Download citation
Download citation
link to html
A novel important class of nanoporous crystalline solids, metal–organic frameworks (MOFs), composed of organic ligands (linkers) and metal ions, is now considered as a platform for the development of various functional hybrid materials. In order to design new MOF-based asymmetric catalysts, two terephthalic acid derivatives, namely 2-{[1-(1-tert-but­oxy­carbon­yl)-L-prol­yl]amino}­terephthalic acid, C18H22N2O7, (1), and 2-(L-prolyl­amino)­terephthalic acid, C13H14N2O5, (2), which could find potential applications as chiral linkers for the construction of enanti­oselective MOFs, were synthesized and their powder samples were measured at synchrotron station ID22 (ESRF). Each sample contained two unknown crystalline phases, so four new crystal structures were determined, namely, the 2.24-hydrate of (1), (1a) (space group C2221), and the 2.08-hydrate of (1), (1b) (P2221), which are crystallohydrates, and two polymorphs of (2), i.e. (2a) (C2221) and (2b) (P212121), and were validated with DFT-d (dispersion-corrected density functional theory) optimizations.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229618001705/yo3046sup1.cif
Contains datablocks 1a, 1b, 2a, 2b, I

rtv

Rietveld powder data file (CIF format) https://doi.org/10.1107/S2053229618001705/yo30461asup2.rtv
Contains datablock 1a

rtv

Rietveld powder data file (CIF format) https://doi.org/10.1107/S2053229618001705/yo30461bsup4.rtv
Contains datablock 1b

rtv

Rietveld powder data file (CIF format) https://doi.org/10.1107/S2053229618001705/yo30462asup3.rtv
Contains datablock 2a

rtv

Rietveld powder data file (CIF format) https://doi.org/10.1107/S2053229618001705/yo30462bsup5.rtv
Contains datablock 2b

txt

Text file https://doi.org/10.1107/S2053229618001705/yo3046sup6.txt
DFT-optimized atomic coordinates

CCDC references: 1820343; 1820342; 1820341; 1820340

Computing details top

For all structures, data collection: local program; cell refinement: MRIA (Zlokazov & Chernyshev, 1992); data reduction: local program; program(s) used to solve structure: MRIA (Zlokazov & Chernyshev, 1992); program(s) used to refine structure: MRIA (Zlokazov & Chernyshev, 1992); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

1-{[1-(1-tert-Butoxycarbonyl)-L-prolyl]amino}terephthalic acid 2.24-hydrate (1a) top
Crystal data top
C18H22N2O7·2.24H2OF(000) = 1779
Mr = 418.64Dx = 1.271 Mg m3
Orthorhombic, C2221Synchrotron radiation, λ = 0.399962(3) Å
Hall symbol: C 2c 2µ = 0.02 mm1
a = 16.3993 (12) ÅT = 295 K
b = 12.5755 (11) ÅParticle morphology: no specific habit
c = 21.2196 (17) Åcolorless
V = 4376.1 (6) Å3cylinder, 15 × 1.0 mm
Z = 8Specimen preparation: Prepared at 295 K and 101 kPa
Data collection top
ESRF powder
diffractometer
Data collection mode: transmission
Radiation source: ID22 bending magnet at ESRF, synchrotron radiationScan method: continuous
Si 111 double crystal monochromator2θmin = 1.200°, 2θmax = 17.000°, 2θstep = 0.002°
Specimen mounting: Specimen was sealed in a 1.0 mm diameter borosilicate glass capillary
Refinement top
Refinement on Inet334 parameters
Least-squares matrix: full with fixed elements per cycle210 restraints
Rp = 0.03186 constraints
Rwp = 0.040H-atom parameters not refined
Rexp = 0.028Weighting scheme based on measured s.u.'s
RBragg = 0.100(Δ/σ)max = 0.004
10534 data pointsBackground function: Chebyshev polynomial up to the 5th order
Profile function: split-type pseudo-Voigt (Toraya, 1986)
[Toraya, H. (1986). J. Appl. Cryst. 19, 440–447]
Preferred orientation correction: none
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O11.1288 (7)0.2342 (8)0.3907 (5)0.057 (10)*
H11.13130.29930.38990.086*
O21.0139 (6)0.2665 (7)0.3353 (5)0.057 (10)*
O31.0813 (7)0.3145 (8)0.3746 (5)0.057 (10)*
O40.9631 (7)0.2944 (8)0.3208 (5)0.057 (10)*
H40.96400.35960.32170.086*
O50.8022 (7)0.0132 (9)0.3397 (5)0.057 (10)*
O60.8243 (6)0.2481 (8)0.4225 (6)0.057 (10)*
O70.8413 (7)0.4168 (7)0.3804 (5)0.057 (10)*
N10.9089 (7)0.1057 (9)0.3242 (6)0.057 (10)*
H1A0.91930.17040.31370.068*
N20.8028 (7)0.2752 (9)0.3190 (7)0.057 (10)*
C10.9758 (10)0.0384 (11)0.3358 (7)0.057 (10)*
C21.0498 (9)0.0848 (11)0.3584 (7)0.057 (10)*
C31.1156 (9)0.0179 (13)0.3750 (7)0.057 (10)*
H31.16460.04810.38790.068*
C41.1086 (10)0.0910 (12)0.3724 (7)0.057 (10)*
H4A1.15250.13390.38350.068*
C51.0343 (10)0.1372 (11)0.3528 (8)0.057 (10)*
C60.9677 (10)0.0731 (11)0.3368 (8)0.057 (10)*
H60.91790.10420.32680.068*
C71.0606 (10)0.2015 (12)0.3600 (7)0.057 (10)*
C81.0297 (10)0.2555 (11)0.3516 (7)0.057 (10)*
C90.8270 (11)0.0761 (12)0.3283 (8)0.057 (9)*
C100.7677 (10)0.1676 (10)0.3140 (9)0.057 (10)*
H100.72070.16230.34230.068*
C110.7376 (10)0.1625 (9)0.2451 (11)0.057 (10)*
H11A0.77890.13180.21790.068*
H11B0.68820.12050.24190.068*
C120.7213 (10)0.2785 (11)0.2276 (9)0.057 (10)*
H12A0.72590.28910.18250.068*
H12B0.66740.30040.24120.068*
C130.7873 (10)0.3398 (9)0.2627 (9)0.057 (10)*
H13A0.83620.34640.23720.068*
H13B0.76840.41030.27410.068*
C140.8240 (11)0.3217 (13)0.3754 (8)0.057 (10)*
C150.8450 (8)0.2768 (12)0.4883 (9)0.057 (10)*
C160.9321 (8)0.3203 (11)0.4922 (10)0.057 (10)*
H16A0.96940.26890.47520.086*
H16B0.94570.33410.53540.086*
H16C0.93580.38510.46840.086*
C170.8390 (9)0.1697 (11)0.5224 (8)0.057 (10)*
H17A0.87870.12160.50540.086*
H17B0.78540.14060.51660.086*
H17C0.84910.17980.56660.086*
C180.7821 (9)0.3548 (11)0.5147 (10)0.057 (10)*
H18A0.72860.32440.51130.085*
H18B0.78410.42000.49120.085*
H18C0.79410.36900.55820.085*
O1W0.9683 (6)0.4874 (8)0.3227 (5)0.061 (7)*
H1W10.92540.48600.34540.091*
H1W20.98160.42180.31660.091*
O2W1.1463 (7)0.4351 (8)0.3852 (4)0.061 (7)*
H2W11.10520.45330.36230.091*
H2W21.18710.43230.36010.091*
O3W1.1105 (18)0.50000.50000.061 (7)*0.48 (2)
H3W1.14100.47000.47280.092*0.48
Geometric parameters (Å, º) top
O1—C71.36 (2)C10—C111.54 (3)
O1—H10.8200C10—H100.9800
O2—C71.237 (19)C11—C121.529 (19)
O3—C81.227 (19)C11—H11A0.9700
O4—C81.364 (19)C11—H11B0.9700
O4—H40.8200C12—C131.52 (2)
O5—C91.219 (19)C12—H12A0.9700
O6—C141.36 (2)C12—H12B0.9700
O6—C151.48 (2)C13—H13A0.9700
O7—C141.234 (19)C13—H13B0.9700
N1—C91.40 (2)C15—C181.53 (2)
N1—C11.41 (2)C15—C161.53 (2)
N1—H1A0.8600C15—C171.53 (2)
N2—C141.38 (2)C16—H16A0.9600
N2—C131.47 (2)C16—H16B0.9600
N2—C101.474 (18)C16—H16C0.9600
C1—C61.41 (2)C17—H17A0.9600
C1—C21.43 (2)C17—H17B0.9600
C2—C31.41 (2)C17—H17C0.9600
C2—C71.48 (2)C18—H18A0.9600
C3—C41.38 (2)C18—H18B0.9600
C3—H30.9300C18—H18C0.9600
C4—C51.41 (2)O1W—H1W10.8528
C4—H4A0.9300O1W—H1W20.8631
C5—C61.40 (2)O2W—H2W10.8619
C5—C81.490 (19)O2W—H2W20.8559
C6—H60.9300O3W—H3W0.8518
C9—C101.54 (2)
C7—O1—H1109.5C12—C11—H11B110.9
C8—O4—H4109.5C10—C11—H11B110.9
C14—O6—C15121.8 (12)H11A—C11—H11B108.9
C9—N1—C1125.4 (12)C13—C12—C11103.9 (13)
C9—N1—H1A117.3C13—C12—H12A111.0
C1—N1—H1A117.3C11—C12—H12A111.0
C14—N2—C13121.1 (12)C13—C12—H12B111.0
C14—N2—C10123.4 (14)C11—C12—H12B111.0
C13—N2—C10112.5 (13)H12A—C12—H12B109.0
N1—C1—C6121.9 (14)N2—C13—C12103.9 (11)
N1—C1—C2118.4 (13)N2—C13—H13A111.0
C6—C1—C2118.8 (14)C12—C13—H13A111.0
C3—C2—C1119.3 (13)N2—C13—H13B111.0
C3—C2—C7119.6 (14)C12—C13—H13B111.0
C1—C2—C7121.0 (13)H13A—C13—H13B109.0
C4—C3—C2121.3 (14)O7—C14—O6126.5 (15)
C4—C3—H3119.4O7—C14—N2123.0 (14)
C2—C3—H3119.4O6—C14—N2110.5 (13)
C3—C4—C5119.6 (14)O6—C15—C18110.3 (13)
C3—C4—H4A120.2O6—C15—C16110.6 (14)
C5—C4—H4A120.2C18—C15—C16112.3 (13)
C6—C5—C4120.5 (13)O6—C15—C17102.5 (12)
C6—C5—C8122.1 (14)C18—C15—C17110.3 (13)
C4—C5—C8117.4 (14)C16—C15—C17110.4 (12)
C5—C6—C1120.2 (14)C15—C16—H16A109.5
C5—C6—H6119.9C15—C16—H16B109.5
C1—C6—H6119.9H16A—C16—H16B109.5
O2—C7—O1120.9 (14)C15—C16—H16C109.5
O2—C7—C2124.9 (14)H16A—C16—H16C109.5
O1—C7—C2114.2 (13)H16B—C16—H16C109.5
O3—C8—O4121.8 (13)C15—C17—H17A109.5
O3—C8—C5124.2 (14)C15—C17—H17B109.5
O4—C8—C5114.0 (13)H17A—C17—H17B109.5
O5—C9—N1125.4 (15)C15—C17—H17C109.5
O5—C9—C10121.2 (15)H17A—C17—H17C109.5
N1—C9—C10113.4 (13)H17B—C17—H17C109.5
N2—C10—C9115.2 (13)C15—C18—H18A109.5
N2—C10—C11103.4 (12)C15—C18—H18B109.5
C9—C10—C11111.0 (13)H18A—C18—H18B109.5
N2—C10—H10109.0C15—C18—H18C109.5
C9—C10—H10109.0H18A—C18—H18C109.5
C11—C10—H10109.0H18B—C18—H18C109.5
C12—C11—C10104.3 (13)H1W1—O1W—H1W2105.9
C12—C11—H11A110.9H2W1—O2W—H2W2105.7
C10—C11—H11A110.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2W0.821.732.545 (14)174
O1W—H1W1···O70.851.792.574 (15)152
N1—H1A···O20.862.022.666 (15)131
N1—H1A···N20.862.322.754 (16)111
O1W—H1W2···O20.862.062.889 (13)160
O2W—H2W1···O1W0.862.443.273 (15)164
O4—H4···O1Wi0.821.932.746 (14)179
O2W—H2W2···O5ii0.862.052.809 (16)147
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y+1/2, z.
1-{[1-(1-tert-Butoxycarbonyl)-L-prolyl]amino}terephthalic acid 2.08-hydrate (1b) top
Crystal data top
C18H22N2O7·2.08H2OF(000) = 1767
Mr = 415.89Dx = 1.271 Mg m3
Orthorhombic, P2221Synchrotron radiation, λ = 0.399962(3) Å
Hall symbol: P 2c 2µ = 0.02 mm1
a = 16.4332 (13) ÅT = 295 K
b = 12.3817 (12) ÅParticle morphology: no specific habit
c = 21.3581 (17) Åcolorless
V = 4345.8 (6) Å3cylinder, 15 × 1.0 mm
Z = 8Specimen preparation: Prepared at 295 K and 101 kPa
Data collection top
ESRF powder
diffractometer
Data collection mode: transmission
Radiation source: ID22 bending magnet at ESRF, synchrotron radiationScan method: continuous
Si 111 double crystal monochromator2θmin = 1.200°, 2θmax = 17.000°, 2θstep = 0.002°
Specimen mounting: Specimen was sealed in a 1.0 mm diameter borosilicate glass capillary
Refinement top
Refinement on Inet334 parameters
Least-squares matrix: full with fixed elements per cycle210 restraints
Rp = 0.03186 constraints
Rwp = 0.040H-atom parameters not refined
Rexp = 0.028Weighting scheme based on measured s.u.'s
RBragg = 0.100(Δ/σ)max = 0.004
10534 data pointsBackground function: Chebyshev polynomial up to the 5th order
Profile function: split-type pseudo-Voigt (Toraya, 1986)
[Toraya, H. (1986). J. Appl. Cryst. 19, 440–447]
Preferred orientation correction: none
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O1A0.6126 (7)0.7311 (11)0.6636 (8)0.053 (12)*
H1A0.61060.66500.66560.080*
O2A0.4764 (7)0.7121 (11)0.6697 (7)0.053 (12)*
O3A0.5965 (7)1.2927 (10)0.6553 (8)0.053 (12)*
O4A0.4630 (7)1.2865 (10)0.6815 (7)0.053 (12)*
H4A0.46831.35230.68200.079*
O5A0.2856 (6)1.0132 (13)0.6474 (8)0.053 (12)*
O6A0.3214 (6)0.7606 (10)0.5675 (9)0.053 (12)*
O7A0.3147 (7)0.5820 (9)0.5990 (9)0.053 (12)*
N1A0.3857 (9)0.8906 (11)0.6765 (9)0.053 (12)*
H1A10.39090.82640.69140.064*
N2A0.2744 (9)0.7208 (14)0.6634 (11)0.053 (12)*
C1A0.4577 (11)0.9487 (17)0.6698 (9)0.053 (12)*
C2A0.5326 (11)0.8918 (14)0.6613 (9)0.053 (12)*
C3A0.6052 (10)0.9510 (15)0.6546 (11)0.053 (12)*
H3A0.65420.91420.65010.064*
C4A0.6054 (10)1.0632 (14)0.6545 (12)0.053 (12)*
H4A10.65381.10100.64910.064*
C5A0.5316 (11)1.1191 (13)0.6626 (10)0.053 (12)*
C6A0.4586 (11)1.0629 (16)0.6698 (9)0.053 (12)*
H6A0.41021.10080.67460.064*
C7A0.5359 (10)0.7720 (17)0.6647 (11)0.053 (12)*
C8A0.5349 (10)1.2398 (16)0.6649 (11)0.053 (12)*
C9A0.3071 (11)0.9219 (16)0.6625 (11)0.053 (12)*
C10A0.2436 (11)0.8316 (16)0.6704 (12)0.053 (12)*
H10A0.19930.84320.64040.064*
C11A0.2081 (13)0.8323 (15)0.7376 (13)0.053 (12)*
H11A0.24810.85770.76760.064*
H11B0.16030.87800.74000.064*
C12A0.1861 (14)0.7142 (14)0.7499 (14)0.053 (12)*
H12A0.13320.69670.73240.064*
H12B0.18560.69870.79440.064*
C13A0.2538 (10)0.6515 (14)0.7167 (12)0.053 (12)*
H13A0.30040.64150.74400.064*
H13B0.23460.58140.70270.064*
C14A0.3046 (11)0.6790 (15)0.6087 (13)0.053 (12)*
C15A0.3550 (8)0.7360 (19)0.5045 (15)0.053 (12)*
C16A0.4313 (9)0.6658 (12)0.5102 (13)0.053 (12)*
H16A0.47050.70170.53620.080*
H16B0.45410.65410.46940.080*
H16C0.41710.59760.52850.080*
C17A0.3769 (10)0.8485 (13)0.4798 (12)0.053 (12)*
H17A0.41800.88000.50600.080*
H17B0.32930.89350.48010.080*
H17C0.39710.84250.43780.080*
C18A0.2895 (10)0.6839 (14)0.4635 (13)0.053 (12)*
H18A0.24300.73070.46130.079*
H18B0.27370.61590.48130.079*
H18C0.31070.67250.42210.079*
O1B1.1029 (7)0.7440 (10)0.4323 (8)0.059 (13)*
H1B1.10410.81010.43470.089*
O2B0.9950 (6)0.7809 (11)0.3707 (10)0.059 (13)*
O3B1.0689 (7)0.1910 (10)0.4092 (8)0.059 (13)*
O4B0.9652 (7)0.2066 (11)0.3399 (8)0.059 (13)*
H4B0.96710.14050.34110.089*
O5B0.7959 (7)0.4773 (13)0.3247 (7)0.059 (13)*
O6B0.7879 (7)0.7385 (11)0.4139 (9)0.059 (13)*
O7B0.8235 (7)0.9092 (9)0.3796 (9)0.059 (13)*
N1B0.8932 (9)0.6065 (11)0.3500 (9)0.059 (13)*
H1B10.89770.67500.35560.071*
N2B0.7938 (10)0.7721 (13)0.3107 (10)0.059 (13)*
C1B0.9604 (10)0.5440 (18)0.3667 (12)0.059 (13)*
C2B1.0330 (11)0.5946 (14)0.3878 (12)0.059 (13)*
C3B1.1006 (9)0.5300 (15)0.4048 (10)0.059 (12)*
H3B1.14680.56270.42130.071*
C4B1.0991 (10)0.4191 (13)0.3973 (12)0.059 (13)*
H4B11.14560.37820.40470.071*
C5B1.0262 (11)0.3690 (13)0.3783 (13)0.059 (13)*
C6B0.9580 (11)0.4301 (15)0.3627 (11)0.059 (13)*
H6B0.91060.39580.34960.071*
C7B1.0396 (10)0.7132 (16)0.3947 (13)0.059 (13)*
C8B1.0246 (9)0.2483 (15)0.3773 (15)0.059 (13)*
C9B0.8197 (11)0.5707 (17)0.3253 (10)0.059 (13)*
C10B0.7676 (10)0.6615 (15)0.2968 (12)0.059 (13)*
H10B0.71120.65250.31080.071*
C11B0.7699 (11)0.6561 (15)0.2243 (12)0.059 (13)*
H11C0.82080.62530.20980.071*
H11D0.72520.61290.20830.071*
C12B0.7618 (10)0.7736 (16)0.2035 (12)0.059 (13)*
H12C0.70520.79580.20250.071*
H12D0.78550.78440.16240.071*
C13B0.8093 (14)0.8358 (15)0.2538 (15)0.059 (13)*
H13C0.86690.83810.24410.071*
H13D0.78900.90900.25820.071*
C14B0.8029 (11)0.8150 (16)0.3692 (13)0.059 (13)*
C15B0.7923 (9)0.7667 (17)0.4814 (15)0.059 (13)*
C16B0.8699 (9)0.8307 (12)0.4951 (13)0.059 (13)*
H16D0.91640.78980.48180.088*
H16E0.87360.84450.53920.088*
H16F0.86840.89800.47290.088*
C17B0.7958 (10)0.6553 (13)0.5126 (14)0.059 (13)*
H17D0.74670.61630.50350.089*
H17E0.80120.66390.55710.089*
H17F0.84170.61590.49670.089*
C18B0.7152 (10)0.8270 (14)0.5014 (14)0.059 (13)*
H18D0.66830.78380.49190.088*
H18E0.71180.89430.47920.088*
H18F0.71710.84070.54560.088*
O1W0.9645 (7)0.0192 (12)0.3266 (6)0.063 (12)*
H1WA0.98970.07980.32300.095*
H1WB0.91860.03160.34410.095*
O2W1.1242 (7)0.9468 (9)0.4223 (7)0.063 (12)*
H2WA1.16760.97120.40240.094*
H2WB1.09281.00330.42590.094*
O3W0.4320 (6)1.4894 (13)0.6802 (7)0.063 (12)*
H3WA0.45231.55180.68640.094*
H3WB0.39171.49510.65520.094*
O4W0.6199 (6)0.5366 (11)0.6256 (9)0.063 (12)*
H4WA0.59800.48280.64320.094*
H4WB0.67190.53270.62900.094*
O5W0.662 (3)0.50000.50000.063 (12)*0.32 (3)
HW50.63280.50800.53240.095*0.32
Geometric parameters (Å, º) top
O1A—C7A1.36 (2)O4B—H4B0.8200
O1A—H1A0.8200O5B—C9B1.22 (3)
O2A—C7A1.23 (2)O6B—C14B1.37 (3)
O3A—C8A1.22 (2)O6B—C15B1.49 (4)
O4A—C8A1.36 (2)O7B—C14B1.23 (2)
O4A—H4A0.8200N1B—C9B1.39 (2)
O5A—C9A1.23 (3)N1B—C1B1.39 (2)
O6A—C14A1.37 (3)N1B—H1B10.8600
O6A—C15A1.49 (4)N2B—C14B1.37 (3)
O7A—C14A1.23 (2)N2B—C10B1.47 (2)
N1A—C9A1.38 (2)N2B—C13B1.47 (3)
N1A—C1A1.39 (2)C1B—C6B1.41 (3)
N1A—H1A10.8600C1B—C2B1.42 (3)
N2A—C14A1.37 (3)C2B—C3B1.42 (3)
N2A—C13A1.47 (3)C2B—C7B1.48 (3)
N2A—C10A1.47 (3)C3B—C4B1.38 (2)
C1A—C6A1.41 (3)C3B—H3B0.9300
C1A—C2A1.43 (3)C4B—C5B1.41 (3)
C2A—C3A1.41 (3)C4B—H4B10.9300
C2A—C7A1.49 (3)C5B—C6B1.39 (3)
C3A—C4A1.39 (3)C5B—C8B1.49 (2)
C3A—H3A0.9300C6B—H6B0.9300
C4A—C5A1.41 (2)C9B—C10B1.54 (3)
C4A—H4A10.9300C10B—C11B1.55 (4)
C5A—C6A1.40 (3)C10B—H10B0.9800
C5A—C8A1.50 (3)C11B—C12B1.53 (3)
C6A—H6A0.9300C11B—H11C0.9700
C9A—C10A1.54 (3)C11B—H11D0.9700
C10A—C11A1.55 (4)C12B—C13B1.54 (3)
C10A—H10A0.9800C12B—H12C0.9700
C11A—C12A1.53 (3)C12B—H12D0.9700
C11A—H11A0.9700C13B—H13C0.9700
C11A—H11B0.9700C13B—H13D0.9700
C12A—C13A1.53 (3)C15B—C16B1.53 (2)
C12A—H12A0.9700C15B—C18B1.53 (3)
C12A—H12B0.9700C15B—C17B1.53 (3)
C13A—H13A0.9700C16B—H16D0.9600
C13A—H13B0.9700C16B—H16E0.9600
C15A—C18A1.53 (3)C16B—H16F0.9600
C15A—C16A1.53 (2)C17B—H17D0.9600
C15A—C17A1.53 (3)C17B—H17E0.9600
C16A—H16A0.9600C17B—H17F0.9600
C16A—H16B0.9600C18B—H18D0.9600
C16A—H16C0.9600C18B—H18E0.9600
C17A—H17A0.9600C18B—H18F0.9600
C17A—H17B0.9600O1W—H1WA0.8605
C17A—H17C0.9600O1W—H1WB0.8557
C18A—H18A0.9600O2W—H2WA0.8835
C18A—H18B0.9600O2W—H2WB0.8727
C18A—H18C0.9600O3W—H3WA0.8519
O1B—C7B1.37 (3)O3W—H3WB0.8536
O1B—H1B0.8200O4W—H4WA0.8453
O2B—C7B1.23 (2)O4W—H4WB0.8590
O3B—C8B1.22 (3)O5W—HW50.8526
O4B—C8B1.36 (3)
C7A—O1A—H1A109.5C14B—O6B—C15B120.4 (16)
C8A—O4A—H4A109.5C9B—N1B—C1B127.4 (16)
C14A—O6A—C15A120.4 (16)C9B—N1B—H1B1116.3
C9A—N1A—C1A128.9 (16)C1B—N1B—H1B1116.3
C9A—N1A—H1A1115.6C14B—N2B—C10B125.5 (19)
C1A—N1A—H1A1115.6C14B—N2B—C13B121.9 (17)
C14A—N2A—C13A121.6 (17)C10B—N2B—C13B112.6 (19)
C14A—N2A—C10A124 (2)N1B—C1B—C6B121.1 (16)
C13A—N2A—C10A112.8 (18)N1B—C1B—C2B120.1 (18)
N1A—C1A—C6A121.7 (16)C6B—C1B—C2B118.9 (17)
N1A—C1A—C2A119.3 (17)C3B—C2B—C1B119.4 (17)
C6A—C1A—C2A118.9 (16)C3B—C2B—C7B118.5 (17)
C3A—C2A—C1A119.1 (16)C1B—C2B—C7B122.1 (17)
C3A—C2A—C7A119.6 (16)C4B—C3B—C2B121.1 (16)
C1A—C2A—C7A121.1 (16)C4B—C3B—H3B119.4
C4A—C3A—C2A121.5 (16)C2B—C3B—H3B119.4
C4A—C3A—H3A119.2C3B—C4B—C5B119.1 (15)
C2A—C3A—H3A119.2C3B—C4B—H4B1120.5
C3A—C4A—C5A119.3 (15)C5B—C4B—H4B1120.5
C3A—C4A—H4A1120.3C6B—C5B—C4B120.9 (16)
C5A—C4A—H4A1120.3C6B—C5B—C8B121.7 (16)
C6A—C5A—C4A120.6 (16)C4B—C5B—C8B117.3 (15)
C6A—C5A—C8A121.7 (16)C5B—C6B—C1B120.3 (17)
C4A—C5A—C8A117.7 (15)C5B—C6B—H6B119.8
C5A—C6A—C1A120.5 (16)C1B—C6B—H6B119.8
C5A—C6A—H6A119.7O2B—C7B—O1B120.6 (18)
C1A—C6A—H6A119.7O2B—C7B—C2B126.4 (19)
O2A—C7A—O1A120.9 (18)O1B—C7B—C2B113.0 (17)
O2A—C7A—C2A125.2 (16)O3B—C8B—O4B122.2 (17)
O1A—C7A—C2A113.9 (15)O3B—C8B—C5B124 (2)
O3A—C8A—O4A122.3 (17)O4B—C8B—C5B113.6 (18)
O3A—C8A—C5A124.0 (16)O5B—C9B—N1B125.7 (18)
O4A—C8A—C5A113.6 (15)O5B—C9B—C10B120.6 (17)
O5A—C9A—N1A125.8 (17)N1B—C9B—C10B113.6 (16)
O5A—C9A—C10A120.2 (16)N2B—C10B—C9B116.0 (17)
N1A—C9A—C10A114.0 (16)N2B—C10B—C11B103.6 (17)
N2A—C10A—C9A115.7 (15)C9B—C10B—C11B110.5 (16)
N2A—C10A—C11A103.2 (17)N2B—C10B—H10B108.8
C9A—C10A—C11A110.7 (18)C9B—C10B—H10B108.8
N2A—C10A—H10A109.0C11B—C10B—H10B108.8
C9A—C10A—H10A109.0C12B—C11B—C10B104.3 (17)
C11A—C10A—H10A109.0C12B—C11B—H11C110.9
C12A—C11A—C10A104.1 (19)C10B—C11B—H11C110.9
C12A—C11A—H11A110.9C12B—C11B—H11D110.9
C10A—C11A—H11A110.9C10B—C11B—H11D110.9
C12A—C11A—H11B110.9H11C—C11B—H11D108.9
C10A—C11A—H11B110.9C11B—C12B—C13B103.3 (18)
H11A—C11A—H11B109.0C11B—C12B—H12C111.1
C11A—C12A—C13A103.5 (18)C13B—C12B—H12C111.1
C11A—C12A—H12A111.1C11B—C12B—H12D111.1
C13A—C12A—H12A111.1C13B—C12B—H12D111.1
C11A—C12A—H12B111.1H12C—C12B—H12D109.1
C13A—C12A—H12B111.1N2B—C13B—C12B102.8 (16)
H12A—C12A—H12B109.0N2B—C13B—H13C111.2
N2A—C13A—C12A103.3 (16)C12B—C13B—H13C111.2
N2A—C13A—H13A111.1N2B—C13B—H13D111.2
C12A—C13A—H13A111.1C12B—C13B—H13D111.2
N2A—C13A—H13B111.1H13C—C13B—H13D109.1
C12A—C13A—H13B111.1O7B—C14B—N2B124 (2)
H13A—C13A—H13B109.1O7B—C14B—O6B125 (2)
O7A—C14A—O6A126 (2)N2B—C14B—O6B110.5 (17)
O7A—C14A—N2A124 (2)O6B—C15B—C16B110.4 (19)
O6A—C14A—N2A110.0 (17)O6B—C15B—C18B110.2 (18)
O6A—C15A—C18A110.1 (14)C16B—C15B—C18B112.6 (18)
O6A—C15A—C16A110 (2)O6B—C15B—C17B102.3 (18)
C18A—C15A—C16A112.5 (19)C16B—C15B—C17B110.6 (17)
O6A—C15A—C17A102.3 (18)C18B—C15B—C17B110.4 (19)
C18A—C15A—C17A111 (2)C15B—C16B—H16D109.5
C16A—C15A—C17A110.6 (13)C15B—C16B—H16E109.5
C15A—C16A—H16A109.5H16D—C16B—H16E109.5
C15A—C16A—H16B109.5C15B—C16B—H16F109.5
H16A—C16A—H16B109.5H16D—C16B—H16F109.5
C15A—C16A—H16C109.5H16E—C16B—H16F109.5
H16A—C16A—H16C109.5C15B—C17B—H17D109.5
H16B—C16A—H16C109.5C15B—C17B—H17E109.5
C15A—C17A—H17A109.5H17D—C17B—H17E109.5
C15A—C17A—H17B109.5C15B—C17B—H17F109.5
H17A—C17A—H17B109.5H17D—C17B—H17F109.5
C15A—C17A—H17C109.5H17E—C17B—H17F109.5
H17A—C17A—H17C109.5C15B—C18B—H18D109.5
H17B—C17A—H17C109.5C15B—C18B—H18E109.5
C15A—C18A—H18A109.5H18D—C18B—H18E109.5
C15A—C18A—H18B109.5C15B—C18B—H18F109.5
H18A—C18A—H18B109.5H18D—C18B—H18F109.5
C15A—C18A—H18C109.5H18E—C18B—H18F109.5
H18A—C18A—H18C109.5H1WA—O1W—H1WB107.9
H18B—C18A—H18C109.5H2WA—O2W—H2WB104.2
C7B—O1B—H1B109.5H3WA—O3W—H3WB109.0
C8B—O4B—H4B109.5H4WA—O4W—H4WB110.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A1···O2A0.862.052.670 (19)129
N1A—H1A1···N2A0.862.392.80 (2)109
O1A—H1A···O4W0.821.812.54 (2)148
O1B—H1B···O2W0.821.742.544 (17)164
N1B—H1B1···O2B0.862.092.767 (19)135
N1B—H1B1···O6B0.862.332.74 (2)110
N1B—H1B1···N2B0.862.302.75 (2)113
O4A—H4A···O3W0.821.802.56 (2)154
O4B—H4B···O1W0.822.002.81 (2)169
O1W—H1WA···O2Bi0.862.012.70 (2)137
O1W—H1WB···O7Bi0.861.892.727 (18)167
O2W—H2WA···O5Aii0.882.223.082 (17)165
O2W—H2WB···O3Biii0.872.383.170 (17)150
O3W—H3WA···O2Aiii0.852.062.86 (2)158
O3W—H3WB···O7Aiii0.852.052.84 (2)153
O4W—H4WA···O3Ai0.852.373.110 (19)147
O4W—H4WB···O5Biv0.862.273.086 (17)159
Symmetry codes: (i) x, y1, z; (ii) x+1, y+2, z+1; (iii) x, y+1, z; (iv) x, y+1, z+1.
1-(L-Prolylamino)terephthalic acid (2a) top
Crystal data top
C13H14N2O5F(000) = 1168
Mr = 278.26Dx = 1.479 Mg m3
Orthorhombic, C2221Synchrotron radiation, λ = 0.399962(3) Å
Hall symbol: C 2c 2µ = 0.03 mm1
a = 7.6220 (8) ÅT = 295 K
b = 18.8180 (11) ÅParticle morphology: no specific habit
c = 17.4277 (10) Åcolorless
V = 2499.7 (3) Å3cylinder, 15 × 1.0 mm
Z = 8Specimen preparation: Prepared at 295 K and 101 kPa
Data collection top
ESRF powder
diffractometer
Data collection mode: transmission
Radiation source: ID22 bending magnet at ESRF, synchrotron radiationScan method: continuous
Si 111 double crystal monochromator2θmin = 2.000°, 2θmax = 22.001°, 2θstep = 0.002°
Specimen mounting: Specimen was sealed in a 1.0 mm diameter borosilicate glass capillary
Refinement top
Refinement on Inet222 parameters
Least-squares matrix: full with fixed elements per cycle116 restraints
Rp = 0.0330 constraints
Rwp = 0.041H-atom parameters not refined
Rexp = 0.023Weighting scheme based on measured s.u.'s
RBragg = 0.088(Δ/σ)max = 0.001
13335 data pointsBackground function: Chebyshev polynomial up to the 5th order
Profile function: split-type pseudo-Voigt (Toraya, 1986)
[Toraya, H. (1986). J. Appl. Cryst. 19, 440–447]
Preferred orientation correction: none
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2436 (8)0.6434 (2)0.9178 (2)0.044 (2)*
O20.2204 (7)0.6661 (3)0.7922 (2)0.050 (2)*
O30.2166 (7)0.2785 (3)0.8490 (3)0.050 (2)*
O40.2660 (8)0.2983 (2)0.7244 (2)0.046 (2)*
H40.26690.25470.72300.069*
O50.3583 (6)0.4982 (3)0.5925 (3)0.045 (2)*
N10.2801 (9)0.5656 (3)0.6962 (3)0.050 (3)*
H10.26130.60920.70830.060*
N20.4589 (9)0.6153 (3)0.5093 (3)0.057 (3)*
H2A0.45200.57090.49040.068*
H2B0.56990.62330.52470.068*
C10.2553 (9)0.5178 (4)0.7577 (4)0.059 (3)*
C20.2203 (11)0.5450 (4)0.8325 (4)0.061 (3)*
C30.1882 (10)0.4969 (5)0.8915 (4)0.057 (3)*
H30.16650.51450.94040.068*
C40.1870 (11)0.4239 (4)0.8806 (4)0.055 (3)*
H4A0.16040.39310.92070.066*
C50.2268 (12)0.3982 (5)0.8080 (3)0.060 (3)*
C60.2485 (10)0.4444 (4)0.7467 (5)0.055 (3)*
H60.25870.42610.69730.066*
C70.2268 (12)0.6229 (4)0.8488 (4)0.058 (4)*
C80.2332 (12)0.3196 (5)0.7951 (3)0.063 (3)*
C90.3271 (11)0.5566 (4)0.6225 (4)0.057 (3)*
C100.3349 (12)0.6244 (4)0.5747 (4)0.059 (4)*
H100.37070.66470.60670.071*
C110.1566 (12)0.6404 (4)0.5349 (4)0.062 (4)*
H11A0.09830.59690.51920.074*
H11B0.07940.66720.56830.074*
C120.2129 (12)0.6848 (4)0.4650 (4)0.063 (4)*
H12A0.14230.67250.42060.076*
H12B0.19790.73500.47550.076*
C130.4065 (12)0.6681 (4)0.4497 (4)0.060 (3)*
H13A0.42150.64830.39870.072*
H13B0.47710.71080.45390.072*
Geometric parameters (Å, º) top
O1—C71.270 (8)C3—H30.9303
O2—C71.279 (8)C4—C51.388 (10)
O3—C81.223 (9)C4—H4A0.9302
O4—C81.320 (8)C5—C61.387 (11)
O4—H40.8200C5—C81.497 (13)
O5—C91.241 (9)C6—H60.9295
N1—C91.344 (9)C9—C101.525 (10)
N1—C11.412 (9)C10—C111.555 (12)
N1—H10.8603C10—H100.9802
N2—C101.491 (10)C11—C121.538 (10)
N2—C131.492 (9)C11—H11A0.9700
N2—H2A0.8997C11—H11B0.9703
N2—H2B0.9004C12—C131.532 (13)
C1—C61.396 (10)C12—H12A0.9696
C1—C21.425 (11)C12—H12B0.9702
C2—C31.392 (11)C13—H13A0.9700
C2—C71.494 (10)C13—H13B0.9702
C3—C41.386 (12)
C8—O4—H4109.5O3—C8—O4123.0 (8)
C9—N1—C1132.9 (6)O3—C8—C5120.4 (6)
C9—N1—H1113.5O4—C8—C5116.5 (6)
C1—N1—H1113.5O5—C9—N1124.4 (7)
C10—N2—C13106.6 (6)O5—C9—C10120.2 (6)
C10—N2—H2A110.4N1—C9—C10115.3 (6)
C13—N2—H2A110.4N2—C10—C9110.3 (6)
C10—N2—H2B110.4N2—C10—C11103.6 (5)
C13—N2—H2B110.4C9—C10—C11111.8 (7)
H2A—N2—H2B108.6N2—C10—H10110.3
C6—C1—N1122.1 (7)C9—C10—H10110.3
C6—C1—C2118.3 (7)C11—C10—H10110.3
N1—C1—C2119.4 (6)C12—C11—C10102.4 (7)
C3—C2—C1118.4 (7)C12—C11—H11A111.3
C3—C2—C7120.2 (7)C10—C11—H11A111.3
C1—C2—C7121.3 (7)C12—C11—H11B111.3
C4—C3—C2123.0 (7)C10—C11—H11B111.3
C4—C3—H3118.5H11A—C11—H11B109.2
C2—C3—H3118.5C13—C12—C11107.2 (6)
C3—C4—C5117.9 (7)C13—C12—H12A110.3
C3—C4—H4A121.0C11—C12—H12A110.3
C5—C4—H4A121.0C13—C12—H12B110.2
C6—C5—C4120.6 (8)C11—C12—H12B110.3
C6—C5—C8120.0 (6)H12A—C12—H12B108.6
C4—C5—C8119.2 (7)N2—C13—C12105.9 (6)
C5—C6—C1121.2 (8)N2—C13—H13A110.6
C5—C6—H6119.4C12—C13—H13A110.6
C1—C6—H6119.4N2—C13—H13B110.6
O1—C7—O2122.8 (6)C12—C13—H13B110.6
O1—C7—C2118.8 (6)H13A—C13—H13B108.7
O2—C7—C2118.4 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.861.842.566 (7)141
N2—H2A···O5i0.902.072.881 (8)149
N2—H2B···O1ii0.901.782.653 (9)163
O4—H4···O2iii0.821.692.507 (7)172
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z+3/2; (iii) x+1/2, y1/2, z+3/2.
1-(L-Prolylamino)terephthalic acid (2b) top
Crystal data top
C13H14N2O5F(000) = 584
Mr = 278.26Dx = 1.536 Mg m3
Orthorhombic, P212121Synchrotron radiation, λ = 0.399962(3) Å
Hall symbol: P 2ac 2abµ = 0.03 mm1
a = 17.4407 (13) ÅT = 295 K
b = 9.7795 (9) ÅParticle morphology: no specific habit
c = 7.0567 (7) Åcolorless
V = 1203.60 (19) Å3cylinder, 15 × 1.0 mm
Z = 4Specimen preparation: Prepared at 295 K and 101 kPa
Data collection top
ESRF powder
diffractometer
Data collection mode: transmission
Radiation source: ID22 bending magnet at ESRF, synchrotron radiationScan method: continuous
Si 111 double crystal monochromator2θmin = 2.000°, 2θmax = 22.001°, 2θstep = 0.002°
Specimen mounting: Specimen was sealed in a 1.0 mm diameter borosilicate glass capillary
Refinement top
Refinement on Inet222 parameters
Least-squares matrix: full with fixed elements per cycle116 restraints
Rp = 0.0330 constraints
Rwp = 0.041H-atom parameters not refined
Rexp = 0.023Weighting scheme based on measured s.u.'s
RBragg = 0.088(Δ/σ)max = 0.001
13335 data pointsBackground function: Chebyshev polynomial up to the 5th order
Profile function: split-type pseudo-Voigt (Toraya, 1986)
[Toraya, H. (1986). J. Appl. Cryst. 19, 440–447]
Preferred orientation correction: March-Dollase (Dollase, 1986); direction of preferred orientation [100], texture parameter r=1.10(1).
[Dollase, W. A. (1986). J. Appl. Cryst. 19, 267–272]
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2661 (3)1.2085 (4)0.0340 (11)0.053 (3)*
O20.1455 (3)1.1372 (5)0.0157 (10)0.048 (3)*
O30.2463 (3)0.4535 (5)0.0180 (9)0.049 (2)*
H30.26170.37480.03060.073*
O40.3660 (2)0.5040 (5)0.1155 (10)0.052 (3)*
O50.4936 (3)0.9092 (5)0.1141 (9)0.055 (3)*
N10.3790 (3)1.0264 (7)0.0829 (11)0.052 (3)*
H10.36221.10910.08500.062*
N20.5759 (3)1.1220 (6)0.0165 (11)0.053 (3)*
H2A0.60691.19470.03250.064*
H2B0.59581.05000.07880.064*
C10.3216 (4)0.9261 (9)0.0638 (16)0.063 (4)*
C20.2436 (5)0.9669 (8)0.0349 (15)0.060 (4)*
C30.1884 (4)0.8644 (8)0.0080 (16)0.057 (4)*
H3A0.13780.88950.01550.068*
C40.2071 (5)0.7271 (8)0.0153 (17)0.062 (4)*
H40.16920.66080.00190.074*
C50.2832 (5)0.6891 (7)0.0430 (18)0.059 (4)*
C60.3398 (4)0.7869 (9)0.0743 (17)0.061 (4)*
H60.38960.75980.10220.073*
C70.2172 (4)1.1116 (7)0.0258 (15)0.058 (4)*
C80.3028 (4)0.5407 (8)0.0596 (17)0.064 (4)*
C90.4557 (4)1.0150 (9)0.0984 (15)0.062 (4)*
C100.4967 (4)1.1527 (8)0.0850 (14)0.057 (4)*
H100.49621.20350.20470.068*
C110.4634 (5)1.2355 (9)0.0822 (15)0.063 (4)*
H11A0.40781.23610.07860.076*
H11B0.48191.32900.08030.076*
C120.4929 (4)1.1591 (9)0.2572 (15)0.064 (5)*
H12A0.45591.09190.30000.077*
H12B0.50361.22210.36000.077*
C130.5661 (5)1.0902 (9)0.1883 (14)0.059 (4)*
H13A0.56260.99210.20660.071*
H13B0.60981.12380.25960.071*
Geometric parameters (Å, º) top
O1—C71.276 (8)C3—H3A0.9298
O2—C71.277 (8)C4—C51.393 (12)
O3—C81.336 (9)C4—H40.9296
O3—H30.8202C5—C61.392 (11)
O4—C81.224 (9)C5—C81.495 (11)
O5—C91.233 (10)C6—H60.9301
N1—C91.347 (9)C9—C101.528 (11)
N1—C11.408 (10)C10—C111.544 (13)
N1—H10.8601C10—H100.9802
N2—C131.488 (13)C11—C121.532 (14)
N2—C101.494 (10)C11—H11A0.9704
N2—H2A0.8999C11—H11B0.9700
N2—H2B0.9002C12—C131.523 (12)
C1—C61.400 (12)C12—H12A0.9702
C1—C21.432 (11)C12—H12B0.9700
C2—C31.403 (11)C13—H13A0.9702
C2—C71.490 (11)C13—H13B0.9698
C3—C41.383 (11)
C8—O3—H3109.5O4—C8—O3123.2 (7)
C9—N1—C1131.0 (7)O4—C8—C5121.0 (7)
C9—N1—H1114.5O3—C8—C5115.7 (6)
C1—N1—H1114.5O5—C9—N1127.6 (7)
C13—N2—C10104.5 (6)O5—C9—C10119.6 (6)
C13—N2—H2A110.9N1—C9—C10112.8 (7)
C10—N2—H2A110.8N2—C10—C9106.0 (6)
C13—N2—H2B110.9N2—C10—C11101.8 (7)
C10—N2—H2B110.8C9—C10—C11109.5 (7)
H2A—N2—H2B108.9N2—C10—H10112.9
C6—C1—N1120.7 (6)C9—C10—H10112.9
C6—C1—C2119.6 (7)C11—C10—H10113.0
N1—C1—C2119.7 (7)C12—C11—C10103.6 (7)
C3—C2—C1118.2 (7)C12—C11—H11A111.1
C3—C2—C7117.4 (7)C10—C11—H11A111.0
C1—C2—C7124.4 (7)C12—C11—H11B111.1
C4—C3—C2121.8 (7)C10—C11—H11B111.0
C4—C3—H3A119.1H11A—C11—H11B109.0
C2—C3—H3A119.1C13—C12—C11103.9 (8)
C3—C4—C5119.3 (7)C13—C12—H12A111.0
C3—C4—H4120.4C11—C12—H12A111.0
C5—C4—H4120.3C13—C12—H12B111.0
C4—C5—C6121.0 (7)C11—C12—H12B111.0
C4—C5—C8119.2 (7)H12A—C12—H12B109.0
C6—C5—C8119.5 (7)N2—C13—C12108.3 (7)
C5—C6—C1119.9 (7)N2—C13—H13A110.0
C5—C6—H6120.0C12—C13—H13A110.0
C1—C6—H6120.0N2—C13—H13B110.0
O1—C7—O2120.8 (6)C12—C13—H13B110.1
O1—C7—C2119.8 (6)H13A—C13—H13B108.4
O2—C7—C2119.4 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.861.972.677 (8)139
N2—H2A···O2i0.901.812.659 (8)157
N2—H2B···O4ii0.902.303.017 (10)136
O3—H3···O1iii0.821.632.423 (6)163
Symmetry codes: (i) x+1/2, y+5/2, z; (ii) x+1, y+1/2, z+1/2; (iii) x, y1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds