Download citation
Download citation
link to html
L-Cysteine hydrogen fluoride, or bis­(L-cysteinium) difluoride-L-cysteine-hydro­gen fluoride (1/1/1), 2C3H8NO2S+·2F-·C3H7NO2S·HF or L-Cys+(L-Cys...L-Cys+)F-(F-...H-F), provides the first example of a structure with cations of the `triglycine sulfate' type, i.e. A+(A...A+) (where A and A+ are the zwitterionic and cationic states of an amino acid, respectively), without a doubly charged counter-ion. The salt crystallizes in the monoclinic system with the space group P21. The dimeric (L-Cys...L-Cys+) cation and the dimeric (F-...H-F) anion are formed via strong O-H...O or F-H...F hydrogen bonds, respectively, with very short O...O [2.4438 (19) Å] and F...F distances [2.2676 (17) Å]. The F...F distance is significantly shorter than in solid hydrogen fluoride. Additionally, there is another very short hydrogen bond, of O-H...F type, formed by a L-cysteinium cation and a fluoride ion. The corresponding O...F distance of 2.3412 (19) Å seems to be the shortest among O-H...F and F-H...O hydrogen bonds known to date. The single-crystal X-ray diffraction study was complemented by IR spectroscopy. Of special inter­est was the spectral region of vibrations related to the above-mentioned hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229615013601/yf3089sup1.cif
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229615013601/yf3089Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229615013601/yf3089sup3.pdf
Supplementary material

CCDC reference: 1016828

Computing details top

Data collection: X-AREA (Stoe & Cie, 2007); cell refinement: X-AREA (Stoe & Cie, 2007); data reduction: X-RED (Stoe & Cie, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and X-STEP32 (Stoe & Cie, 2000); molecular graphics: Mercury (Macrae et al., 2006) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Bis(L-cysteinium) difluoride–L-cysteine–hydrogen fluoride (1/1/1) top
Crystal data top
2C3H8NO2S+·2F·C3H7NO2S·HFF(000) = 444
Mr = 423.52Dx = 1.541 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 11.8730 (6) ÅCell parameters from 20131 reflections
b = 5.2291 (2) Åθ = 1.8–29.6°
c = 15.3459 (9) ŵ = 0.47 mm1
β = 106.602 (4)°T = 150 K
V = 913.03 (8) Å3Needle, colorless
Z = 20.47 × 0.15 × 0.07 mm
Data collection top
Stoe IPDS 2
diffractometer
4386 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus4013 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.033
Detector resolution: 6.67 pixels mm-1θmax = 28.3°, θmin = 1.8°
rotation method scansh = 1515
Absorption correction: numerical
(X-RED; Stoe & Cie, 2007)
k = 66
Tmin = 0.874, Tmax = 0.969l = 2020
14224 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Only H-atom coordinates refined
wR(F2) = 0.064 w = 1/[σ2(Fo2) + (0.0372P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4386 reflectionsΔρmax = 0.46 e Å3
289 parametersΔρmin = 0.43 e Å3
1 restraintAbsolute structure: Flack (1983), 1888 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (5)
Special details top

Experimental. Single crystal X-ray diffraction experiments was performed using a STOE IPDS-II diffractometer, equipped with a molybdenum X-ray tube (λ = 0.71073 Å) and an image plate detector. Data were collected at 150 K. Data collection, indexing and integration of reflections as well as data reduction were performed using the X-Area software (Stoe & Cie GmbH, 2007). Crystal structure was refined using SHELXL (Sheldrick, 1997; Sheldrick, 2008) integrated in the X-Step32 shell (Stoe & Cie GmbH, 2000).

Parameters characterizing data collection and refinement, as well as crystal data, are summarized in Table 1. Mercury (Macrae et al., 2006), ORTEP-3 (Farrugia, 2012) and PLATON (Spek, 2003) were used for visualization and analysis of the crystal structures

The structural data for (I) at 150 K are available as Supporting information, and have been deposited as a CIF to the Cambridge Crystallographic Data Base (CCDC No. 1016828). It can be downloaded freely from the following site: https://www.ccdc.cam.ac.uk.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S1B0.04538 (4)0.21024 (9)0.19770 (3)0.02548 (10)
H7B0.1214 (19)0.080 (5)0.2302 (15)0.031*
S1A0.62700 (4)1.61011 (10)0.68321 (4)0.03243 (12)
H7A0.626 (2)1.710 (5)0.6145 (16)0.039*
F10.57027 (10)1.0857 (2)0.83518 (8)0.0320 (3)
H1F0.548 (2)0.905 (5)0.8599 (18)0.038*
O2B0.06232 (12)0.7961 (3)0.45929 (9)0.0261 (3)
O2A0.31075 (12)0.9714 (3)0.66065 (10)0.0289 (3)
N1A0.39684 (14)1.4267 (3)0.72580 (11)0.0208 (3)
H5A0.430 (2)1.322 (5)0.7698 (16)0.025*
H4A0.321 (2)1.452 (5)0.7212 (15)0.025*
H6A0.433 (2)1.561 (5)0.7446 (15)0.025*
F30.17077 (11)0.0244 (3)0.28363 (10)0.0531 (5)
O1A0.34290 (13)1.0371 (3)0.52546 (10)0.0319 (3)
H8A0.290 (2)0.862 (5)0.4988 (17)0.038*
C1A0.54278 (16)1.3215 (4)0.64300 (13)0.0229 (4)
H1A0.5735 (19)1.185 (5)0.6862 (15)0.028*
H2A0.555 (2)1.288 (5)0.5864 (16)0.028*
C1B0.09375 (15)0.4669 (3)0.27949 (12)0.0187 (3)
H2B0.1742 (19)0.491 (4)0.2887 (14)0.022*
H1B0.0516 (18)0.609 (4)0.2551 (14)0.022*
O1B0.23874 (10)0.6526 (3)0.45526 (9)0.0266 (3)
C3B0.12722 (14)0.6443 (3)0.43553 (10)0.0189 (3)
C2B0.07312 (14)0.4223 (3)0.37209 (11)0.0173 (3)
H3B0.1067 (18)0.270 (4)0.4007 (14)0.021*
C2A0.41244 (15)1.3502 (3)0.63704 (11)0.0193 (3)
H3A0.3759 (19)1.493 (5)0.5936 (15)0.023*
N1B0.05445 (14)0.4043 (4)0.36405 (11)0.0251 (3)
H5B0.088 (2)0.554 (5)0.3412 (17)0.030*
H4B0.062 (2)0.382 (5)0.4187 (18)0.030*
H6B0.084 (2)0.281 (5)0.3301 (18)0.030*
C3A0.34884 (14)1.0962 (4)0.60840 (11)0.0211 (3)
S1C0.13977 (4)0.66918 (9)0.06077 (4)0.03172 (12)
H7C0.217 (2)0.644 (5)0.1156 (16)0.038*
N1C0.37888 (13)0.8327 (3)0.00018 (11)0.0231 (3)
H6C0.3788 (19)0.717 (5)0.0378 (16)0.028*
H4C0.417 (2)0.794 (5)0.0406 (17)0.028*
H5C0.412 (2)0.970 (5)0.0290 (16)0.028*
O1C0.16396 (11)1.1844 (3)0.16936 (9)0.0302 (3)
H8C0.170 (2)1.309 (5)0.2111 (18)0.036*
O2C0.35190 (12)1.2685 (3)0.09541 (10)0.0315 (3)
C1C0.18091 (17)0.9535 (4)0.00988 (14)0.0256 (4)
H2C0.112 (2)1.034 (5)0.0198 (16)0.031*
H1C0.217 (2)1.064 (5)0.0558 (16)0.031*
C3C0.26318 (14)1.1399 (4)0.10910 (11)0.0210 (3)
C2C0.25708 (14)0.9019 (3)0.05326 (12)0.0203 (3)
H3C0.2270 (18)0.760 (4)0.0936 (15)0.024*
F20.50953 (10)0.7137 (2)0.88290 (7)0.0295 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1B0.0283 (2)0.0276 (2)0.0219 (2)0.00605 (18)0.00945 (16)0.00723 (18)
S1A0.0280 (2)0.0356 (3)0.0360 (3)0.0151 (2)0.01298 (19)0.0139 (2)
F10.0364 (6)0.0298 (6)0.0288 (6)0.0032 (5)0.0077 (5)0.0032 (5)
O2B0.0291 (7)0.0257 (7)0.0238 (6)0.0016 (5)0.0080 (5)0.0040 (5)
O2A0.0316 (7)0.0277 (7)0.0287 (7)0.0095 (6)0.0105 (5)0.0011 (6)
N1A0.0194 (7)0.0232 (8)0.0199 (7)0.0014 (6)0.0056 (6)0.0027 (6)
F30.0325 (7)0.0843 (11)0.0508 (8)0.0328 (7)0.0252 (6)0.0442 (8)
O1A0.0399 (8)0.0330 (8)0.0242 (7)0.0170 (6)0.0116 (6)0.0102 (6)
C1A0.0206 (8)0.0230 (9)0.0273 (9)0.0045 (7)0.0101 (7)0.0048 (7)
C1B0.0177 (8)0.0180 (8)0.0205 (8)0.0014 (6)0.0056 (6)0.0013 (6)
O1B0.0185 (5)0.0266 (7)0.0310 (6)0.0044 (5)0.0012 (5)0.0087 (6)
C3B0.0219 (7)0.0180 (8)0.0156 (7)0.0017 (6)0.0034 (5)0.0000 (6)
C2B0.0158 (7)0.0184 (8)0.0171 (8)0.0021 (6)0.0036 (6)0.0010 (6)
C2A0.0198 (8)0.0208 (8)0.0172 (8)0.0020 (6)0.0053 (6)0.0015 (6)
N1B0.0209 (7)0.0364 (9)0.0184 (8)0.0091 (7)0.0061 (6)0.0028 (7)
C3A0.0175 (7)0.0253 (9)0.0205 (8)0.0041 (7)0.0052 (6)0.0024 (7)
S1C0.0302 (2)0.0300 (3)0.0389 (3)0.00468 (19)0.01631 (19)0.0079 (2)
N1C0.0185 (7)0.0265 (8)0.0246 (8)0.0007 (6)0.0067 (6)0.0063 (7)
O1C0.0200 (6)0.0308 (7)0.0343 (7)0.0013 (6)0.0009 (5)0.0093 (6)
O2C0.0235 (6)0.0343 (8)0.0320 (7)0.0086 (6)0.0006 (5)0.0129 (6)
C1C0.0247 (9)0.0204 (9)0.0350 (10)0.0005 (7)0.0140 (8)0.0039 (8)
C3C0.0198 (7)0.0224 (9)0.0206 (8)0.0001 (6)0.0056 (6)0.0000 (7)
C2C0.0159 (7)0.0201 (8)0.0241 (8)0.0004 (6)0.0047 (6)0.0003 (7)
F20.0333 (5)0.0288 (6)0.0264 (5)0.0009 (5)0.0086 (4)0.0003 (5)
Geometric parameters (Å, º) top
S1B—C1B1.8153 (18)C2B—N1B1.487 (2)
S1B—H7B1.13 (2)C2B—H3B0.94 (2)
S1A—C1A1.8183 (19)C2A—C3A1.529 (2)
S1A—H7A1.17 (2)C2A—H3A1.01 (2)
F1—H1F1.08 (3)N1B—H5B0.90 (3)
O2B—C3B1.232 (2)N1B—H4B0.87 (3)
O2A—C3A1.217 (2)N1B—H6B0.84 (3)
N1A—C2A1.481 (2)S1C—C1C1.810 (2)
N1A—H5A0.87 (2)S1C—H7C1.06 (2)
N1A—H4A0.90 (2)N1C—C2C1.488 (2)
N1A—H6A0.83 (3)N1C—H6C0.84 (3)
O1A—C3A1.292 (2)N1C—H4C0.89 (3)
O1A—H8A1.12 (3)N1C—H5C0.88 (3)
C1A—C2A1.531 (2)O1C—C3C1.294 (2)
C1A—H1A0.97 (2)O1C—H8C0.93 (3)
C1A—H2A0.94 (2)O2C—C3C1.216 (2)
C1B—C2B1.527 (2)C1C—C2C1.527 (3)
C1B—H2B0.93 (2)C1C—H2C0.91 (2)
C1B—H1B0.91 (2)C1C—H1C0.92 (2)
O1B—C3B1.272 (2)C3C—C2C1.524 (3)
O1B—H8A1.34 (3)C2C—H3C0.97 (2)
C3B—C2B1.533 (2)F2—H1F1.20 (3)
C1B—S1B—H7B94.9 (12)C3A—C2A—H3A111.7 (13)
C1A—S1A—H7A101.6 (13)C1A—C2A—H3A110.3 (12)
C2A—N1A—H5A113.2 (15)C2B—N1B—H5B108.0 (15)
C2A—N1A—H4A110.8 (14)C2B—N1B—H4B107.8 (15)
H5A—N1A—H4A112 (2)H5B—N1B—H4B109 (2)
C2A—N1A—H6A111.1 (16)C2B—N1B—H6B109.5 (17)
H5A—N1A—H6A101 (2)H5B—N1B—H6B111 (2)
H4A—N1A—H6A108 (2)H4B—N1B—H6B111 (2)
C3A—O1A—H8A115.0 (13)O2A—C3A—O1A126.52 (17)
C2A—C1A—S1A112.78 (13)O2A—C3A—C2A121.49 (15)
C2A—C1A—H1A106.8 (13)O1A—C3A—C2A111.98 (15)
S1A—C1A—H1A108.4 (14)C1C—S1C—H7C99.4 (14)
C2A—C1A—H2A112.6 (14)C2C—N1C—H6C111.1 (15)
S1A—C1A—H2A104.8 (15)C2C—N1C—H4C106.4 (15)
H1A—C1A—H2A112 (2)H6C—N1C—H4C115 (2)
C2B—C1B—S1B115.29 (12)C2C—N1C—H5C108.0 (15)
C2B—C1B—H2B108.0 (13)H6C—N1C—H5C109 (2)
S1B—C1B—H2B108.1 (14)H4C—N1C—H5C107 (2)
C2B—C1B—H1B106.9 (13)C3C—O1C—H8C112.6 (15)
S1B—C1B—H1B106.8 (14)C2C—C1C—S1C114.23 (14)
H2B—C1B—H1B111.8 (19)C2C—C1C—H2C111.7 (15)
C3B—O1B—H8A116.1 (11)S1C—C1C—H2C106.4 (16)
O2B—C3B—O1B127.20 (16)C2C—C1C—H1C111.7 (15)
O2B—C3B—C2B119.46 (14)S1C—C1C—H1C108.1 (15)
O1B—C3B—C2B113.30 (14)H2C—C1C—H1C104 (2)
N1B—C2B—C1B111.28 (13)O2C—C3C—O1C126.18 (17)
N1B—C2B—C3B109.43 (14)O2C—C3C—C2C122.16 (15)
C1B—C2B—C3B109.01 (13)O1C—C3C—C2C111.65 (15)
N1B—C2B—H3B105.7 (13)N1C—C2C—C3C108.15 (14)
C1B—C2B—H3B113.8 (13)N1C—C2C—C1C110.79 (15)
C3B—C2B—H3B107.5 (13)C3C—C2C—C1C110.15 (15)
N1A—C2A—C3A108.53 (14)N1C—C2C—H3C106.7 (13)
N1A—C2A—C1A111.18 (14)C3C—C2C—H3C109.5 (13)
C3A—C2A—C1A109.86 (14)C1C—C2C—H3C111.4 (13)
N1A—C2A—H3A105.2 (13)
S1B—C1B—C2B—N1B63.75 (18)C1A—C2A—C3A—O2A111.21 (19)
S1B—C1B—C2B—C3B175.48 (11)N1A—C2A—C3A—O1A169.92 (15)
O2B—C3B—C2B—N1B10.8 (2)C1A—C2A—C3A—O1A68.33 (19)
O1B—C3B—C2B—N1B171.54 (15)O2C—C3C—C2C—N1C12.9 (2)
O2B—C3B—C2B—C1B111.15 (17)O1C—C3C—C2C—N1C168.12 (15)
O1B—C3B—C2B—C1B66.56 (18)O2C—C3C—C2C—C1C108.3 (2)
S1A—C1A—C2A—N1A56.45 (19)O1C—C3C—C2C—C1C70.7 (2)
S1A—C1A—C2A—C3A176.60 (12)S1C—C1C—C2C—N1C73.53 (18)
N1A—C2A—C3A—O2A10.5 (2)S1C—C1C—C2C—C3C166.86 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H4A···F3i0.90 (2)1.76 (2)2.659 (2)175 (2)
N1A—H5A···F10.87 (2)2.08 (3)2.874 (2)150 (2)
N1A—H5A···O2Cii0.87 (2)2.51 (2)3.055 (2)120.9 (19)
N1A—H6A···F2iii0.83 (3)2.21 (2)2.830 (2)132 (2)
N1A—H6A···O2Aiii0.83 (3)2.70 (2)3.094 (2)110.6 (18)
O1A—H8A···O1B1.12 (3)1.34 (3)2.4438 (19)169 (2)
S1A—H7A···O1Aiv1.17 (2)2.45 (3)3.3440 (15)130.9 (18)
N1B—H4B···O2Bv0.87 (3)1.93 (3)2.797 (2)172 (2)
N1B—H5B···F3iii0.90 (3)2.47 (3)3.374 (3)177 (2)
N1B—H6B···F30.84 (3)1.93 (3)2.735 (2)162 (2)
S1B—H7B···S1Avi1.13 (2)2.91 (2)3.8318 (7)139.3 (16)
N1C—H4C···F2vii0.89 (3)1.87 (3)2.757 (2)175 (2)
N1C—H5C···F2iv0.88 (3)1.90 (3)2.757 (2)166 (2)
N1C—H6C···F1viii0.84 (3)1.99 (3)2.751 (2)150 (2)
O1C—H8C···F3ix0.93 (3)1.42 (3)2.3412 (19)172 (3)
S1C—H7C···F1viii1.06 (2)2.44 (2)3.3840 (12)147.9 (18)
F1—H1F···F21.08 (3)1.20 (3)2.2676 (17)172 (3)
N1B—H5B···O1Cx0.90 (3)2.62 (3)3.247 (2)127.0 (19)
Symmetry codes: (i) x, y+3/2, z+1; (ii) x, y, z+1; (iii) x, y+1, z; (iv) x+1, y+1/2, z+1; (v) x, y1/2, z+1; (vi) x+1, y3/2, z+1; (vii) x, y, z1; (viii) x+1, y1/2, z+1; (ix) x, y+3/2, z; (x) x, y1/2, z.
Bond lengths (in Å) and bond and torsion angles (°) for L-cysteine hydrogen fluoride top
C3a—O1a1.292 (2)C3b—O1b1.272 (2)C3c—O1c1.294 (2)
C3a—O2a1.217 (2)C3b—O2b1.232 (2)C3c—O2c1.216 (2)
C2a—C3a1.529 (2)C2b—C3b1.533 (2)C2c—C3c1.524 (3)
C2a—N1a1.481 (2)C2b—N1b1.487 (2)C2c—N1c1.488 (2)
C2a—C1a1.531 (2)C2b—C1b1.527 (2)C2c—C1c1.527 (3)
C1a—S1a1.8183 (19)C1b—S1b1.8153 (18)C1c—S1c1.810 (2)
O1a—C3a—O2a126.52 (17)O1b—C3b—O2b127.20 (16)O1c—C3c—O2c126.18 (17)
O1a—C3a—C2a111.98 (15)O1b—C3b—C2b113.30 (14)O1c—C3c—C2c111.65 (15)
O2a—C3a—C2a121.49 (15)O2b—C3b—C2b119.46 (14)O2c—C3c—C2c122.16 (15)
C3a—C2a—C1a109.86 (14)C3b—C2b—C1b109.01 (13)C3c—C2c—C1c110.15 (15)
N1a—C2a—C3a108.53 (14)N1b—C2b—C3b109.43 (14)N1c—C2c—C3c108.15 (14)
N1a—C2a—C1a111.18 (14)N1b—C2b—C1b111.28 (13)N1c—C2c—C1c110.79 (15)
C2a—C1a—S1a112.78 (13)C2b—C1b—S1b115.29 (12)C2c—C1c—S1c114.23 (14)
S1a—C1a—C2a—N1a-56.45 (19)S1b—C1b—C2b—N1b-63.75 (18)S1c—C1c—C2c—N1c-73.53 (18)
S1a—C1a—C2a—C3a-176.60 (12)S1b—C1b—C2b—C3b175.48 (11)S1c—C1c—C2c—C3c166.86 (12)
N1a—C2a—C3a—O2a-10.5 (2)N1b—C2b—C3b—O2b-10.8 (2)N1c—C2c—C3c—O2c-12.9 (2)
N1a—C2a—C3a—O1a169.92 (15)N1b—C2b—C3b—O1b171.54 (15)N1c—C2c—C3c—O1c168.12 (15)
C1a—C2a—C3a—O2a111.21 (19)C1b—C2b—C3b—O2b111.15 (17)C1c—C2c—C3c—O2c108.3 (2)
C1a—C2a—C3a—O1a-68.33 (19)C1b—C2b—C3b—O1b-66.56 (18)C1c—C2c—C3c—O1c-70.7 (2)
Wavenumbers (in cm-1) and assignment of peaks in the IR spectra of L-cysteinium chloride monohydrate, (III), (L-cysteine···L-cysteinium) chloride, (II), and L-cysteine hydrogen fluoride, (I) top
(III)(II)(I)Assignment
3372ν(OH) H2O
3033, 2993, 29433023, 2965, 2918ν(NH), ν(CH),
2878ν(OH)
3246, 3218ν(NH)
3051, 3035ν(NH)
2983, 2942ν(CH)
2646, 26142684, 2631, 26042661combi
25642557, 25422566, 2557 (sh), 2546 (sh)ν(SH)
2527, 2443, 2420, 2091, 1999, 19721918combi
174017081721 (sh), 1693ν(C=O)
16741682νas(COO-)
1645δ(H2O)
1622, 15701606, 15781609δas(NH3+)
15191514, 14871516δs(NH3+)
1429, 13991427, 14001418, 1398δ(CH2)
13751373νs(COO-)
1350, 13141332, 1293 (sh)1326
127312721268ω(CH2)
1220, 12061218, 12011195τ(CH2)
11411138, 11271150ρ(NH3+)
1107, 10591100, 10621093
991, 931988, 962982S—H in-plane bend
869, 838835 (sh), 862864δ(COO-)
777804, 791800ω(COO-)
738761766ρ(CH2)
682674684ν(C-S)
640, 610593644
525568564, 540torsion NH3+
492, 459498, 457
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds