Download citation
Download citation
link to html
Three isostructural transition-metal arsenides and germanides, namely niobium nickel arsenide, Nb0.92(1)NiAs, niobium cobalt arsenide, NbCoAs, and niobium nickel germanide, NbNiGe, were obtained as inadvertent side products of high-temperature reactions in sealed niobium containers. In addition to reporting for the very first time the structures of the title compounds, refined from single-crystal X-ray diffraction data, this article also serves as a reminder that niobium containers may not be suitable for the synthesis of ternary arsenides and germanides by traditional high-temperature reactions. Synthetic work involving alkali or alkaline-earth metals, transition or early post-transition metals, and elements from groups 14 or 15 under such conditions may yield Nb-containing products, which at times could be the major products of such reactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229618005739/ly3065sup1.cif
Contains datablocks global, 1, 2, 3

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618005739/ly30651sup2.hkl
Contains datablock 1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618005739/ly30652sup3.hkl
Contains datablock 2

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618005739/ly30653sup4.hkl
Contains datablock 3

CCDC references: 1836673; 1836672; 1836671

Computing details top

For all structures, data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: CrystalMaker (Palmer, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).

Niobium nickel arsenide (1) top
Crystal data top
Nb0.92(1)NiAsDx = 8.794 Mg m3
Mr = 219.11Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 853 reflections
a = 6.2115 (19) Åθ = 6.6–27.9°
b = 3.7150 (11) ŵ = 36.98 mm1
c = 7.172 (2) ÅT = 200 K
V = 165.50 (9) Å3Irregular, black
Z = 40.04 × 0.03 × 0.03 mm
F(000) = 395
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
210 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.097
phi and ω scansθmax = 28.2°, θmin = 4.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 88
Tmin = 0.25, Tmax = 0.40k = 44
2044 measured reflectionsl = 99
238 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2)]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.019(Δ/σ)max < 0.001
wR(F2) = 0.038Δρmax = 1.07 e Å3
S = 0.90Δρmin = 1.42 e Å3
238 reflectionsExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
21 parametersExtinction coefficient: 0.0175 (15)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Nb0.02495 (8)0.2500000.66875 (9)0.0082 (2)0.916 (3)
Ni0.14729 (12)0.2500000.06403 (10)0.0082 (2)
As0.27103 (9)0.2500000.37569 (8)0.0092 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nb0.0084 (3)0.0086 (3)0.0077 (3)0.0000.0006 (2)0.000
Ni0.0099 (4)0.0078 (4)0.0068 (4)0.0000.0007 (3)0.000
As0.0116 (3)0.0075 (3)0.0085 (3)0.0000.0012 (2)0.000
Geometric parameters (Å, º) top
Nb—As2.5988 (10)Nb—Niv2.8793 (11)
Nb—Asi2.6328 (8)Nb—Nivi2.9350 (13)
Nb—Asii2.6328 (8)Nb—Nbi3.0668 (12)
Nb—Asiii2.6943 (8)Ni—Asvii2.3521 (8)
Nb—Asiv2.6943 (8)Ni—Asviii2.3521 (8)
Nb—Niiii2.8564 (9)Ni—As2.3637 (11)
Nb—Niiv2.8564 (9)Ni—Asv2.3768 (12)
Nb—Niii2.8754 (9)Ni—Niix2.7644 (12)
Nb—Nii2.8754 (9)Ni—Nix2.7644 (12)
As—Nb—Asi108.23 (3)Asv—Ni—Nbviii130.77 (2)
As—Nb—Asii108.23 (3)Niix—Ni—Nbviii174.92 (5)
Asi—Nb—Asii89.74 (3)Nix—Ni—Nbviii97.02 (3)
As—Nb—Asiii99.72 (2)Asvii—Ni—Nbvii58.91 (2)
Asi—Nb—Asiii151.83 (3)Asviii—Ni—Nbvii120.72 (4)
Asii—Nb—Asiii84.76 (2)As—Ni—Nbvii61.29 (2)
As—Nb—Asiv99.72 (2)Asv—Ni—Nbvii130.77 (2)
Asi—Nb—Asiv84.76 (2)Niix—Ni—Nbvii97.02 (3)
Asii—Nb—Asiv151.83 (3)Nix—Ni—Nbvii174.92 (5)
Asiii—Nb—Asiv87.17 (3)Nbviii—Ni—Nbvii81.13 (3)
As—Nb—Niiii50.813 (18)Asvii—Ni—Nbii166.70 (3)
Asi—Nb—Niiii157.62 (3)Asviii—Ni—Nbii87.30 (3)
Asii—Nb—Niiii90.41 (3)As—Ni—Nbii59.38 (3)
Asiii—Nb—Niiii50.30 (2)Asv—Ni—Nbii60.85 (2)
Asiv—Nb—Niiii104.95 (3)Niix—Ni—Nbii114.16 (4)
As—Nb—Niiv50.813 (19)Nix—Ni—Nbii62.68 (3)
Asi—Nb—Niiv90.41 (3)Nbviii—Ni—Nbii70.72 (2)
Asii—Nb—Niiv157.62 (3)Nbvii—Ni—Nbii120.67 (3)
Asiii—Nb—Niiv104.95 (3)Asvii—Ni—Nbi87.30 (3)
Asiv—Nb—Niiv50.30 (2)Asviii—Ni—Nbi166.70 (3)
Niiii—Nb—Niiv81.13 (3)As—Ni—Nbi59.38 (3)
As—Nb—Niii139.278 (17)Asv—Ni—Nbi60.85 (2)
Asi—Nb—Niii106.06 (3)Niix—Ni—Nbi62.68 (3)
Asii—Nb—Niii50.59 (2)Nix—Ni—Nbi114.16 (4)
Asiii—Nb—Niii50.39 (2)Nbviii—Ni—Nbi120.67 (3)
Asiv—Nb—Niii104.67 (3)Nbvii—Ni—Nbi70.72 (2)
Niiii—Nb—Niii91.17 (2)Nbii—Ni—Nbi80.48 (3)
Niiv—Nb—Niii149.38 (3)Asvii—Ni—Nbxi59.42 (2)
As—Nb—Nii139.278 (16)Asviii—Ni—Nbxi59.42 (2)
Asi—Nb—Nii50.59 (2)As—Ni—Nbxi106.46 (4)
Asii—Nb—Nii106.06 (3)Asv—Ni—Nbxi155.04 (4)
Asiii—Nb—Nii104.67 (3)Niix—Ni—Nbxi110.28 (4)
Asiv—Nb—Nii50.39 (2)Nix—Ni—Nbxi110.28 (4)
Niiii—Nb—Nii149.38 (3)Nbviii—Ni—Nbxi64.64 (3)
Niiv—Nb—Nii91.17 (2)Nbvii—Ni—Nbxi64.64 (3)
Niii—Nb—Nii80.48 (3)Nbii—Ni—Nbxi133.599 (19)
As—Nb—Niv90.59 (3)Nbi—Ni—Nbxi133.599 (19)
Asi—Nb—Niv50.274 (18)Asvii—Ni—Nbxii60.08 (2)
Asii—Nb—Niv50.274 (18)Asviii—Ni—Nbxii60.08 (2)
Asiii—Nb—Niv134.638 (16)As—Ni—Nbxii176.03 (4)
Asiv—Nb—Niv134.638 (16)Asv—Ni—Nbxii85.47 (3)
Niiii—Nb—Niv115.36 (3)Niix—Ni—Nbxii60.51 (3)
Niiv—Nb—Niv115.36 (3)Nix—Ni—Nbxii60.51 (3)
Niii—Nb—Niv94.78 (2)Nbviii—Ni—Nbxii116.01 (3)
Nii—Nb—Niv94.78 (2)Nbvii—Ni—Nbxii116.01 (3)
As—Nb—Nivi128.97 (3)Nbii—Ni—Nbxii123.19 (3)
Asi—Nb—Nivi107.32 (2)Nbi—Ni—Nbxii123.19 (3)
Asii—Nb—Nivi107.32 (2)Nbxi—Ni—Nbxii69.57 (3)
Asiii—Nb—Nivi49.166 (18)Niiii—As—Niiv104.32 (4)
Asiv—Nb—Nivi49.166 (18)Niiii—As—Ni127.82 (2)
Niiii—Nb—Nivi93.98 (2)Niiv—As—Ni127.82 (2)
Niiv—Nb—Nivi93.98 (2)Niiii—As—Nixi71.54 (3)
Niii—Nb—Nivi56.81 (3)Niiv—As—Nixi71.54 (3)
Nii—Nb—Nivi56.81 (3)Ni—As—Nixi119.46 (3)
Niv—Nb—Nivi140.44 (3)Niiii—As—Nb70.27 (3)
As—Nb—Nbi54.63 (2)Niiv—As—Nb70.27 (3)
Asi—Nb—Nbi53.598 (19)Ni—As—Nb125.00 (4)
Asii—Nb—Nbi105.14 (3)Nixi—As—Nb115.55 (4)
Asiii—Nb—Nbi154.14 (3)Niiii—As—Nbi141.02 (3)
Asiv—Nb—Nbi93.71 (2)Niiv—As—Nbi70.31 (3)
Niiii—Nb—Nbi104.97 (3)Ni—As—Nbi70.03 (2)
Niiv—Nb—Nbi58.04 (2)Nixi—As—Nbi135.126 (17)
Niii—Nb—Nbi151.61 (3)Nb—As—Nbi71.77 (3)
Nii—Nb—Nbi95.58 (3)Niiii—As—Nbii70.31 (3)
Niv—Nb—Nbi57.32 (2)Niiv—As—Nbii141.02 (3)
Nivi—Nb—Nbi142.047 (19)Ni—As—Nbii70.03 (2)
Asvii—Ni—Asviii104.32 (4)Nixi—As—Nbii135.126 (17)
Asvii—Ni—As118.22 (2)Nb—As—Nbii71.77 (3)
Asviii—Ni—As118.22 (2)Nbi—As—Nbii89.74 (3)
Asvii—Ni—Asv108.46 (3)Niiii—As—Nbvii139.41 (3)
Asviii—Ni—Asv108.46 (3)Niiv—As—Nbvii70.76 (3)
As—Ni—Asv98.50 (3)Ni—As—Nbvii68.41 (3)
Asvii—Ni—Niix54.64 (3)Nixi—As—Nbvii68.76 (2)
Asviii—Ni—Niix118.86 (5)Nb—As—Nbvii136.233 (16)
As—Ni—Niix121.96 (4)Nbi—As—Nbvii77.02 (2)
Asv—Ni—Niix53.81 (3)Nbii—As—Nbvii138.43 (3)
Asvii—Ni—Nix118.86 (5)Niiii—As—Nbviii70.76 (3)
Asviii—Ni—Nix54.64 (3)Niiv—As—Nbviii139.41 (3)
As—Ni—Nix121.96 (4)Ni—As—Nbviii68.41 (3)
Asv—Ni—Nix53.81 (3)Nixi—As—Nbviii68.76 (2)
Niix—Ni—Nix84.43 (5)Nb—As—Nbviii136.233 (16)
Asvii—Ni—Nbviii120.72 (4)Nbi—As—Nbviii138.43 (3)
Asviii—Ni—Nbviii58.91 (2)Nbii—As—Nbviii77.02 (2)
As—Ni—Nbviii61.29 (2)Nbvii—As—Nbviii87.17 (3)
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z+1; (iii) x+1/2, y+1, z+1/2; (iv) x+1/2, y, z+1/2; (v) x1/2, y, z+1/2; (vi) x, y, z+1; (vii) x+1/2, y, z1/2; (viii) x+1/2, y+1, z1/2; (ix) x, y, z; (x) x, y+1, z; (xi) x+1/2, y, z+1/2; (xii) x, y, z1.
Niobium cobalt arsenide (2) top
Crystal data top
NbCoAsDx = 9.009 Mg m3
Mr = 226.76Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 1020 reflections
a = 6.2656 (15) Åθ = 3.3–28.1°
b = 3.7273 (9) ŵ = 35.79 mm1
c = 7.1589 (17) ÅT = 200 K
V = 167.19 (7) Å3Irregular, black
Z = 40.05 × 0.04 × 0.04 mm
F(000) = 404
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
235 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.104
phi and ω scansθmax = 28.3°, θmin = 4.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 88
Tmin = 0.138, Tmax = 0.241k = 44
1902 measured reflectionsl = 99
240 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0154P)2 + 0.713P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.021(Δ/σ)max < 0.001
wR(F2) = 0.051Δρmax = 0.94 e Å3
S = 1.05Δρmin = 1.11 e Å3
240 reflectionsExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
20 parametersExtinction coefficient: 0.0139 (18)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Nb0.02493 (9)0.2500000.67299 (7)0.0045 (2)
Co0.14738 (14)0.2500000.06272 (11)0.0047 (3)
As0.27439 (10)0.2500000.37711 (9)0.0042 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nb0.0045 (3)0.0044 (3)0.0047 (3)0.0000.00024 (18)0.000
Co0.0055 (5)0.0039 (5)0.0046 (4)0.0000.0005 (3)0.000
As0.0048 (4)0.0029 (4)0.0049 (3)0.0000.0001 (2)0.000
Geometric parameters (Å, º) top
Nb—As2.6324 (9)Nb—Cov2.8936 (11)
Nb—Asi2.6682 (8)Nb—Covi2.9058 (12)
Nb—Asii2.6682 (8)Nb—Nbi3.1154 (10)
Nb—Asiii2.6813 (7)Co—Asvii2.3407 (7)
Nb—Asiv2.6813 (7)Co—Asviii2.3407 (7)
Nb—Coii2.8668 (9)Co—Asvi2.3763 (12)
Nb—Coi2.8668 (9)Co—As2.3873 (11)
Nb—Coiii2.8830 (9)Co—Coix2.7732 (14)
Nb—Coiv2.8830 (9)Co—Cox2.7731 (14)
As—Nb—Asi108.01 (2)As—Co—Nbii60.22 (2)
As—Nb—Asii108.01 (2)Coix—Co—Nbii113.57 (5)
Asi—Nb—Asii88.61 (3)Cox—Co—Nbii61.71 (3)
As—Nb—Asiii99.21 (2)Asvii—Co—Nbi86.33 (2)
Asi—Nb—Asiii152.67 (3)Asviii—Co—Nbi166.19 (3)
Asii—Nb—Asiii85.26 (2)Asvi—Co—Nbi60.66 (2)
As—Nb—Asiv99.21 (2)As—Co—Nbi60.22 (2)
Asi—Nb—Asiv85.26 (2)Coix—Co—Nbi61.71 (3)
Asii—Nb—Asiv152.67 (3)Cox—Co—Nbi113.57 (5)
Asiii—Nb—Asiv88.06 (3)Nbii—Co—Nbi81.10 (3)
As—Nb—Coii138.995 (16)Asvii—Co—Nbviii121.40 (4)
Asi—Nb—Coii106.15 (3)Asviii—Co—Nbviii59.44 (2)
Asii—Nb—Coii50.95 (2)Asvi—Co—Nbviii130.60 (3)
Asiii—Nb—Coii50.59 (3)As—Co—Nbviii60.29 (2)
Asiv—Nb—Coii105.59 (3)Coix—Co—Nbviii175.83 (5)
As—Nb—Coi138.995 (16)Cox—Co—Nbviii97.38 (2)
Asi—Nb—Coi50.95 (2)Nbii—Co—Nbviii70.565 (19)
Asii—Nb—Coi106.15 (3)Nbi—Co—Nbviii120.51 (3)
Asiii—Nb—Coi105.59 (3)Asvii—Co—Nbvii59.44 (2)
Asiv—Nb—Coi50.59 (3)Asviii—Co—Nbvii121.40 (4)
Coii—Nb—Coi81.10 (3)Asvi—Co—Nbvii130.60 (3)
As—Nb—Coiii49.971 (19)As—Co—Nbvii60.29 (2)
Asi—Nb—Coiii156.24 (3)Coix—Co—Nbvii97.38 (2)
Asii—Nb—Coiii90.70 (3)Cox—Co—Nbvii175.83 (5)
Asiii—Nb—Coiii50.65 (2)Nbii—Co—Nbvii120.51 (3)
Asiv—Nb—Coiii105.34 (3)Nbi—Co—Nbvii70.565 (19)
Coii—Nb—Coiii91.64 (2)Nbviii—Co—Nbvii80.54 (3)
Coi—Nb—Coiii150.36 (3)Asvii—Co—Nbxi60.54 (2)
As—Nb—Coiv49.971 (19)Asviii—Co—Nbxi60.54 (2)
Asi—Nb—Coiv90.70 (3)Asvi—Co—Nbxi85.07 (4)
Asii—Nb—Coiv156.24 (3)As—Co—Nbxi175.90 (5)
Asiii—Nb—Coiv105.34 (3)Coix—Co—Nbxi60.74 (3)
Asiv—Nb—Coiv50.65 (2)Cox—Co—Nbxi60.74 (3)
Coii—Nb—Coiv150.36 (3)Nbii—Co—Nbxi122.45 (3)
Coi—Nb—Coiv91.64 (2)Nbi—Co—Nbxi122.45 (3)
Coiii—Nb—Coiv80.54 (3)Nbviii—Co—Nbxi116.93 (3)
As—Nb—Cov128.20 (4)Nbvii—Co—Nbxi116.93 (3)
Asi—Nb—Cov108.42 (2)Asvii—Co—Nbxii59.99 (2)
Asii—Nb—Cov108.42 (2)Asviii—Co—Nbxii59.99 (2)
Asiii—Nb—Cov49.473 (17)Asvi—Co—Nbxii154.94 (4)
Asiv—Nb—Cov49.473 (17)As—Co—Nbxii106.03 (4)
Coii—Nb—Cov57.55 (3)Coix—Co—Nbxii110.74 (4)
Coi—Nb—Cov57.55 (3)Cox—Co—Nbxii110.74 (4)
Coiii—Nb—Cov94.31 (2)Nbii—Co—Nbxii133.62 (2)
Coiv—Nb—Cov94.31 (2)Nbi—Co—Nbxii133.62 (2)
As—Nb—Covi90.92 (3)Nbviii—Co—Nbxii65.12 (3)
Asi—Nb—Covi49.436 (18)Nbvii—Co—Nbxii65.12 (3)
Asii—Nb—Covi49.436 (18)Nbxi—Co—Nbxii69.87 (2)
Asiii—Nb—Covi134.286 (17)Coiii—As—Coiv105.53 (4)
Asiv—Nb—Covi134.286 (17)Coiii—As—Coxii72.01 (3)
Coii—Nb—Covi94.40 (2)Coiv—As—Coxii72.01 (3)
Coi—Nb—Covi94.40 (2)Coiii—As—Co127.23 (2)
Coiii—Nb—Covi114.88 (3)Coiv—As—Co127.23 (2)
Coiv—Nb—Covi114.88 (3)Coxii—As—Co119.92 (4)
Cov—Nb—Covi140.88 (4)Coiii—As—Nb70.58 (3)
As—Nb—Nbi54.54 (2)Coiv—As—Nb70.58 (3)
Asi—Nb—Nbi53.47 (2)Coxii—As—Nb115.98 (4)
Asii—Nb—Nbi103.91 (3)Co—As—Nb124.10 (4)
Asiii—Nb—Nbi153.65 (3)Coiii—As—Nbi141.22 (3)
Asiv—Nb—Nbi93.70 (2)Coiv—As—Nbi70.57 (3)
Coii—Nb—Nbi151.14 (4)Coxii—As—Nbi135.695 (16)
Coi—Nb—Nbi95.63 (2)Co—As—Nbi68.83 (2)
Coiii—Nb—Nbi103.91 (3)Nb—As—Nbi71.99 (2)
Coiv—Nb—Nbi57.79 (2)Coiii—As—Nbii70.57 (3)
Cov—Nb—Nbi142.484 (17)Coiv—As—Nbii141.22 (3)
Covi—Nb—Nbi57.09 (2)Coxii—As—Nbii135.695 (16)
Asvii—Co—Asviii105.53 (4)Co—As—Nbii68.83 (2)
Asvii—Co—Asvi107.99 (3)Nb—As—Nbii71.99 (2)
Asviii—Co—Asvi107.99 (3)Nbi—As—Nbii88.61 (3)
Asvii—Co—As117.73 (3)Coiii—As—Nbvii139.87 (4)
Asviii—Co—As117.73 (3)Coiv—As—Nbvii69.99 (3)
Asvi—Co—As99.03 (4)Coxii—As—Nbvii68.75 (2)
Asvii—Co—Coix54.59 (3)Co—As—Nbvii69.05 (3)
Asviii—Co—Coix119.39 (5)Nb—As—Nbvii135.803 (15)
Asvi—Co—Coix53.40 (3)Nbi—As—Nbvii76.754 (19)
As—Co—Coix121.82 (4)Nbii—As—Nbvii137.89 (3)
Asvii—Co—Cox119.39 (5)Coiii—As—Nbviii69.99 (3)
Asviii—Co—Cox54.59 (3)Coiv—As—Nbviii139.87 (4)
Asvi—Co—Cox53.40 (3)Coxii—As—Nbviii68.75 (2)
As—Co—Cox121.82 (4)Co—As—Nbviii69.05 (3)
Coix—Co—Cox84.45 (5)Nb—As—Nbviii135.803 (15)
Asvii—Co—Nbii166.19 (3)Nbi—As—Nbviii137.89 (3)
Asviii—Co—Nbii86.33 (2)Nbii—As—Nbviii76.754 (19)
Asvi—Co—Nbii60.66 (2)Nbvii—As—Nbviii88.06 (3)
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z+1; (iii) x+1/2, y+1, z+1/2; (iv) x+1/2, y, z+1/2; (v) x, y, z+1; (vi) x1/2, y, z+1/2; (vii) x+1/2, y, z1/2; (viii) x+1/2, y+1, z1/2; (ix) x, y, z; (x) x, y+1, z; (xi) x, y, z1; (xii) x+1/2, y, z+1/2.
Niobium nickel germanide (3) top
Crystal data top
NbNiGeDx = 8.726 Mg m3
Mr = 224.21Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 791 reflections
a = 6.2989 (8) Åθ = 6.5–27.5°
b = 3.7613 (4) ŵ = 34.41 mm1
c = 7.2033 (8) ÅT = 200 K
V = 170.66 (3) Å3Needle, silver
Z = 40.07 × 0.03 × 0.02 mm
F(000) = 404
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
230 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.036
phi and ω scansθmax = 28.1°, θmin = 4.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 87
Tmin = 0.19, Tmax = 0.50k = 55
1826 measured reflectionsl = 99
240 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0303P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.023(Δ/σ)max < 0.001
wR(F2) = 0.059Δρmax = 1.29 e Å3
S = 1.33Δρmin = 2.25 e Å3
240 reflectionsExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
20 parametersExtinction coefficient: 0.038 (3)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Nb0.01789 (10)0.2500000.67656 (9)0.0052 (3)
Ni0.15738 (15)0.2500000.06922 (13)0.0069 (3)
Ge0.27997 (12)0.2500000.38311 (11)0.0057 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nb0.0047 (4)0.0068 (4)0.0041 (4)0.0000.0003 (2)0.000
Ni0.0069 (6)0.0081 (5)0.0058 (5)0.0000.0011 (4)0.000
Ge0.0056 (5)0.0067 (4)0.0047 (4)0.0000.0008 (3)0.000
Geometric parameters (Å, º) top
Nb—Ge2.6820 (10)Nb—Niiv2.8842 (8)
Nb—Gei2.6910 (7)Nb—Nivi2.9618 (12)
Nb—Geii2.6910 (7)Nb—Nbi3.1714 (10)
Nb—Geiii2.7151 (7)Ni—Gevii2.3430 (7)
Nb—Geiv2.7151 (7)Ni—Geviii2.3430 (7)
Nb—Niii2.8476 (9)Ni—Ge2.3893 (12)
Nb—Nii2.8476 (9)Ni—Gev2.4019 (12)
Nb—Niv2.8794 (12)Ni—Niix2.9090 (15)
Nb—Niiii2.8842 (9)Ni—Nix2.9090 (15)
Ge—Nb—Gei107.65 (3)Gev—Ni—Nbxi150.28 (5)
Ge—Nb—Geii107.65 (3)Nbii—Ni—Nbxi134.519 (19)
Gei—Nb—Geii88.67 (3)Nbi—Ni—Nbxi134.519 (19)
Ge—Nb—Geiii98.236 (18)Gevii—Ni—Nbviii123.87 (4)
Gei—Nb—Geiii153.97 (3)Geviii—Ni—Nbviii60.70 (2)
Geii—Nb—Geiii86.009 (16)Ge—Ni—Nbviii61.13 (2)
Ge—Nb—Geiv98.236 (18)Gev—Ni—Nbviii131.57 (3)
Gei—Nb—Geiv86.009 (16)Nbii—Ni—Nbviii70.848 (16)
Geii—Nb—Geiv153.97 (3)Nbi—Ni—Nbviii122.22 (3)
Geiii—Nb—Geiv87.68 (3)Nbxi—Ni—Nbviii66.77 (3)
Ge—Nb—Niii138.198 (16)Gevii—Ni—Nbvii60.70 (2)
Gei—Nb—Niii107.09 (3)Geviii—Ni—Nbvii123.87 (4)
Geii—Nb—Niii51.01 (2)Ge—Ni—Nbvii61.13 (2)
Geiii—Nb—Niii51.09 (2)Gev—Ni—Nbvii131.57 (3)
Geiv—Nb—Niii106.67 (3)Nbii—Ni—Nbvii122.22 (3)
Ge—Nb—Nii138.198 (16)Nbi—Ni—Nbvii70.848 (17)
Gei—Nb—Nii51.01 (2)Nbxi—Ni—Nbvii66.77 (3)
Geii—Nb—Nii107.09 (3)Nbviii—Ni—Nbvii81.39 (3)
Geiii—Nb—Nii106.67 (3)Gevii—Ni—Niix53.11 (3)
Geiv—Nb—Nii51.09 (2)Geviii—Ni—Niix115.95 (5)
Niii—Nb—Nii82.66 (3)Ge—Ni—Niix123.00 (4)
Ge—Nb—Niv90.05 (3)Gev—Ni—Niix51.28 (3)
Gei—Nb—Niv49.606 (18)Nbii—Ni—Niix112.53 (5)
Geii—Nb—Niv49.606 (18)Nbi—Ni—Niix61.92 (3)
Geiii—Nb—Niv134.973 (16)Nbxi—Ni—Niix109.07 (4)
Geiv—Nb—Niv134.973 (16)Nbviii—Ni—Niix175.42 (6)
Niii—Nb—Niv95.143 (18)Nbvii—Ni—Niix98.842 (18)
Nii—Nb—Niv95.143 (18)Gevii—Ni—Nix115.95 (5)
Ge—Nb—Niiii49.625 (19)Geviii—Ni—Nix53.11 (3)
Gei—Nb—Niiii155.14 (3)Ge—Ni—Nix123.00 (4)
Geii—Nb—Niiii89.77 (2)Gev—Ni—Nix51.28 (3)
Geiii—Nb—Niiii50.41 (2)Nbii—Ni—Nix61.92 (3)
Geiv—Nb—Niiii105.43 (3)Nbi—Ni—Nix112.53 (5)
Niii—Nb—Niiii90.96 (2)Nbxi—Ni—Nix109.07 (4)
Nii—Nb—Niiii151.40 (3)Nbviii—Ni—Nix98.842 (18)
Niv—Nb—Niiii113.23 (3)Nbvii—Ni—Nix175.42 (6)
Ge—Nb—Niiv49.625 (19)Niix—Ni—Nix80.56 (5)
Gei—Nb—Niiv89.77 (2)Gevii—Ni—Nbxii60.23 (3)
Geii—Nb—Niiv155.14 (3)Geviii—Ni—Nbxii60.23 (3)
Geiii—Nb—Niiv105.43 (3)Ge—Ni—Nbxii178.40 (5)
Geiv—Nb—Niiv50.41 (2)Gev—Ni—Nbxii80.96 (4)
Niii—Nb—Niiv151.40 (3)Nbii—Ni—Nbxii119.94 (3)
Nii—Nb—Niiv90.96 (2)Nbi—Ni—Nbxii119.94 (3)
Niv—Nb—Niiv113.23 (3)Nbxi—Ni—Nbxii69.32 (2)
Niiii—Nb—Niiv81.39 (3)Nbviii—Ni—Nbxii117.80 (3)
Ge—Nb—Nivi124.76 (4)Nbvii—Ni—Nbxii117.80 (3)
Gei—Nb—Nivi111.06 (3)Niix—Ni—Nbxii58.02 (3)
Geii—Nb—Nivi111.06 (3)Nix—Ni—Nbxii58.02 (3)
Geiii—Nb—Nivi48.514 (19)Niiii—Ge—Niiv106.77 (5)
Geiv—Nb—Nivi48.514 (19)Niiii—Ge—Ni126.58 (2)
Niii—Nb—Nivi60.06 (3)Niiv—Ge—Ni126.58 (2)
Nii—Nb—Nivi60.06 (3)Niiii—Ge—Nixi75.61 (4)
Niv—Nb—Nivi145.20 (4)Niiv—Ge—Nixi75.61 (4)
Niiii—Nb—Nivi92.62 (2)Ni—Ge—Nixi117.07 (4)
Niiv—Nb—Nivi92.62 (2)Niiii—Ge—Nb69.68 (3)
Ge—Nb—Nbi53.96 (2)Niiv—Ge—Nb69.68 (3)
Gei—Nb—Nbi53.69 (2)Ni—Ge—Nb123.16 (4)
Geii—Nb—Nbi103.70 (3)Nixi—Ge—Nb119.77 (4)
Geiii—Nb—Nbi152.08 (4)Niiii—Ge—Nbi140.33 (4)
Geiv—Nb—Nbi93.560 (17)Niiv—Ge—Nbi69.38 (3)
Niii—Nb—Nbi151.62 (4)Ni—Ge—Nbi67.88 (3)
Nii—Nb—Nbi95.542 (19)Nixi—Ge—Nbi135.469 (14)
Niv—Nb—Nbi56.69 (2)Nb—Ge—Nbi72.35 (3)
Niiii—Nb—Nbi102.83 (3)Niiii—Ge—Nbii69.38 (3)
Niiv—Nb—Nbi56.54 (2)Niiv—Ge—Nbii140.33 (4)
Nivi—Nb—Nbi141.909 (18)Ni—Ge—Nbii67.88 (3)
Gevii—Ni—Geviii106.77 (5)Nixi—Ge—Nbii135.469 (15)
Gevii—Ni—Ge119.15 (3)Nb—Ge—Nbii72.35 (3)
Geviii—Ni—Ge119.15 (3)Nbi—Ge—Nbii88.67 (3)
Gevii—Ni—Gev104.39 (4)Niiii—Ge—Nbvii142.23 (4)
Geviii—Ni—Gev104.39 (4)Niiv—Ge—Nbvii71.25 (3)
Ge—Ni—Gev100.64 (4)Ni—Ge—Nbvii68.47 (3)
Gevii—Ni—Nbii164.44 (4)Nixi—Ge—Nbvii67.31 (2)
Geviii—Ni—Nbii84.44 (2)Nb—Ge—Nbvii136.099 (15)
Ge—Ni—Nbii61.10 (3)Nbi—Ge—Nbvii75.839 (14)
Gev—Ni—Nbii61.60 (2)Nbii—Ge—Nbvii136.34 (3)
Gevii—Ni—Nbi84.44 (2)Niiii—Ge—Nbviii71.25 (3)
Geviii—Ni—Nbi164.44 (4)Niiv—Ge—Nbviii142.23 (4)
Ge—Ni—Nbi61.10 (3)Ni—Ge—Nbviii68.47 (3)
Gev—Ni—Nbi61.60 (2)Nixi—Ge—Nbviii67.31 (2)
Nbii—Ni—Nbi82.66 (3)Nb—Ge—Nbviii136.099 (15)
Gevii—Ni—Nbxi61.01 (3)Nbi—Ge—Nbviii136.34 (3)
Geviii—Ni—Nbxi61.01 (3)Nbii—Ge—Nbviii75.839 (14)
Ge—Ni—Nbxi109.09 (4)Nbvii—Ge—Nbviii87.68 (3)
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z+1; (iii) x+1/2, y+1, z+1/2; (iv) x+1/2, y, z+1/2; (v) x1/2, y, z+1/2; (vi) x, y, z+1; (vii) x+1/2, y, z1/2; (viii) x+1/2, y+1, z1/2; (ix) x, y, z; (x) x, y+1, z; (xi) x+1/2, y, z+1/2; (xii) x, y, z1.
Unit-cell parameters for (1), (2), and (3), compared with the literature data
The small discrepancies between the published and the herein reported unit-cell parameters are likely due to the accuracy of the measurements, and/or the different temperature at which the experiments were conducted (literature data are at room temperature, while this work is carried out at 200 K).
top
Formulaa (Å)b (Å)c (Å)
NbCoAs (Rundqvist et al., 1967)6.2473.7247.136
NbCoAs (this work)6.2656 (15)3.7273 (9)7.1589 (17)
NbNiAs (Rundqvist et al., 1967)6.2423.7217.19
Nb0.92 (1)NiAs (this work)6.2115 (19)3.7150 (11)7.172 (2)
NbNiGe (Jeitschko et al., 1969)6.300 (3)3.770 (1)7.196 (3)
NbNiGe (this work)6.2989 (8)3.7613 (4)7.2033 (8)

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds