Download citation
Download citation
link to html
For the first time, a new langbeinite-type phosphate, namely potassium terbium tantalum tris­(phosphate), K2Tb1.5Ta0.5(PO4)3, has been prepared successfully using a high-temperature flux method and has been structurally characterized by single-crystal X-ray diffraction. The results show that its structure can be described as a three-dimensional open framework of [Tb1.5Ta0.5(PO4)3] inter­connected by K+ ions. The TbIII and TaV cations in the structure are disordered and occupy the same crystallographic sites. The IR spectrum, the UV–Vis spectrum, the morphology and the Eu3+-activated photoluminescence spectroscopic properties were studied. A series of Eu3+-doped phosphors, i.e. K2Tb1.5–xTa0.5(PO4)3:xEu3+ (x = 0.01, 0.03, 0.05, 0.07, 0.10), were prepared via a solid-state reaction and the photoluminescence properties were studied. The results show that under near-UV excitation, the luminescence colour can be tuned from green through yellow to red by simply adjusting the Eu3+ concentration from 0 to 0.1, because of the efficient Tb3+→Eu3+ energy-transfer mechanism.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229619000998/ky3157sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619000998/ky3157Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229619000998/ky3157sup3.pdf
Excitation spectrum

CCDC reference: 1875420

Computing details top

Data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: SHELXL2014 (Sheldrick, 2015); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Potassium terbium tantalum tris(phosphate) top
Crystal data top
K2Tb1.5Ta0.5(PO4)3Mo Kα radiation, λ = 0.71073 Å
Mr = 691.96Cell parameters from 905 reflections
Cubic, P213θ = 2.8–24.5°
a = 10.3262 (6) ŵ = 15.77 mm1
V = 1101.09 (19) Å3T = 296 K
Z = 4Block, colourless
F(000) = 12520.18 × 0.17 × 0.15 mm
Dx = 4.174 Mg m3
Data collection top
Bruker SMART APEXII CCD area detector
diffractometer
927 independent reflections
Radiation source: fine-focus sealed tube907 reflections with I > 2σ(I)
Detector resolution: 83.33 pixels mm-1Rint = 0.045
ω scansθmax = 28.2°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996; Bruker, 2016)
h = 913
Tmin = 0.108, Tmax = 0.453k = 1313
7448 measured reflectionsl = 1310
Refinement top
Refinement on F2 w = 1/[σ2(Fo2) + 4.889P]
where P = (Fo2 + 2Fc2)/3
Least-squares matrix: full(Δ/σ)max = 0.006
R[F2 > 2σ(F2)] = 0.023Δρmax = 0.56 e Å3
wR(F2) = 0.043Δρmin = 0.77 e Å3
S = 1.13Extinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
927 reflectionsExtinction coefficient: 0.0030 (2)
61 parametersAbsolute structure: Flack x determined using 368 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.027 (13)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
K10.5701 (2)0.5701 (2)0.5701 (2)0.0351 (8)
K20.2043 (3)0.2957 (3)0.7043 (3)0.0427 (11)
Tb10.58140 (4)0.41860 (4)0.91860 (4)0.01756 (19)0.806 (4)
Ta10.58140 (4)0.41860 (4)0.91860 (4)0.01756 (19)0.194 (4)
Tb20.15006 (4)0.65006 (4)0.84994 (4)0.0194 (2)0.694 (4)
Ta20.15006 (4)0.65006 (4)0.84994 (4)0.0194 (2)0.306 (4)
P10.4653 (2)0.7390 (2)0.8772 (2)0.0208 (5)
O10.3272 (9)0.7348 (9)0.9196 (9)0.061 (3)
O20.5147 (9)0.6081 (8)0.8461 (9)0.058 (3)
O30.5473 (13)0.7969 (11)0.9841 (11)0.082 (4)
O40.4798 (11)0.8269 (11)0.7635 (10)0.072 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0351 (8)0.0351 (8)0.0351 (8)0.0008 (10)0.0008 (10)0.0008 (10)
K20.0427 (11)0.0427 (11)0.0427 (11)0.0013 (11)0.0013 (11)0.0013 (11)
Tb10.01756 (19)0.01756 (19)0.01756 (19)0.00050 (16)0.00050 (16)0.00050 (16)
Ta10.01756 (19)0.01756 (19)0.01756 (19)0.00050 (16)0.00050 (16)0.00050 (16)
Tb20.0194 (2)0.0194 (2)0.0194 (2)0.00122 (17)0.00122 (17)0.00122 (17)
Ta20.0194 (2)0.0194 (2)0.0194 (2)0.00122 (17)0.00122 (17)0.00122 (17)
P10.0252 (12)0.0189 (11)0.0181 (11)0.0005 (9)0.0080 (9)0.0038 (9)
O10.049 (6)0.079 (7)0.057 (5)0.013 (5)0.025 (5)0.008 (5)
O20.074 (6)0.043 (5)0.056 (5)0.026 (4)0.005 (5)0.016 (5)
O30.113 (10)0.077 (8)0.058 (6)0.017 (7)0.051 (6)0.024 (6)
O40.092 (8)0.065 (6)0.060 (6)0.023 (6)0.024 (6)0.048 (5)
Geometric parameters (Å, º) top
K1—O22.933 (10)K2—O4ix3.295 (12)
K1—O2i2.933 (10)Tb1—O4iii2.198 (9)
K1—O2ii2.933 (10)Tb1—O4ii2.198 (9)
K1—O4iii3.086 (13)Tb1—O4x2.198 (9)
K1—O4iv3.086 (13)Tb1—O2xi2.205 (8)
K1—O4v3.086 (13)Tb1—O2ix2.205 (8)
K1—O3iii3.121 (12)Tb1—O22.205 (8)
K1—O3iv3.121 (12)Tb2—O3vii2.089 (9)
K1—O3v3.121 (12)Tb2—O3xii2.089 (9)
K2—O1vi2.974 (10)Tb2—O3ix2.089 (9)
K2—O1iv2.974 (10)Tb2—O1iv2.152 (10)
K2—O1vii2.974 (10)Tb2—O1xiii2.152 (10)
K2—O3viii3.219 (15)Tb2—O12.152 (10)
K2—O3ix3.219 (15)P1—O21.481 (8)
K2—O3iii3.219 (15)P1—O41.491 (8)
K2—O4iii3.295 (12)P1—O11.492 (9)
K2—O4viii3.295 (12)P1—O31.514 (10)
O4iii—Tb1—O4ii90.1 (4)O3vii—Tb2—O1iv86.6 (4)
O4iii—Tb1—O4x90.1 (4)O3xii—Tb2—O1iv172.7 (4)
O4ii—Tb1—O4x90.1 (4)O3ix—Tb2—O1iv92.9 (4)
O4iii—Tb1—O2xi172.4 (4)O3vii—Tb2—O1xiii92.9 (4)
O4ii—Tb1—O2xi90.1 (4)O3xii—Tb2—O1xiii86.6 (4)
O4x—Tb1—O2xi82.3 (4)O3ix—Tb2—O1xiii172.7 (4)
O4iii—Tb1—O2ix82.3 (4)O1iv—Tb2—O1xiii94.3 (3)
O4ii—Tb1—O2ix172.4 (4)O3vii—Tb2—O1172.7 (4)
O4x—Tb1—O2ix90.1 (4)O3xii—Tb2—O192.9 (4)
O2xi—Tb1—O2ix97.5 (3)O3ix—Tb2—O186.6 (4)
O4iii—Tb1—O290.1 (4)O1iv—Tb2—O194.3 (3)
O4ii—Tb1—O282.3 (4)O1xiii—Tb2—O194.3 (3)
O4x—Tb1—O2172.4 (4)O2—P1—O4110.5 (6)
O2xi—Tb1—O297.5 (3)O2—P1—O1111.5 (6)
O2ix—Tb1—O297.5 (3)O4—P1—O1110.2 (6)
O3vii—Tb2—O3xii86.1 (5)O2—P1—O3109.0 (6)
O3vii—Tb2—O3ix86.1 (5)O4—P1—O3106.1 (6)
O3xii—Tb2—O3ix86.1 (5)O1—P1—O3109.4 (7)
Symmetry codes: (i) y, z, x; (ii) z, x, y; (iii) x+1, y1/2, z+3/2; (iv) y1/2, z+3/2, x+1; (v) z+3/2, x+1, y1/2; (vi) x+1/2, y+1, z1/2; (vii) z1, x, y; (viii) z+1, x1/2, y+3/2; (ix) y+1, z1/2, x+3/2; (x) y+3/2, z+1, x+1/2; (xi) z+3/2, x+1, y+1/2; (xii) x1/2, y+3/2, z+2; (xiii) z+1, x+1/2, y+3/2.
The luminescent lifetime of the 5D47F5 transition of the Tb3+ ion (excited: 378 nm; emission: 551 nm) for phosphors K2Tb1.5-xTa0.5(PO4)3:xEu3+ (x = 0~ 0.10) top
Sample numberEu3+ concentrationTb3+ emission lifetime (ms)Energy transfer efficiency (%)
1x = 016.50
2x = 0.015.765.5
3x = 0.033.479.4
4x = 0.052.286.7
5x = 0.071.889.1
6x = 0.101.392.1
The CIE coordinates of phosphors K2Tb1.5-xTa0.5(PO4)3:xEu3+ (x = 0~ 0.10) top
K2Tb1.5-xEuxTa0.5(PO4)3CIE xCIE y
1# x = 0.000.29880.6208
2# x = 0.010.47640.4836
3# x = 0.030.54750.4297
4# x = 0.050.55910.4087
5# x = 0.070.59010.3973
6# x = 0.100.60340.3868
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds