Download citation
Download citation
link to html
The tetra­aza­macrocyclic ligand 1,4,8,11-tetra­methyl-1,4,8,11-tetra­aza­cyclo­tetra­decane (TMC) has been used to bind a variety of first-row transition metals but to date the crystal structure of the cobalt(II) complex has been missing from this series. The missing cobalt complex chlorido­(1,4,8,11-tetra­methyl-1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N)cobalt(II) chloride dihydrate, [CoCl(C14H32N4)]Cl·2H2O or [CoIICl(TMC)]Cl·2H2O, crystallizes as a purple crystal. This species adopts a distorted square-pyramidal geometry in which the TMC ligand assumes the trans-I configuration and the chloride ion binds in the syn-methyl pocket of the ligand. The CoII ion adopts an S = 3 \over 2 spin state, as measured by the Evans NMR method, and UV–visible spectroscopic studies indicate that the title hydrated salt is stable in solution. Density functional theory (DFT) studies reveal that the geometric parameters of [CoIICl(TMC)]Cl·2H2O are sensitive to the cobalt spin state and correctly predict a change in spin state upon a minor perturbation to the ligand environment.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229617010397/yp3138sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229617010397/yp3138Isup3.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229617010397/yp3138sup4.pdf
Packing diagram, UV-Vis spectra, geometric and hydrogen-bond parameters, optimized coordinates and calculated energies

CCDC reference: 1562037

Computing details top

Data collection: APEX3 (Bruker, 2017); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Chlorido(1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane-κ4N)cobalt(II) chloride dihydrate top
Crystal data top
[CoCl(C14H32N4)]Cl·2H2OF(000) = 900
Mr = 422.30Dx = 1.419 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.2864 (8) ÅCell parameters from 9870 reflections
b = 17.0679 (16) Åθ = 2.5–35.8°
c = 13.9733 (14) ŵ = 1.15 mm1
β = 90.735 (4)°T = 100 K
V = 1976.1 (3) Å3Block, purple
Z = 40.40 × 0.30 × 0.25 mm
Data collection top
Bruker D8 VENTURE Kappa Duo PHOTON 100 CMOS
diffractometer
9577 independent reflections
Radiation source: IµS HB micro-focus sealed tube7769 reflections with I > 2σ(I)
Detector resolution: 10.24 pixels mm-1Rint = 0.043
φ and ω scansθmax = 36.4°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
h = 1313
Tmin = 0.691, Tmax = 0.747k = 2828
72258 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: mixed
wR(F2) = 0.066H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0244P)2 + 0.7824P]
where P = (Fo2 + 2Fc2)/3
9577 reflections(Δ/σ)max = 0.001
224 parametersΔρmax = 0.56 e Å3
4 restraintsΔρmin = 0.56 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Low-temperature diffraction data (φ and ω scans) were collected on a Bruker AXS D8 VENTURE KAPPA diffractometer coupled to a PHOTON 100 CMOS detector with Mo Kα radiation (λ = 0.71073 Å) from an IµS micro-source for the structure of compound (1). The structure was solved by direct methods using SHELXS (Sheldrick, 1990) and refined against F2 on all data by full-matrix least-squares with SHELXL2014 (Sheldrick, 2008) using established refinement techniques (Müller, 2009). All non-H atoms were refined anisotropically.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.51121 (3)0.66061 (2)0.60021 (2)0.01723 (5)
Cl20.06423 (3)0.86258 (2)0.50039 (2)0.01387 (4)
Co10.70186 (2)0.62697 (2)0.71424 (2)0.00774 (3)
N10.92925 (9)0.61319 (5)0.64915 (6)0.01016 (14)
C11.06802 (11)0.64827 (6)0.70353 (7)0.01284 (16)
H1A1.1681310.6380700.6676820.015*
H1B1.0782400.6211000.7659130.015*
C21.05589 (11)0.73585 (6)0.72198 (7)0.01317 (17)
H2A1.0312040.7626590.6606940.016*
H2B1.1621050.7550860.7451780.016*
C30.92830 (11)0.75832 (6)0.79439 (7)0.01311 (17)
H3A0.9444960.7260340.8525840.016*
H3B0.9450200.8137610.8128350.016*
C110.92116 (12)0.64801 (6)0.55156 (7)0.01463 (17)
H11A0.8928340.7036090.5562460.022*
H11B0.8389660.6206060.5132050.022*
H11C1.0263540.6427290.5209500.022*
N20.75794 (9)0.74860 (5)0.76028 (6)0.01052 (14)
C40.64897 (12)0.75884 (6)0.84295 (7)0.01296 (17)
H4A0.5375480.7681260.8191730.016*
H4B0.6832630.8053570.8803330.016*
C50.65108 (11)0.68738 (6)0.90727 (7)0.01222 (16)
H5A0.7606210.6802530.9350320.015*
H5B0.5751000.6951960.9605330.015*
C120.72070 (13)0.81142 (6)0.69011 (8)0.01583 (18)
H12A0.6089370.8059110.6673170.024*
H12B0.7939230.8072280.6358310.024*
H12C0.7346230.8626430.7208110.024*
N30.60402 (9)0.61598 (5)0.85200 (6)0.00892 (13)
C60.65983 (11)0.54640 (6)0.90793 (7)0.01222 (16)
H6A0.6102410.5483720.9719710.015*
H6B0.7782080.5501920.9172750.015*
C70.62092 (12)0.46739 (6)0.86275 (7)0.01314 (17)
H7A0.6395920.4258250.9110570.016*
H7B0.5050310.4663250.8446840.016*
C80.72004 (12)0.44890 (6)0.77465 (7)0.01401 (17)
H8A0.8356870.4561460.7909690.017*
H8B0.7039730.3930540.7579000.017*
C130.42510 (11)0.61438 (6)0.84195 (7)0.01385 (17)
H13A0.3929480.5709520.7999710.021*
H13B0.3874330.6639450.8142050.021*
H13C0.3770450.6071740.9050650.021*
N40.68022 (10)0.49764 (5)0.68876 (6)0.01139 (14)
C90.80575 (12)0.48387 (6)0.61544 (7)0.01512 (18)
H9A0.7650110.5016310.5521620.018*
H9B0.8288000.4270730.6111780.018*
C100.95983 (12)0.52758 (6)0.64065 (7)0.01353 (17)
H10A1.0042030.5074810.7020140.016*
H10B1.0408740.5182200.5904760.016*
C140.52429 (13)0.47017 (6)0.64767 (8)0.01698 (19)
H14A0.4944820.5028960.5925980.025*
H14B0.4404150.4738880.6962700.025*
H14C0.5349600.4155670.6269970.025*
O2W0.12364 (11)1.01349 (5)0.36822 (6)0.02094 (16)
H2W20.0802 (19)1.0482 (9)0.3992 (11)0.031*
H2W10.114 (2)0.9743 (9)0.4022 (11)0.031*
O1W0.26421 (10)0.71355 (5)0.42894 (6)0.01797 (15)
H1W10.3258 (18)0.7025 (9)0.4779 (10)0.027*
H1W20.2118 (18)0.7541 (8)0.4498 (11)0.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01406 (10)0.02120 (12)0.01628 (11)0.00094 (8)0.00644 (8)0.00522 (9)
Cl20.01321 (9)0.01239 (10)0.01603 (10)0.00032 (7)0.00103 (7)0.00044 (8)
Co10.00643 (5)0.00968 (6)0.00711 (5)0.00036 (4)0.00040 (4)0.00065 (4)
N10.0095 (3)0.0107 (3)0.0102 (3)0.0001 (3)0.0018 (3)0.0013 (3)
C10.0078 (3)0.0153 (4)0.0154 (4)0.0008 (3)0.0001 (3)0.0024 (3)
C20.0099 (4)0.0147 (4)0.0149 (4)0.0036 (3)0.0002 (3)0.0019 (3)
C30.0114 (4)0.0140 (4)0.0138 (4)0.0026 (3)0.0018 (3)0.0008 (3)
C110.0164 (4)0.0170 (4)0.0106 (4)0.0008 (3)0.0033 (3)0.0027 (3)
N20.0101 (3)0.0100 (3)0.0114 (3)0.0007 (3)0.0003 (3)0.0010 (3)
C40.0131 (4)0.0113 (4)0.0145 (4)0.0018 (3)0.0023 (3)0.0025 (3)
C50.0127 (4)0.0139 (4)0.0101 (4)0.0006 (3)0.0017 (3)0.0022 (3)
C120.0186 (4)0.0106 (4)0.0182 (5)0.0024 (3)0.0003 (4)0.0041 (3)
N30.0072 (3)0.0104 (3)0.0092 (3)0.0001 (2)0.0004 (2)0.0002 (3)
C60.0120 (4)0.0146 (4)0.0101 (4)0.0003 (3)0.0003 (3)0.0035 (3)
C70.0135 (4)0.0125 (4)0.0135 (4)0.0008 (3)0.0019 (3)0.0039 (3)
C80.0159 (4)0.0110 (4)0.0151 (4)0.0016 (3)0.0023 (3)0.0027 (3)
C130.0075 (3)0.0181 (5)0.0159 (4)0.0004 (3)0.0010 (3)0.0004 (3)
N40.0121 (3)0.0110 (3)0.0111 (3)0.0012 (3)0.0011 (3)0.0005 (3)
C90.0186 (4)0.0125 (4)0.0144 (4)0.0015 (3)0.0055 (3)0.0031 (3)
C100.0135 (4)0.0114 (4)0.0159 (4)0.0022 (3)0.0060 (3)0.0007 (3)
C140.0177 (4)0.0166 (5)0.0165 (4)0.0069 (4)0.0014 (4)0.0022 (4)
O2W0.0299 (4)0.0149 (4)0.0182 (4)0.0042 (3)0.0049 (3)0.0003 (3)
O1W0.0172 (3)0.0177 (4)0.0189 (4)0.0032 (3)0.0026 (3)0.0005 (3)
Geometric parameters (Å, º) top
Cl1—Co12.3022 (3)C12—H12C0.9800
Co1—N32.1066 (8)N3—C131.4877 (12)
Co1—N12.1158 (8)N3—C61.4920 (12)
Co1—N22.2208 (9)C6—C71.5218 (14)
Co1—N42.2427 (9)C6—H6A0.9900
N1—C101.4880 (13)C6—H6B0.9900
N1—C111.4883 (13)C7—C81.5217 (14)
N1—C11.4953 (13)C7—H7A0.9900
C1—C21.5204 (14)C7—H7B0.9900
C1—H1A0.9900C8—N41.4937 (13)
C1—H1B0.9900C8—H8A0.9900
C2—C31.5218 (14)C8—H8B0.9900
C2—H2A0.9900C13—H13A0.9800
C2—H2B0.9900C13—H13B0.9800
C3—N21.4934 (12)C13—H13C0.9800
C3—H3A0.9900N4—C141.4832 (13)
C3—H3B0.9900N4—C91.4880 (12)
C11—H11A0.9800C9—C101.5164 (14)
C11—H11B0.9800C9—H9A0.9900
C11—H11C0.9800C9—H9B0.9900
N2—C121.4828 (13)C10—H10A0.9900
N2—C41.4856 (12)C10—H10B0.9900
C4—C51.5152 (14)C14—H14A0.9800
C4—H4A0.9900C14—H14B0.9800
C4—H4B0.9900C14—H14C0.9800
C5—N31.4919 (12)O2W—H2W20.820 (13)
C5—H5A0.9900O2W—H2W10.825 (13)
C5—H5B0.9900O1W—H1W10.869 (13)
C12—H12A0.9800O1W—H1W20.869 (12)
C12—H12B0.9800
N3—Co1—N1137.57 (3)H12A—C12—H12B109.5
N3—Co1—N284.26 (3)N2—C12—H12C109.5
N1—Co1—N292.53 (3)H12A—C12—H12C109.5
N3—Co1—N491.52 (3)H12B—C12—H12C109.5
N1—Co1—N483.81 (3)C13—N3—C5108.51 (7)
N2—Co1—N4169.13 (3)C13—N3—C6109.67 (7)
N3—Co1—Cl1112.70 (2)C5—N3—C6107.56 (7)
N1—Co1—Cl1109.71 (2)C13—N3—Co1108.07 (6)
N2—Co1—Cl196.12 (2)C5—N3—Co1107.42 (5)
N4—Co1—Cl194.75 (2)C6—N3—Co1115.42 (6)
C10—N1—C11108.94 (8)N3—C6—C7115.18 (8)
C10—N1—C1107.64 (7)N3—C6—H6A108.5
C11—N1—C1109.33 (7)C7—C6—H6A108.5
C10—N1—Co1107.28 (5)N3—C6—H6B108.5
C11—N1—Co1108.64 (6)C7—C6—H6B108.5
C1—N1—Co1114.86 (6)H6A—C6—H6B107.5
N1—C1—C2115.32 (8)C8—C7—C6113.94 (8)
N1—C1—H1A108.4C8—C7—H7A108.8
C2—C1—H1A108.4C6—C7—H7A108.8
N1—C1—H1B108.4C8—C7—H7B108.8
C2—C1—H1B108.4C6—C7—H7B108.8
H1A—C1—H1B107.5H7A—C7—H7B107.7
C1—C2—C3114.11 (8)N4—C8—C7114.74 (8)
C1—C2—H2A108.7N4—C8—H8A108.6
C3—C2—H2A108.7C7—C8—H8A108.6
C1—C2—H2B108.7N4—C8—H8B108.6
C3—C2—H2B108.7C7—C8—H8B108.6
H2A—C2—H2B107.6H8A—C8—H8B107.6
N2—C3—C2114.95 (8)N3—C13—H13A109.5
N2—C3—H3A108.5N3—C13—H13B109.5
C2—C3—H3A108.5H13A—C13—H13B109.5
N2—C3—H3B108.5N3—C13—H13C109.5
C2—C3—H3B108.5H13A—C13—H13C109.5
H3A—C3—H3B107.5H13B—C13—H13C109.5
N1—C11—H11A109.5C14—N4—C9107.26 (8)
N1—C11—H11B109.5C14—N4—C8108.50 (8)
H11A—C11—H11B109.5C9—N4—C8108.42 (8)
N1—C11—H11C109.5C14—N4—Co1116.11 (6)
H11A—C11—H11C109.5C9—N4—Co1102.10 (6)
H11B—C11—H11C109.5C8—N4—Co1113.85 (6)
C12—N2—C4107.79 (8)N4—C9—C10110.88 (8)
C12—N2—C3108.57 (8)N4—C9—H9A109.5
C4—N2—C3108.68 (8)C10—C9—H9A109.5
C12—N2—Co1116.32 (6)N4—C9—H9B109.5
C4—N2—Co1102.02 (6)C10—C9—H9B109.5
C3—N2—Co1112.94 (6)H9A—C9—H9B108.1
N2—C4—C5111.35 (8)N1—C10—C9110.97 (8)
N2—C4—H4A109.4N1—C10—H10A109.4
C5—C4—H4A109.4C9—C10—H10A109.4
N2—C4—H4B109.4N1—C10—H10B109.4
C5—C4—H4B109.4C9—C10—H10B109.4
H4A—C4—H4B108.0H10A—C10—H10B108.0
N3—C5—C4110.45 (8)N4—C14—H14A109.5
N3—C5—H5A109.6N4—C14—H14B109.5
C4—C5—H5A109.6H14A—C14—H14B109.5
N3—C5—H5B109.6N4—C14—H14C109.5
C4—C5—H5B109.6H14A—C14—H14C109.5
H5A—C5—H5B108.1H14B—C14—H14C109.5
N2—C12—H12A109.5H2W2—O2W—H2W1103.8 (16)
N2—C12—H12B109.5H1W1—O1W—H1W2101.5 (14)
C10—N1—C1—C2178.34 (8)C13—N3—C6—C761.68 (10)
C11—N1—C1—C263.46 (10)C5—N3—C6—C7179.50 (8)
Co1—N1—C1—C258.94 (9)Co1—N3—C6—C760.63 (9)
N1—C1—C2—C370.73 (11)N3—C6—C7—C871.35 (11)
C1—C2—C3—N270.86 (11)C6—C7—C8—N469.80 (11)
C2—C3—N2—C1273.00 (10)C7—C8—N4—C1474.47 (10)
C2—C3—N2—C4170.00 (8)C7—C8—N4—C9169.34 (8)
C2—C3—N2—Co157.55 (9)C7—C8—N4—Co156.47 (10)
C12—N2—C4—C5166.95 (8)C14—N4—C9—C10166.18 (8)
C3—N2—C4—C575.56 (10)C8—N4—C9—C1076.84 (10)
Co1—N2—C4—C543.96 (8)Co1—N4—C9—C1043.64 (9)
N2—C4—C5—N357.53 (10)C11—N1—C10—C979.54 (9)
C4—C5—N3—C1379.89 (9)C1—N1—C10—C9162.01 (8)
C4—C5—N3—C6161.54 (7)Co1—N1—C10—C937.89 (9)
C4—C5—N3—Co136.71 (8)N4—C9—C10—N158.26 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···Cl2i0.992.833.7784 (11)160
C3—H3A···Cl2ii0.992.743.7054 (11)166
C11—H11C···O1Wi0.982.663.5203 (13)147
C5—H5A···Cl2ii0.992.763.7452 (10)171
C12—H12A···Cl10.982.773.3409 (11)118
C7—H7A···Cl2iii0.992.943.6790 (10)132
C8—H8A···O2Wii0.992.663.6324 (14)168
C13—H13C···Cl2iv0.982.973.7640 (10)138
C9—H9B···O1Wv0.992.583.4736 (13)150
C10—H10A···O2Wii0.992.543.5121 (14)168
C14—H14A···Cl10.982.703.3189 (12)122
O2W—H2W2···Cl2vi0.82 (1)2.40 (1)3.2158 (9)173 (2)
O2W—H2W1···Cl20.83 (1)2.39 (1)3.2110 (9)175 (2)
O1W—H1W1···Cl10.87 (1)2.39 (1)3.2568 (9)173 (1)
O1W—H1W2···Cl20.87 (1)2.33 (1)3.2024 (9)178 (1)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+3/2, z+1/2; (iii) x+1, y1/2, z+3/2; (iv) x, y+3/2, z+1/2; (v) x+1, y+1, z+1; (vi) x, y+2, z+1.
Comparison of experimental and calculated geometric parameters (Å) of complex (1). top
ExperimentalDFT
Cl1—Co12.3022 (3)2.3163
Co1—N32.1066 (8)2.1008
Co1—N12.1158 (8)2.1008
Co1—N22.2208 (9)2.1980
Co1—N42.2427 (9)2.1981
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds