Download citation
Download citation
link to html
The crystal structures of four cocrystals of pyrazine with benzene polycarb­oxy­lic acids were determined, namely pyrazine–phthalic (benzene-1,2-di­carb­oxy­lic) acid (1/1), C4H4N2·C8H6O4 (1), pyrazine–hemimellitic (benzene-1,2,3-tri­carb­oxy­lic) acid (1/1), C4H4N2·C9H6O6 (2), pyrazine–hemimellitic acid–water (1/2/2), C4H4N2·2C9H6O6·2H2O (2a), and pyrazine–pyromellitic (benzene-1,2,4,5-tetra­carb­oxy­lic) acid (3/1), 3C4H4N2·C10H6O8 (3). In all cases, infinite chains of alternating acid and base mol­ecules, bonded by O—H...N hydrogen bonds, are formed. However, the details of the supra­molecular structures are different. The additional carb­oxy­lic acid groups in the tri- and tetra­carb­oxy­lic acids participate in hydrogen bonding with neighbouring acid mol­ecules (in 2), water mol­ecules, which makes the structure more complicated (in 2a), or with additional pyrazine mol­ecules (in 3). π–π inter­actions between aromatic rings help organize the crystal architectures in all cases except for hydrate 2a. In that case, the hydrogen-bond-enriched structure enforces a disposition of the rings in which no stacking is observed. The Hirshfeld surface analysis allows better visualization of the differences between the structures by fingerprint plots in particular.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229618013669/yp3167sup1.cif
Contains datablocks 1, 2, 2a, 3

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618013669/yp31671sup2.hkl
Contains datablock 1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618013669/yp31672sup3.hkl
Contains datablock 2

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618013669/yp31672asup4.hkl
Contains datablock 2a

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618013669/yp31673sup5.hkl
Contains datablock 3

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229618013669/yp3167sup6.pdf
Fingerprint plots

CCDC references: 1869761; 1869760; 1869759; 1869758

Computing details top

For all structures, data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).

Pyrazine–benzene-1,2-dicarboxylic acid (1/1) (1) top
Crystal data top
C4H4N2·C8H6O4Z = 2
Mr = 246.22F(000) = 256
Triclinic, P1Dx = 1.427 Mg m3
a = 6.6714 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.3296 (8) ÅCell parameters from 1538 reflections
c = 12.9870 (9) Åθ = 3.5–27.9°
α = 90.425 (7)°µ = 0.11 mm1
β = 96.907 (6)°T = 100 K
γ = 114.347 (9)°Prism, colourless
V = 573.23 (9) Å30.45 × 0.15 × 0.15 mm
Data collection top
Rigaku Xcalibur Eos
diffractometer
2308 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source2049 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
Detector resolution: 16.1544 pixels mm-1θmax = 28.1°, θmin = 3.2°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
k = 98
Tmin = 0.821, Tmax = 1.000l = 1315
3698 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036All H-atom parameters refined
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0416P)2 + 0.1017P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2308 reflectionsΔρmax = 0.25 e Å3
203 parametersΔρmin = 0.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1A0.13789 (19)0.24741 (18)0.69369 (9)0.0151 (3)
C2A0.1030 (2)0.35787 (19)0.77285 (9)0.0164 (3)
C3A0.1055 (2)0.2893 (2)0.80572 (10)0.0195 (3)
H3A0.131 (3)0.371 (2)0.8614 (12)0.028 (4)*
C4A0.2757 (2)0.1096 (2)0.76306 (10)0.0199 (3)
H4A0.416 (2)0.063 (2)0.7879 (11)0.020 (4)*
C5A0.2405 (2)0.0021 (2)0.68600 (10)0.0192 (3)
H5A0.358 (2)0.128 (2)0.6569 (11)0.025 (4)*
C6A0.0344 (2)0.06825 (19)0.65114 (10)0.0172 (3)
H6A0.009 (2)0.005 (2)0.5946 (12)0.023 (4)*
C7A0.3557 (2)0.33058 (19)0.65184 (10)0.0159 (3)
O71A0.37644 (15)0.20601 (14)0.58360 (7)0.0212 (2)
H71A0.515 (4)0.269 (3)0.5618 (16)0.070 (7)*
O72A0.49732 (15)0.49833 (14)0.67712 (8)0.0248 (2)
C8A0.2823 (2)0.5490 (2)0.82548 (10)0.0201 (3)
O81A0.42988 (17)0.51504 (16)0.88979 (8)0.0320 (3)
H81A0.548 (3)0.640 (3)0.9188 (15)0.056 (6)*
O82A0.27875 (15)0.71212 (14)0.81401 (8)0.0281 (3)
N1B0.78422 (17)0.39411 (16)0.52281 (8)0.0176 (2)
C2B0.8609 (2)0.3292 (2)0.44645 (10)0.0184 (3)
H2B0.766 (2)0.207 (2)0.4058 (11)0.021 (4)*
C3B1.0753 (2)0.4349 (2)0.42354 (10)0.0179 (3)
H3B1.132 (2)0.391 (2)0.3694 (11)0.018 (3)*
N1C0.79526 (18)0.84410 (17)0.96575 (9)0.0233 (3)
C2C0.9755 (2)0.8705 (2)0.92202 (10)0.0233 (3)
H2C0.955 (2)0.779 (2)0.8670 (12)0.027 (4)*
C3C1.1790 (2)1.0257 (2)0.95620 (11)0.0245 (3)
H3C1.307 (3)1.044 (2)0.9244 (12)0.031 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.0142 (6)0.0144 (6)0.0157 (6)0.0052 (5)0.0012 (5)0.0036 (5)
C2A0.0155 (6)0.0145 (6)0.0167 (6)0.0040 (5)0.0013 (5)0.0027 (5)
C3A0.0205 (7)0.0195 (7)0.0182 (7)0.0076 (6)0.0050 (5)0.0008 (5)
C4A0.0141 (6)0.0214 (7)0.0223 (7)0.0045 (5)0.0061 (5)0.0063 (5)
C5A0.0145 (6)0.0143 (7)0.0236 (7)0.0017 (5)0.0008 (5)0.0017 (5)
C6A0.0176 (6)0.0155 (6)0.0175 (6)0.0065 (5)0.0001 (5)0.0004 (5)
C7A0.0149 (6)0.0147 (6)0.0181 (6)0.0065 (5)0.0010 (5)0.0025 (5)
O71A0.0160 (5)0.0202 (5)0.0247 (5)0.0040 (4)0.0065 (4)0.0038 (4)
O72A0.0173 (5)0.0156 (5)0.0378 (6)0.0015 (4)0.0099 (4)0.0028 (4)
C8A0.0183 (6)0.0207 (7)0.0163 (6)0.0022 (6)0.0065 (5)0.0012 (5)
O81A0.0276 (5)0.0221 (6)0.0277 (6)0.0043 (5)0.0110 (4)0.0026 (4)
O82A0.0224 (5)0.0177 (5)0.0409 (6)0.0045 (4)0.0076 (4)0.0070 (4)
N1B0.0160 (5)0.0181 (6)0.0203 (6)0.0084 (5)0.0039 (4)0.0047 (4)
C2B0.0174 (6)0.0174 (7)0.0209 (7)0.0078 (6)0.0021 (5)0.0009 (5)
C3B0.0183 (6)0.0187 (7)0.0193 (6)0.0097 (5)0.0042 (5)0.0022 (5)
N1C0.0213 (6)0.0212 (6)0.0204 (6)0.0027 (5)0.0004 (4)0.0021 (5)
C2C0.0309 (8)0.0210 (7)0.0171 (7)0.0104 (6)0.0016 (6)0.0023 (5)
C3C0.0224 (7)0.0300 (8)0.0220 (7)0.0107 (6)0.0071 (6)0.0041 (6)
Geometric parameters (Å, º) top
C1A—C6A1.3938 (18)C8A—O82A1.2156 (16)
C1A—C2A1.4026 (17)C8A—O81A1.3174 (16)
C1A—C7A1.4975 (17)O81A—H81A0.96 (2)
C2A—C3A1.3922 (18)N1B—C2B1.3366 (16)
C2A—C8A1.5061 (17)N1B—C3Bi1.3403 (17)
C3A—C4A1.3913 (19)C2B—C3B1.3880 (18)
C3A—H3A1.010 (15)C2B—H2B0.962 (15)
C4A—C5A1.3893 (19)C3B—N1Bi1.3403 (17)
C4A—H4A0.954 (15)C3B—H3B0.949 (15)
C5A—C6A1.3894 (18)N1C—C3Cii1.3328 (17)
C5A—H5A0.970 (15)N1C—C2C1.3340 (18)
C6A—H6A0.974 (15)C2C—C3C1.382 (2)
C7A—O72A1.2141 (15)C2C—H2C0.933 (15)
C7A—O71A1.3267 (15)C3C—N1Cii1.3328 (17)
O71A—H71A0.93 (2)C3C—H3C0.952 (16)
C6A—C1A—C2A119.62 (12)O71A—C7A—C1A113.83 (11)
C6A—C1A—C7A121.03 (11)C7A—O71A—H71A108.1 (13)
C2A—C1A—C7A119.24 (11)O82A—C8A—O81A125.10 (12)
C3A—C2A—C1A119.33 (12)O82A—C8A—C2A122.63 (12)
C3A—C2A—C8A117.69 (11)O81A—C8A—C2A112.07 (11)
C1A—C2A—C8A122.98 (11)C8A—O81A—H81A110.3 (11)
C4A—C3A—C2A120.47 (12)C2B—N1B—C3Bi116.79 (11)
C4A—C3A—H3A120.3 (9)N1B—C2B—C3B121.49 (12)
C2A—C3A—H3A119.2 (9)N1B—C2B—H2B119.6 (9)
C5A—C4A—C3A120.33 (12)C3B—C2B—H2B118.9 (9)
C5A—C4A—H4A120.3 (9)N1Bi—C3B—C2B121.71 (12)
C3A—C4A—H4A119.3 (9)N1Bi—C3B—H3B115.7 (9)
C4A—C5A—C6A119.39 (12)C2B—C3B—H3B122.6 (9)
C4A—C5A—H5A120.4 (9)C3Cii—N1C—C2C116.87 (12)
C6A—C5A—H5A120.2 (9)N1C—C2C—C3C121.42 (12)
C5A—C6A—C1A120.82 (12)N1C—C2C—H2C116.2 (10)
C5A—C6A—H6A120.5 (9)C3C—C2C—H2C122.4 (10)
C1A—C6A—H6A118.7 (9)N1Cii—C3C—C2C121.71 (13)
O72A—C7A—O71A123.61 (12)N1Cii—C3C—H3C117.3 (10)
O72A—C7A—C1A122.55 (11)C2C—C3C—H3C121.0 (10)
C6A—C1A—C2A—C3A1.73 (18)C2A—C1A—C7A—O72A6.63 (18)
C7A—C1A—C2A—C3A174.55 (11)C6A—C1A—C7A—O71A9.08 (16)
C6A—C1A—C2A—C8A177.84 (11)C2A—C1A—C7A—O71A174.69 (10)
C7A—C1A—C2A—C8A5.87 (17)C3A—C2A—C8A—O82A69.34 (17)
C1A—C2A—C3A—C4A2.13 (19)C1A—C2A—C8A—O82A111.08 (15)
C8A—C2A—C3A—C4A177.47 (11)C3A—C2A—C8A—O81A105.91 (13)
C2A—C3A—C4A—C5A0.9 (2)C1A—C2A—C8A—O81A73.67 (15)
C3A—C4A—C5A—C6A0.67 (19)C3Bi—N1B—C2B—C3B0.4 (2)
C4A—C5A—C6A—C1A1.05 (19)N1B—C2B—C3B—N1Bi0.4 (2)
C2A—C1A—C6A—C5A0.15 (18)C3Cii—N1C—C2C—C3C0.0 (2)
C7A—C1A—C6A—C5A176.07 (11)N1C—C2C—C3C—N1Cii0.0 (2)
C6A—C1A—C7A—O72A169.61 (12)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y+2, z+2.
Pyrazine–benzene-1,2,3-tricarboxylic acid (1/1) (2) top
Crystal data top
C4H4N2·C9H6O6Z = 2
Mr = 290.23F(000) = 300
Triclinic, P1Dx = 1.545 Mg m3
a = 7.7184 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.9393 (10) ÅCell parameters from 1758 reflections
c = 10.030 (1) Åθ = 4.5–26.4°
α = 115.029 (10)°µ = 0.13 mm1
β = 112.471 (10)°T = 100 K
γ = 92.672 (9)°Block, colourless
V = 624.00 (15) Å30.25 × 0.2 × 0.1 mm
Data collection top
Rigaku Xcalibur Eos
diffractometer
2396 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source2083 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
Detector resolution: 16.2413 pixels mm-1θmax = 26.6°, θmin = 3.3°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
k = 1212
Tmin = 0.992, Tmax = 1.000l = 1211
4116 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035All H-atom parameters refined
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0457P)2 + 0.1205P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2396 reflectionsΔρmax = 0.25 e Å3
230 parametersΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1A0.77882 (19)0.80344 (15)0.27507 (16)0.0137 (3)
C2A0.63009 (19)0.70793 (15)0.26611 (16)0.0130 (3)
C3A0.62151 (19)0.55080 (15)0.20468 (16)0.0134 (3)
C4A0.7578 (2)0.49160 (16)0.15290 (16)0.0155 (3)
H4A0.750 (2)0.3828 (19)0.1076 (18)0.016 (4)*
C5A0.9085 (2)0.58751 (17)0.16845 (17)0.0159 (3)
H5A1.004 (2)0.5487 (19)0.140 (2)0.023 (4)*
C6A0.9190 (2)0.74282 (16)0.23014 (16)0.0149 (3)
H6A1.024 (2)0.8093 (18)0.2436 (19)0.017 (4)*
C7A0.78911 (19)0.97030 (16)0.33081 (16)0.0145 (3)
O71A0.93572 (14)1.04177 (12)0.32928 (13)0.0205 (3)
H71A0.938 (3)1.152 (3)0.368 (3)0.071 (7)*
O72A0.67285 (15)1.03387 (11)0.37084 (13)0.0232 (3)
C8A0.4806 (2)0.77328 (15)0.31933 (17)0.0150 (3)
O81A0.54245 (15)0.82580 (12)0.48002 (12)0.0205 (3)
H81A0.450 (3)0.869 (2)0.510 (3)0.053 (6)*
O82A0.32857 (14)0.77818 (11)0.22763 (12)0.0204 (3)
C9A0.46821 (19)0.44580 (15)0.19762 (16)0.0151 (3)
O91A0.47584 (15)0.30072 (12)0.13041 (13)0.0221 (3)
H91A0.373 (4)0.244 (3)0.126 (3)0.069 (7)*
O92A0.35251 (15)0.48904 (12)0.25017 (13)0.0240 (3)
N1B0.17076 (18)0.11055 (14)0.07462 (15)0.0195 (3)
C2B0.0016 (2)0.14191 (17)0.02235 (18)0.0190 (3)
H2B0.005 (2)0.246 (2)0.0359 (19)0.023 (4)*
C3B0.1722 (2)0.03190 (17)0.05225 (18)0.0205 (3)
H3B0.295 (3)0.0579 (19)0.089 (2)0.027 (4)*
N1C0.96658 (17)1.34142 (13)0.43213 (14)0.0175 (3)
C2C1.1168 (2)1.42572 (17)0.44258 (17)0.0179 (3)
H2C1.200 (2)1.3711 (19)0.401 (2)0.022 (4)*
C3C1.1493 (2)1.58355 (17)0.50973 (17)0.0178 (3)
H3C1.260 (2)1.6428 (17)0.5157 (18)0.016 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.0131 (7)0.0151 (7)0.0122 (6)0.0036 (5)0.0049 (5)0.0064 (6)
C2A0.0121 (7)0.0154 (7)0.0115 (6)0.0042 (5)0.0044 (5)0.0070 (5)
C3A0.0117 (7)0.0160 (7)0.0114 (6)0.0031 (5)0.0038 (5)0.0068 (6)
C4A0.0162 (7)0.0146 (7)0.0136 (7)0.0046 (6)0.0055 (6)0.0058 (6)
C5A0.0151 (7)0.0199 (7)0.0165 (7)0.0080 (6)0.0094 (6)0.0095 (6)
C6A0.0134 (7)0.0183 (7)0.0152 (7)0.0039 (6)0.0069 (6)0.0093 (6)
C7A0.0148 (7)0.0156 (7)0.0126 (7)0.0032 (5)0.0058 (6)0.0068 (6)
O71A0.0199 (5)0.0135 (5)0.0315 (6)0.0030 (4)0.0162 (5)0.0095 (5)
O72A0.0248 (6)0.0175 (5)0.0352 (6)0.0097 (4)0.0215 (5)0.0116 (5)
C8A0.0158 (7)0.0118 (7)0.0201 (7)0.0028 (5)0.0095 (6)0.0086 (6)
O81A0.0214 (6)0.0243 (6)0.0200 (5)0.0093 (5)0.0136 (5)0.0098 (5)
O82A0.0146 (5)0.0234 (6)0.0270 (6)0.0078 (4)0.0102 (4)0.0140 (5)
C9A0.0137 (7)0.0154 (7)0.0149 (7)0.0039 (5)0.0046 (6)0.0077 (6)
O91A0.0185 (6)0.0142 (5)0.0324 (6)0.0021 (4)0.0128 (5)0.0089 (5)
O92A0.0236 (6)0.0210 (6)0.0353 (6)0.0066 (5)0.0199 (5)0.0138 (5)
N1B0.0197 (6)0.0177 (6)0.0217 (6)0.0029 (5)0.0088 (5)0.0105 (5)
C2B0.0242 (8)0.0145 (7)0.0214 (7)0.0050 (6)0.0117 (6)0.0099 (6)
C3B0.0193 (8)0.0215 (8)0.0255 (8)0.0067 (6)0.0102 (6)0.0147 (7)
N1C0.0198 (6)0.0164 (6)0.0153 (6)0.0037 (5)0.0060 (5)0.0083 (5)
C2C0.0192 (7)0.0188 (7)0.0158 (7)0.0046 (6)0.0067 (6)0.0092 (6)
C3C0.0174 (7)0.0190 (8)0.0173 (7)0.0021 (6)0.0064 (6)0.0104 (6)
Geometric parameters (Å, º) top
C1A—C6A1.3933 (19)O81A—H81A0.93 (2)
C1A—C2A1.4052 (19)C9A—O92A1.2099 (17)
C1A—C7A1.4962 (19)C9A—O91A1.3240 (17)
C2A—C3A1.4028 (19)O91A—H91A0.93 (2)
C2A—C8A1.5119 (19)N1B—C2B1.336 (2)
C3A—C4A1.3925 (19)N1B—C3Bi1.3377 (19)
C3A—C9A1.5008 (19)C2B—C3B1.382 (2)
C4A—C5A1.385 (2)C2B—H2B0.984 (17)
C4A—H4A0.968 (16)C3B—N1Bi1.3377 (19)
C5A—C6A1.383 (2)C3B—H3B0.971 (18)
C5A—H5A0.932 (18)N1C—C3Cii1.3377 (19)
C6A—H6A0.948 (16)N1C—C2C1.3416 (19)
C7A—O72A1.2163 (17)C2C—C3C1.385 (2)
C7A—O71A1.3164 (16)C2C—H2C0.957 (17)
O71A—H71A0.99 (3)C3C—N1Cii1.3378 (19)
C8A—O82A1.2013 (17)C3C—H3C0.984 (15)
C8A—O81A1.3322 (17)
C6A—C1A—C2A120.00 (12)O82A—C8A—O81A125.50 (13)
C6A—C1A—C7A118.84 (12)O82A—C8A—C2A123.72 (12)
C2A—C1A—C7A121.16 (12)O81A—C8A—C2A110.78 (11)
C3A—C2A—C1A118.74 (12)C8A—O81A—H81A108.7 (13)
C3A—C2A—C8A120.77 (12)O92A—C9A—O91A123.61 (12)
C1A—C2A—C8A120.48 (12)O92A—C9A—C3A123.82 (12)
C4A—C3A—C2A120.18 (12)O91A—C9A—C3A112.56 (12)
C4A—C3A—C9A119.47 (12)C9A—O91A—H91A106.8 (15)
C2A—C3A—C9A120.33 (12)C2B—N1B—C3Bi117.41 (13)
C5A—C4A—C3A120.65 (13)N1B—C2B—C3B121.56 (13)
C5A—C4A—H4A119.1 (9)N1B—C2B—H2B118.1 (10)
C3A—C4A—H4A120.2 (9)C3B—C2B—H2B120.3 (10)
C6A—C5A—C4A119.53 (13)N1Bi—C3B—C2B121.03 (14)
C6A—C5A—H5A119.8 (10)N1Bi—C3B—H3B119.2 (10)
C4A—C5A—H5A120.6 (10)C2B—C3B—H3B119.8 (10)
C5A—C6A—C1A120.77 (12)C3Cii—N1C—C2C117.16 (13)
C5A—C6A—H6A119.9 (10)N1C—C2C—C3C121.28 (14)
C1A—C6A—H6A119.3 (10)N1C—C2C—H2C116.5 (10)
O72A—C7A—O71A123.00 (13)C3C—C2C—H2C122.2 (10)
O72A—C7A—C1A123.96 (12)N1Cii—C3C—C2C121.56 (13)
O71A—C7A—C1A113.03 (12)N1Cii—C3C—H3C118.7 (9)
C7A—O71A—H71A110.7 (14)C2C—C3C—H3C119.7 (9)
C6A—C1A—C2A—C3A2.77 (19)C2A—C1A—C7A—O72A0.2 (2)
C7A—C1A—C2A—C3A176.62 (11)C6A—C1A—C7A—O71A0.40 (17)
C6A—C1A—C2A—C8A178.17 (12)C2A—C1A—C7A—O71A179.00 (12)
C7A—C1A—C2A—C8A2.44 (19)C3A—C2A—C8A—O82A86.80 (17)
C1A—C2A—C3A—C4A0.40 (19)C1A—C2A—C8A—O82A92.24 (17)
C8A—C2A—C3A—C4A178.66 (11)C3A—C2A—C8A—O81A94.20 (14)
C1A—C2A—C3A—C9A178.27 (12)C1A—C2A—C8A—O81A86.75 (15)
C8A—C2A—C3A—C9A2.67 (19)C4A—C3A—C9A—O92A174.85 (12)
C2A—C3A—C4A—C5A3.1 (2)C2A—C3A—C9A—O92A3.8 (2)
C9A—C3A—C4A—C5A175.60 (12)C4A—C3A—C9A—O91A3.90 (18)
C3A—C4A—C5A—C6A2.5 (2)C2A—C3A—C9A—O91A177.42 (11)
C4A—C5A—C6A—C1A0.7 (2)C3Bi—N1B—C2B—C3B0.1 (2)
C2A—C1A—C6A—C5A3.4 (2)N1B—C2B—C3B—N1Bi0.1 (2)
C7A—C1A—C6A—C5A176.05 (12)C3Cii—N1C—C2C—C3C0.4 (2)
C6A—C1A—C7A—O72A179.16 (13)N1C—C2C—C3C—N1Cii0.5 (2)
Symmetry codes: (i) x, y, z; (ii) x+2, y+3, z+1.
Pyrazine–benzene-1,2,3-tricarboxylic acid–water (1/2/2) (2a) top
Crystal data top
C4H4N2·2C9H6O6·2H2OZ = 1
Mr = 536.40F(000) = 278
Triclinic, P1Dx = 1.546 Mg m3
a = 6.6537 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.3316 (11) ÅCell parameters from 1276 reflections
c = 11.5433 (15) Åθ = 4.3–26.4°
α = 73.100 (12)°µ = 0.13 mm1
β = 75.565 (11)°T = 295 K
γ = 73.001 (11)°Block, colourless
V = 576.01 (14) Å30.3 × 0.3 × 0.2 mm
Data collection top
Rigaku Xcalibur Eos
diffractometer
2179 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source1736 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
Detector resolution: 16.2413 pixels mm-1θmax = 26.5°, θmin = 3.5°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
k = 1010
Tmin = 0.905, Tmax = 1.000l = 1314
3622 measured reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.053 w = 1/[σ2(Fo2) + (0.0997P)2 + 0.0693P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.160(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.38 e Å3
2179 reflectionsΔρmin = 0.21 e Å3
213 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.080 (15)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1A0.8047 (3)0.6697 (3)0.22031 (18)0.0340 (5)
C2A0.7430 (3)0.7000 (2)0.33845 (17)0.0308 (5)
C3A0.7530 (3)0.5595 (2)0.44108 (17)0.0311 (5)
C4A0.8212 (3)0.3923 (3)0.4238 (2)0.0377 (5)
H4A0.828 (4)0.297 (3)0.489 (2)0.050 (7)*
C5A0.8848 (4)0.3629 (3)0.3068 (2)0.0433 (5)
H5A0.938 (4)0.245 (4)0.292 (2)0.061 (7)*
C6A0.8769 (3)0.5005 (3)0.2059 (2)0.0389 (5)
H6A0.923 (3)0.485 (3)0.125 (2)0.041 (6)*
C7A0.7833 (4)0.8169 (3)0.11065 (18)0.0415 (5)
O71A0.8710 (3)0.7743 (2)0.00575 (14)0.0559 (5)
H71A0.838 (6)0.862 (5)0.052 (3)0.094 (12)*
O72A0.6895 (4)0.9610 (2)0.11759 (16)0.0915 (9)
C8A0.6790 (3)0.8824 (2)0.35543 (17)0.0353 (5)
O81A0.4703 (2)0.94641 (19)0.37352 (14)0.0451 (4)
H81A0.441 (4)1.049 (4)0.384 (2)0.054 (7)*
O82A0.8079 (3)0.95864 (19)0.35354 (16)0.0533 (5)
C9A0.6933 (3)0.5865 (2)0.56852 (18)0.0337 (5)
O91A0.7045 (3)0.44251 (19)0.65358 (13)0.0458 (5)
H91A0.658 (5)0.470 (4)0.734 (3)0.094 (11)*
O92A0.6407 (3)0.72808 (18)0.59098 (13)0.0460 (5)
N1B0.5795 (3)0.4852 (2)0.88038 (15)0.0442 (5)
C2B0.4811 (4)0.6368 (3)0.9069 (2)0.0484 (6)
H2B0.469 (4)0.732 (4)0.840 (3)0.065 (8)*
C3B0.4014 (4)0.6525 (3)1.0256 (2)0.0462 (6)
H3B0.340 (4)0.760 (4)1.045 (2)0.059 (7)*
O1W0.1942 (4)0.9683 (2)0.18795 (16)0.0569 (5)
H1W10.083 (6)0.948 (4)0.247 (3)0.085 (11)*
H1W20.312 (7)0.949 (5)0.215 (4)0.116 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.0367 (10)0.0326 (10)0.0301 (10)0.0060 (8)0.0024 (8)0.0089 (8)
C2A0.0330 (10)0.0269 (10)0.0315 (10)0.0062 (7)0.0027 (8)0.0088 (8)
C3A0.0322 (9)0.0293 (10)0.0306 (10)0.0070 (7)0.0032 (8)0.0075 (8)
C4A0.0466 (12)0.0252 (10)0.0360 (11)0.0065 (8)0.0042 (9)0.0036 (8)
C5A0.0564 (13)0.0274 (10)0.0438 (12)0.0060 (9)0.0032 (10)0.0140 (9)
C6A0.0481 (12)0.0345 (11)0.0330 (11)0.0073 (9)0.0015 (9)0.0136 (9)
C7A0.0529 (13)0.0354 (11)0.0308 (11)0.0070 (9)0.0019 (9)0.0079 (8)
O71A0.0809 (13)0.0454 (10)0.0284 (9)0.0044 (8)0.0012 (8)0.0089 (7)
O72A0.164 (2)0.0379 (10)0.0353 (10)0.0157 (11)0.0033 (11)0.0045 (8)
C8A0.0481 (12)0.0287 (10)0.0245 (10)0.0081 (9)0.0013 (8)0.0047 (7)
O81A0.0509 (9)0.0315 (8)0.0493 (9)0.0051 (7)0.0117 (7)0.0167 (7)
O82A0.0607 (10)0.0392 (9)0.0614 (11)0.0221 (8)0.0086 (8)0.0204 (8)
C9A0.0339 (10)0.0321 (10)0.0319 (10)0.0049 (8)0.0041 (8)0.0074 (8)
O91A0.0681 (11)0.0343 (8)0.0284 (8)0.0087 (7)0.0047 (7)0.0046 (6)
O92A0.0641 (10)0.0325 (8)0.0368 (8)0.0013 (7)0.0065 (7)0.0132 (6)
N1B0.0566 (12)0.0425 (10)0.0298 (9)0.0084 (9)0.0053 (8)0.0082 (8)
C2B0.0696 (16)0.0360 (12)0.0327 (12)0.0095 (11)0.0087 (11)0.0010 (9)
C3B0.0617 (14)0.0362 (12)0.0356 (12)0.0055 (10)0.0080 (10)0.0077 (9)
O1W0.0590 (12)0.0608 (12)0.0392 (10)0.0093 (9)0.0031 (9)0.0038 (8)
Geometric parameters (Å, º) top
C1A—C6A1.395 (3)C8A—O82A1.201 (3)
C1A—C2A1.397 (3)C8A—O81A1.320 (3)
C1A—C7A1.487 (3)O81A—H81A0.86 (3)
C2A—C3A1.402 (3)C9A—O92A1.213 (2)
C2A—C8A1.510 (3)C9A—O91A1.307 (2)
C3A—C4A1.390 (3)O91A—H91A0.97 (4)
C3A—C9A1.491 (3)N1B—C2B1.326 (3)
C4A—C5A1.382 (3)N1B—C3Bi1.330 (3)
C4A—H4A0.92 (3)C2B—C3B1.371 (3)
C5A—C6A1.375 (3)C2B—H2B0.94 (3)
C5A—H5A0.99 (3)C3B—N1Bi1.330 (3)
C6A—H6A0.94 (2)C3B—H3B0.93 (3)
C7A—O72A1.196 (3)O1W—H1W10.89 (4)
C7A—O71A1.307 (2)O1W—H1W20.87 (4)
O71A—H71A0.85 (4)
C6A—C1A—C2A119.69 (18)O72A—C7A—C1A122.92 (19)
C6A—C1A—C7A120.14 (18)O71A—C7A—C1A114.19 (18)
C2A—C1A—C7A120.10 (17)C7A—O71A—H71A108 (2)
C1A—C2A—C3A119.42 (17)O82A—C8A—O81A124.30 (19)
C1A—C2A—C8A120.25 (17)O82A—C8A—C2A122.28 (19)
C3A—C2A—C8A120.22 (17)O81A—C8A—C2A113.41 (18)
C4A—C3A—C2A119.56 (18)C8A—O81A—H81A110.2 (17)
C4A—C3A—C9A119.45 (18)O92A—C9A—O91A123.40 (18)
C2A—C3A—C9A120.99 (17)O92A—C9A—C3A123.34 (18)
C5A—C4A—C3A120.84 (19)O91A—C9A—C3A113.26 (17)
C5A—C4A—H4A117.3 (15)C9A—O91A—H91A109 (2)
C3A—C4A—H4A121.8 (15)C2B—N1B—C3Bi117.16 (19)
C6A—C5A—C4A119.74 (19)N1B—C2B—C3B122.0 (2)
C6A—C5A—H5A118.1 (15)N1B—C2B—H2B116.1 (17)
C4A—C5A—H5A122.2 (15)C3B—C2B—H2B122.0 (17)
C5A—C6A—C1A120.72 (19)N1Bi—C3B—C2B120.9 (2)
C5A—C6A—H6A121.6 (14)N1Bi—C3B—H3B117.1 (17)
C1A—C6A—H6A117.7 (14)C2B—C3B—H3B121.9 (17)
O72A—C7A—O71A122.9 (2)H1W1—O1W—H1W2114 (3)
Symmetry code: (i) x+1, y+1, z+2.
Pyrazine–benzene-1,2,4,5-tetracarboxylic acid (3/1) (3) top
Crystal data top
3C4H4N2·C10H6O8F(000) = 512
Mr = 494.42Dx = 1.455 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.0481 (7) ÅCell parameters from 1334 reflections
b = 22.365 (2) Åθ = 3.9–26.1°
c = 7.2120 (7) ŵ = 0.11 mm1
β = 96.967 (9)°T = 295 K
V = 1128.44 (19) Å3Block, colourless
Z = 20.35 × 0.3 × 0.3 mm
Data collection top
Rigaku Xcalibur Eos
diffractometer
2160 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source1695 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 16.2413 pixels mm-1θmax = 26.6°, θmin = 3.4°
ω scansh = 87
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
k = 2721
Tmin = 0.933, Tmax = 1.000l = 89
4092 measured reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0431P)2 + 0.2031P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.103(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.26 e Å3
2160 reflectionsΔρmin = 0.19 e Å3
200 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.080 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1A0.9329 (2)0.55829 (7)0.4697 (2)0.0295 (4)
C2A0.8159 (2)0.50981 (7)0.41165 (19)0.0291 (4)
C3A0.8842 (2)0.45193 (7)0.4433 (2)0.0307 (4)
H3A0.804 (2)0.4189 (7)0.400 (2)0.033 (4)*
C7A0.8682 (2)0.62210 (7)0.4430 (2)0.0365 (4)
O71A0.7576 (2)0.63877 (6)0.56779 (18)0.0572 (4)
H71A0.699 (4)0.6754 (13)0.532 (4)0.107 (9)*
O72A0.92066 (19)0.65422 (5)0.32535 (19)0.0563 (4)
C8A0.6212 (2)0.52010 (7)0.3092 (2)0.0335 (4)
O81A0.51999 (17)0.47085 (5)0.28590 (19)0.0494 (4)
H81A0.393 (4)0.4780 (11)0.214 (3)0.099 (8)*
O82A0.56530 (17)0.56850 (6)0.25342 (19)0.0565 (4)
N1B0.2733 (3)0.82069 (8)0.3447 (3)0.0652 (5)
C2B0.2324 (4)0.76279 (11)0.3326 (3)0.0630 (6)
H2B0.106 (4)0.7544 (11)0.277 (4)0.098 (9)*
C3B0.3631 (4)0.71991 (9)0.3897 (3)0.0573 (6)
H3B0.330 (3)0.6799 (11)0.377 (3)0.075 (7)*
N4B0.5391 (3)0.73355 (7)0.4642 (2)0.0535 (4)
C5B0.5803 (3)0.79119 (9)0.4780 (3)0.0558 (5)
H5B0.702 (3)0.8009 (10)0.534 (3)0.073 (7)*
C6B0.4483 (3)0.83400 (9)0.4175 (3)0.0580 (6)
H6B0.482 (3)0.8755 (10)0.425 (3)0.076 (7)*
N1C0.82260 (18)0.51111 (7)0.90302 (18)0.0405 (4)
C2C0.8834 (2)0.45569 (9)0.9402 (2)0.0414 (4)
H2C0.799 (3)0.4240 (8)0.894 (2)0.051 (5)*
C3C1.0598 (3)0.44473 (9)1.0369 (2)0.0421 (4)
H3C1.100 (3)0.4049 (9)1.062 (3)0.057 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.0271 (8)0.0299 (8)0.0307 (7)0.0024 (7)0.0006 (6)0.0020 (6)
C2A0.0234 (7)0.0324 (8)0.0305 (8)0.0003 (7)0.0005 (6)0.0016 (6)
C3A0.0260 (8)0.0296 (8)0.0349 (8)0.0026 (7)0.0022 (6)0.0012 (6)
C7A0.0286 (8)0.0334 (9)0.0449 (9)0.0012 (7)0.0055 (7)0.0017 (7)
O71A0.0679 (9)0.0445 (8)0.0609 (9)0.0265 (7)0.0144 (7)0.0061 (6)
O72A0.0534 (8)0.0397 (7)0.0768 (9)0.0015 (6)0.0119 (7)0.0189 (7)
C8A0.0259 (8)0.0377 (9)0.0351 (8)0.0017 (7)0.0034 (6)0.0018 (7)
O81A0.0293 (7)0.0404 (7)0.0728 (9)0.0026 (5)0.0170 (6)0.0013 (6)
O82A0.0389 (7)0.0447 (8)0.0792 (9)0.0016 (6)0.0200 (7)0.0176 (7)
N1B0.0644 (12)0.0521 (11)0.0770 (12)0.0121 (9)0.0004 (10)0.0085 (9)
C2B0.0560 (13)0.0649 (15)0.0661 (14)0.0088 (12)0.0007 (11)0.0042 (11)
C3B0.0769 (16)0.0378 (11)0.0581 (12)0.0077 (11)0.0115 (11)0.0027 (9)
N4B0.0641 (12)0.0404 (9)0.0574 (10)0.0131 (8)0.0126 (8)0.0033 (7)
C5B0.0557 (13)0.0494 (12)0.0607 (13)0.0002 (10)0.0013 (11)0.0022 (10)
C6B0.0712 (15)0.0334 (10)0.0684 (13)0.0005 (11)0.0051 (11)0.0012 (10)
N1C0.0259 (7)0.0553 (10)0.0383 (8)0.0001 (7)0.0039 (6)0.0008 (7)
C2C0.0327 (9)0.0498 (11)0.0404 (9)0.0067 (9)0.0014 (7)0.0010 (8)
C3C0.0372 (10)0.0443 (11)0.0432 (9)0.0023 (9)0.0021 (7)0.0016 (8)
Geometric parameters (Å, º) top
C1A—C3Ai1.382 (2)C2B—C3B1.359 (3)
C1A—C2A1.396 (2)C2B—H2B0.95 (3)
C1A—C7A1.504 (2)C3B—N4B1.326 (3)
C2A—C3A1.390 (2)C3B—H3B0.93 (2)
C2A—C8A1.495 (2)N4B—C5B1.323 (3)
C3A—C1Ai1.383 (2)C5B—C6B1.369 (3)
C3A—H3A0.960 (16)C5B—H5B0.93 (2)
C7A—O72A1.2036 (19)C6B—H6B0.96 (2)
C7A—O71A1.314 (2)N1C—C3Cii1.328 (2)
O71A—H71A0.94 (3)N1C—C2C1.328 (2)
C8A—O82A1.2043 (19)C2C—C3C1.372 (2)
C8A—O81A1.3119 (19)C2C—H2C0.960 (19)
O81A—H81A0.99 (3)C3C—N1Cii1.328 (2)
N1B—C6B1.314 (3)C3C—H3C0.95 (2)
N1B—C2B1.327 (3)
C3Ai—C1A—C2A119.49 (14)N1B—C2B—H2B113.9 (16)
C3Ai—C1A—C7A117.84 (14)C3B—C2B—H2B123.8 (16)
C2A—C1A—C7A122.67 (13)N4B—C3B—C2B121.8 (2)
C3A—C2A—C1A119.60 (14)N4B—C3B—H3B118.3 (15)
C3A—C2A—C8A120.21 (14)C2B—C3B—H3B119.9 (15)
C1A—C2A—C8A120.15 (14)C5B—N4B—C3B116.17 (19)
C1Ai—C3A—C2A120.90 (14)N4B—C5B—C6B121.5 (2)
C1Ai—C3A—H3A120.0 (9)N4B—C5B—H5B116.4 (14)
C2A—C3A—H3A119.1 (9)C6B—C5B—H5B122.1 (14)
O72A—C7A—O71A124.89 (16)N1B—C6B—C5B122.5 (2)
O72A—C7A—C1A122.85 (15)N1B—C6B—H6B117.1 (14)
O71A—C7A—C1A112.18 (14)C5B—C6B—H6B120.3 (14)
C7A—O71A—H71A109.9 (16)C3Cii—N1C—C2C117.07 (15)
O82A—C8A—O81A124.12 (14)N1C—C2C—C3C121.31 (17)
O82A—C8A—C2A123.15 (15)N1C—C2C—H2C116.6 (11)
O81A—C8A—C2A112.73 (13)C3C—C2C—H2C122.1 (11)
C8A—O81A—H81A111.9 (14)N1Cii—C3C—C2C121.61 (17)
C6B—N1B—C2B115.7 (2)N1Cii—C3C—H3C118.5 (12)
N1B—C2B—C3B122.3 (2)C2C—C3C—H3C119.9 (12)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y+1, z+2.
Selected geometrical data (Å, °). A and B denote the least-squares planes of the phenyl and pyrazine ring, respectively. top
122a3
C—O1.3267 (15)1.3164 (16)1.308 (3)1.314 (2)
1.3174 (16)1.3322 (17)1.320 (3)1.3119 (19)
1.3240 (17)1.307 (2)
CO1.2141 (15)1.2163 (17)1.196 (3)1.2036 (19)
1.2156 (16)1.2013 (17)1.201 (3)1.2043 (19)
1.2099 (17)1.213 (2)
O—CO123.61 (12)123.00 (13)122.9 (2)124.89 (16)
125.10 (12)125.50 (13)124.30 (19)124.12 (14)
123.61 (12)123.40 (18)
C—N—C116.79 (11)117.41 (13)117.16 (19)115.7 (2)
116.87 (12)117.16 (13)116.17 (19)
117.07 (15)
A/COO8.88 (18)4.25 (15)11.74 (8)77.53 (6)
72.45 (8)85.85 (10)84.50 (8)10.2 (2)
5.8 (2)3.38 (2)
A/B4.10 (10)36.34 (5)8.76 (4)3.44 (8)
6.20 (10)3.38 (10)3.65 (9)
Hydrogen-bond data (Å, °) top
DHAD—HH···AD···AD—H···A
1
O71AH71AN1B0.93 (2)1.79 (2)2.7139 (14)179 (2)
O81AH81AN1C0.96 (2)1.75 (2)2.6965 (15)168.7 (17)
C3BH3BO72Ai0.949 (15)2.419 (14)3.1358 (16)132.2 (11)
C2CH2CO82Aii0.933 (15)2.570 (15)3.1628 (17)121.9 (11)
2
O71AH71AN1C0.99 (3)1.68 (3)2.6717 (16)174 (2)
O81AH81AO72Aiii0.93 (2)1.80 (2)2.7010 (14)162 (2)
O91AH91AN1B0.93 (2)1.75 (3)2.6672 (16)168 (2)
C3BH3BO82Aiv0.971 (18)2.517 (17)3/0844 (18)117.2 (12)
2a
O71AH71AO1Wv0.85 (4)1.79 (4)2.634 (2)171 (4)
O81AH81AO92Avi0.86 (3)1.86 (3)2.719 (2)176 (3)
O91AH91AN1B0.97 (4)1.68 (4)2.637 (2)171 (3)
O1WH1W1O82Avii0.89 (4)1.93 (4)2.802 (3)166 (3)
O1WH1W2O81A0.87 (4)2.32 (4)3.088 (3)147 (4)
O1WH1W2O72A0.87 (4)2.50 (4)3.178 (4)135 (3)
3
O71AH71AN4B0.94 (3)1.75 (3)2.673 (2)166 (3)
O81AH81AN1C0.99 (3)1.66 (3)2.6554 (17)178 (2)
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x+1, y, z; (iii) -x+1, -y+2, -z+1; (iv) -x, -y+1, -z; (v) -x+1, -y+1, -z+2; (vi) -x+1, -y+2, -z;
Comparison of the chain structures from similar cocrystals. D is the distance between subsequent acid molecules, A is the angle formed by three subsequent acid molecules, and `direction' of a chain, repetition parameter, space group top
RefcodeAcceptorStoichiometryDATDirectionReference
NANPOI2,5-Bis(pyridin-3-yl)-1,3,4-oxadiazole1:1 (1/2:1/2)19.02332.20 23.74180[010] 10.550 Pnna 12.6791
NANPUO2,5-Bis(pyridin-4-yl)-1,3,4-oxadiazole1:120.83329.33180[010] 10.547 C2/c 13.2961
ONAQIE1,2-Bis(pyridin-4-yl)ethane1:1 (1/2:1/2)21.33173.49180[101] 25.522 C2/c 12.7842
SUXVOW4,4'-Bipyridine1:1 (1/2:1/2)19.34469.56180[101] 22.070 C2/c 9.9733
SUXVUC4,4'-Dipyridyl-acetylene1:1 (1/2:1/2)21.77773.59180[101] 26.088 C2/c 12.4243
VAXVUNPyrazine1:115.00153.90180[010] 13.597 P21/c 6.2794
XOGFIKTetramethylpyrazine1:1 (1:2 × 1/2)14.706 15.20751.00180[001] 12.885 P1 6.500 6.5815
XOGFOQTetramethylpyrazine2:1 (1:1/2)9.602 15.38554.95180[110] 12.618 P21/n 6.6035
Pyrazine1:1 (1:2 × 1/2)15.046 15.20358.87180[011] 14.865 P1 6.267 6.3576a
Pyrazine1:1 (1:2 × 1/2)15.153 14.986142.33[103] 28.5256b
References: (1) Du et al. (2005a,b); (2) Ebenezer & Muthiah (2011); (3) Tomura & Yamashita (2001); (4) Arhangelskis et al. (2012); (5) Wang et al. (2014); (6a)/(6b) this work.
PLEASE PROVIDE A TABLE CAPTION top
122a3
Pyr_BPyr_CAPyr_BPyr_CAPyrAPyr_BPyr_CA
C···C9.47.15.208.46.80.54.54.710.14.9
C···H6.614.012.49.511.410.813.311.79.96.07.8
C···O3.30.31.65.21.48.75.69.20.22.35.0
C···N6.22.83.20.43.21.22.11.04.36.93.9
H···H35.139.829.337.924.219.028.417.835.830.416.3
H···O22.517.539.023.428.742.230.150.321.421.242.6
H···N14.915.67.819.021.97.819.94.722.121.814.3
O···N2.13.01.54.60.81.40.00.80.31.30.8
O···O2.14.2
N···N1.3
Comparison of the chain structures from selected cocrystals of phtalic acid (cf. text) top
D is the distance between the centroids of the phenyl rings of subsequent acid molecules, A is the angle formed by three subsequent centroids, T is the dihedral angle made by four centroids, and the `direction' column shows a direction of a chain in the crystal structure, the repetition parameter along the chain and the space group.
NoRefcodeacceptorstoichiometryDATdirectionreference
1NANPOI2,5-Bis(pyrid-3-yl)-1,3,4-oxadiazole1:1 (1/2:1/2)19.02332.20180[010] 10.550 Pnna1
2NANPUO2,5-Bis(pyrid-4-yl)-1,3,4-oxadiazole1:120.83329.33180[010] 10.547 C2/c1
3ONAQIE1,2-Bis(pyridin-4-yl)ethane1:1 (1/2:1/2)21.33173.49180[101] 25.522 C2/c2
4SUXVOW4,4'-Bipyridine1:1 (1/2:1/2)19.34469.56180[101] 22.070 C2/c3
5SUXVUC4,4'-Dipyridylacetylene1:1 (1/2:1/2)21.77773.59180[101] 26.088 C2/c3
6VAXVUNPyrazine1:115.00153.90180[010] 13.597 P21/c4
7XOGFIKTetramethyl-pyrazine1:1(1:2x1/2)14.706 15.20751.00180[001] 12.885 P15
8XOGFOQTetramethyl-pyrazine2:1 (1:1/2)9.602 15.38554.95180[110] 12.618 P21/n5
9Pyrazine1:1(1:2x1/2)15.046 15.20358.87180[011] 14.865 P16a
References: (1) Du et al. (2005b), (2) Ebenezer & Muthiah (2011); (3) Tomura & Yamashita (2001); (4) Arhangelskis et al. (2012); (5) Wang et al. (2014); (6a) this work, 1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds