2—C3119.05 (16)
C2—N1—C6121.02 (16)N1—C2—H2120.5
C2—C3—C4121.71 (17)C3—C2—H2120.5
C2—C3—Br3117.64 (14)C3—C4—C5117.50 (17)
C4—C3—Br3120.64 (14)C3—C4—H4121.3
C12—N11—H11A119.1 (15)C5—C4—H4121.3
C12—N11—H11B121.5 (17)C6—C5—C4120.41 (17)
H11A—N11—H11B119 (2)C6—C5—H5119.8
N13—C12—N11117.84 (17)C4—C5—H5119.8
N13—C12—S12120.69 (14)N1—C6—C5120.26 (17)
N11—C12—S12121.46 (14)N1—C6—H6119.9
C12—N13—H13A118.9 (17)C5—C6—H6119.9
C12—N13—H13B119.0 (16)
O1—N1—C2—C3179.56 (16)Br3—C3—C4—C5178.67 (14)
C6—N1—C2—C31.0 (3)C3—C4—C5—C60.7 (3)
C4—C3—C2—N11.1 (3)O1—N1—C6—C5178.31 (17)
Br3—C3—C2—N1179.45 (13)C2—N1—C6—C52.2 (3)
C2—C3—C4—C51.9 (3)C4—C5—C6—N11.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N13—H13A···O1i0.882.112.852 (2)142
N11—H11A···O1i0.882.152.881 (2)141
N13—H13B···S12ii0.882.473.347 (2)174
N11—H11B···S12iii0.882.553.401 (2)162
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+1/2, z1/2; (iii) x, y+1/2, z+1/2.
Selected geometrical, energetic and topological parameters of complexes investigated theoretically
The charge transfer (CT) always acts in the direction from thiourea towards an adjacent molecule as in the crystals. (II)sp and (OQITUF)sp indicate complexes with geometries known from the crystal state (single-point calculations), and (II)opt and (OQITUF)optindicate complexes with optimized geometries.
top
Complex(II)sp(II)opt(OQITUF)sp(OQITUF)opt
C—Br (Å)1.89 (2)1.891.88 (4)1.87
Br···S (Å)3.58 (2)3.493.21 (2)3.40
C—Br···S (°)168 (2)172177 (1)166
N—H (Å)-1.00-1.00
H···Br (Å)-2.79-2.71
N—H···Br (°)-150-148
Eint (kcal mol-1) (corrected)-1.67-3.34-3.32-4.44
Eint (kcal mol-1) (raw)-1.71-3.45-3.43-4.60
ρ (au) S···Br0.00700.01560.01010.0121
∇2ρ (au) S···Br0.02190.04220.02740.0317
H (au) S···Br0.00110.00080.00100.0009
ρ (au) N—H···Br--0.00840.0101
∇2ρ (au) N—H···Br--0.02530.0303
H (au) N—H···Br--0.00090.0010
CT (au)0.01580.01900.02730.0446
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds