Download citation
Download citation
link to html
Two isostructural diarsenates, SrZnAs2O7 (strontium zinc diarsenate), (I), and BaCuAs2O7 [barium copper(II) diarsenate], (II), have been synthesized under hydro­thermal conditions and characterized by single-crystal X-ray diffraction. The three-dimensional open-framework crystal structure consists of corner-sharing M2O5 (M2 = Zn or Cu) square pyramids and diarsenate (As2O7) groups. Each As2O7 group shares its five corners with five different M2O5 square pyramids. The resulting framework delimits two types of tunnels aligned parallel to the [010] and [100] directions where the large divalent nine-coordinated M1 (M1 = Sr or Ba) cations are located. The geometrical characteristics of the M1O9, M2O5 and As2O7 groups of known isostructural diarsenates, adopting the general formula M1IIM2IIAs2O7 (M1II = Sr, Ba, Pb; M2II = Mg, Co, Cu, Zn) and crystallizing in the space group P21/n, are presented and discussed.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229615005616/sk3577sup1.cif
Contains datablocks SrZnAs2O7, BaCuAs2O7

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229615005616/sk3577SrZnAs2O7sup2.hkl
Contains datablock SrZnAs2O7

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229615005616/sk3577BaCuAs2O7sup3.hkl
Contains datablock BaCuAs2O7

CCDC references: 1054886; 1054885

Computing details top

For both compounds, data collection: COLLECT (Nonius, 2002); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski et al., 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999). Program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015), WinGX (Farrugia, 2012) and PLATON (Spek, 2009) for SrZnAs2O7; SHELXL2013 (Sheldrick, 2015) and WinGX (Farrugia, 2012) for BaCuAs2O7. For both compounds, molecular graphics: ATOMS (Dowty, 2000); software used to prepare material for publication: publCIF (Westrip, 2010).

(SrZnAs2O7) Strontium zinc diarsenic heptaoxide top
Crystal data top
SrZnAs2O7Z = 4
Mr = 414.85F(000) = 760
Monoclinic, P21/nDx = 4.568 Mg m3
a = 5.5114 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.3524 (17) ŵ = 23.69 mm1
c = 13.106 (3) ÅT = 298 K
β = 91.01 (3)°Prismatic, blue-green
V = 603.2 (2) Å30.16 × 0.03 × 0.02 mm
Data collection top
Nonius KappaCCD
diffractometer
1555 reflections with I > 2σ(I)
Radiation source: fine-focus sealed X-ray tubeRint = 0.062
φ and ω scansθmax = 30.5°, θmin = 2.9°
Absorption correction: multi-scan
(Otwinowski & Minor, 1997)
h = 77
Tmin = 0.668, Tmax = 1.000k = 1111
7055 measured reflectionsl = 1818
1835 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.032Secondary atom site location: difference Fourier map
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0401P)2 + 1.0702P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
1834 reflectionsΔρmax = 1.35 e Å3
100 parametersΔρmin = 1.20 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sr10.20949 (7)0.67034 (5)0.21859 (3)0.01119 (11)
As10.24486 (7)0.47658 (5)0.33857 (3)0.00824 (11)
As20.67278 (7)0.69498 (5)0.01457 (3)0.00820 (11)
Zn10.83776 (9)0.35654 (6)0.10963 (4)0.01061 (12)
O10.9575 (5)0.3826 (4)0.2663 (2)0.0117 (6)
O20.4720 (5)0.4537 (4)0.2972 (3)0.0153 (7)
O30.6522 (6)0.1665 (4)0.1521 (3)0.0124 (6)
O40.2204 (6)0.3987 (4)0.4618 (2)0.0132 (6)
O51.1990 (5)0.3270 (4)0.0989 (2)0.0119 (6)
O60.8294 (5)0.5986 (4)0.1072 (2)0.0128 (6)
O70.6245 (5)0.3445 (4)0.0251 (2)0.0112 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr10.00753 (19)0.0120 (2)0.0140 (2)0.00041 (14)0.00140 (15)0.00130 (15)
As10.00647 (19)0.0078 (2)0.0104 (2)0.00031 (14)0.00097 (15)0.00028 (15)
As20.0062 (2)0.0096 (2)0.0088 (2)0.00015 (14)0.00062 (15)0.00011 (15)
Zn10.0082 (2)0.0101 (2)0.0134 (3)0.00048 (18)0.00143 (18)0.00016 (19)
O10.0082 (14)0.0150 (15)0.0118 (15)0.0032 (11)0.0010 (12)0.0016 (12)
O20.0066 (14)0.0137 (16)0.0253 (19)0.0001 (11)0.0055 (13)0.0007 (13)
O30.0118 (15)0.0063 (14)0.0189 (16)0.0007 (11)0.0004 (12)0.0015 (12)
O40.0183 (15)0.0094 (15)0.0118 (15)0.0033 (12)0.0005 (12)0.0006 (12)
O50.0077 (14)0.0174 (16)0.0106 (15)0.0000 (11)0.0002 (11)0.0002 (12)
O60.0117 (15)0.0104 (15)0.0161 (16)0.0004 (11)0.0053 (12)0.0015 (12)
O70.0044 (13)0.0157 (16)0.0136 (15)0.0011 (11)0.0001 (11)0.0015 (13)
Geometric parameters (Å, º) top
Sr1—O22.525 (3)Zn1—O31.973 (3)
Sr1—O1i2.557 (3)Zn1—O52.013 (3)
Sr1—O2ii2.576 (3)Zn1—O62.023 (3)
Sr1—O6iii2.602 (3)Zn1—O72.106 (3)
Sr1—O3ii2.640 (3)Zn1—O12.157 (3)
Sr1—O7iv2.714 (3)Zn1—Sr1vii3.6059 (9)
Sr1—O5i2.765 (3)Zn1—Sr1viii3.6762 (11)
Sr1—O1iii2.851 (3)O1—As1vii1.671 (3)
Sr1—O5iii3.268 (3)O1—Sr1viii2.557 (3)
Sr1—As13.3913 (9)O1—Sr1vii2.851 (3)
Sr1—Zn1iii3.6059 (9)O2—As1vii1.654 (3)
Sr1—Zn1i3.6762 (11)O2—Sr1ix2.576 (3)
As1—O2iii1.654 (3)O3—As1ix1.670 (3)
As1—O3ii1.670 (3)O3—Sr1ix2.640 (3)
As1—O1iii1.671 (3)O4—As2ix1.749 (3)
As1—O41.744 (3)O5—As2vi1.669 (3)
As1—Sr1v3.6869 (8)O5—Sr1viii2.765 (3)
As1—Sr1iii3.7374 (10)O5—Sr1vii3.268 (3)
As2—O5vi1.669 (3)O6—Sr1vii2.602 (3)
As2—O7iv1.679 (3)O7—As2iv1.679 (3)
As2—O61.682 (3)O7—Sr1iv2.714 (3)
As2—O4ii1.749 (3)
O2—Sr1—O1i93.44 (10)O2iii—As1—Sr1127.11 (12)
O2—Sr1—O2ii155.50 (7)O3ii—As1—Sr149.74 (11)
O1i—Sr1—O2ii69.30 (10)O1iii—As1—Sr157.05 (11)
O2—Sr1—O6iii120.91 (10)O4—As1—Sr1124.17 (11)
O1i—Sr1—O6iii140.59 (10)O2iii—As1—Sr1v37.37 (11)
O2ii—Sr1—O6iii81.88 (10)O3ii—As1—Sr1v152.14 (11)
O2—Sr1—O3ii99.39 (10)O1iii—As1—Sr1v91.54 (11)
O1i—Sr1—O3ii120.53 (10)O4—As1—Sr1v88.37 (11)
O2ii—Sr1—O3ii76.47 (10)Sr1—As1—Sr1v138.830 (16)
O6iii—Sr1—O3ii75.40 (10)O2iii—As1—Sr1iii33.36 (11)
O2—Sr1—O7iv98.52 (11)O3ii—As1—Sr1iii82.08 (11)
O1i—Sr1—O7iv81.41 (10)O1iii—As1—Sr1iii120.33 (11)
O2ii—Sr1—O7iv95.96 (10)O4—As1—Sr1iii126.83 (11)
O6iii—Sr1—O7iv75.32 (9)Sr1—As1—Sr1iii101.16 (2)
O3ii—Sr1—O7iv150.51 (10)Sr1v—As1—Sr1iii70.374 (18)
O2—Sr1—O5i83.80 (10)O5vi—As2—O7iv118.74 (15)
O1i—Sr1—O5i59.01 (10)O5vi—As2—O6111.75 (16)
O2ii—Sr1—O5i72.49 (10)O7iv—As2—O6109.62 (15)
O6iii—Sr1—O5i136.65 (10)O5vi—As2—O4ii101.56 (15)
O3ii—Sr1—O5i65.08 (9)O7iv—As2—O4ii108.69 (15)
O7iv—Sr1—O5i140.40 (9)O6—As2—O4ii105.33 (15)
O2—Sr1—O1iii65.43 (9)O5vi—As2—Sr1159.71 (11)
O1i—Sr1—O1iii156.84 (6)O7iv—As2—Sr141.43 (11)
O2ii—Sr1—O1iii127.02 (9)O6—As2—Sr178.79 (11)
O6iii—Sr1—O1iii62.52 (9)O4ii—As2—Sr191.67 (11)
O3ii—Sr1—O1iii58.16 (9)O3—Zn1—O5116.04 (13)
O7iv—Sr1—O1iii109.88 (9)O3—Zn1—O6142.82 (13)
O5i—Sr1—O1iii106.95 (9)O5—Zn1—O698.26 (13)
O2—Sr1—O5iii64.66 (10)O3—Zn1—O785.04 (13)
O1i—Sr1—O5iii130.69 (9)O5—Zn1—O7118.29 (12)
O2ii—Sr1—O5iii139.81 (9)O6—Zn1—O791.26 (12)
O6iii—Sr1—O5iii61.41 (9)O3—Zn1—O187.94 (13)
O3ii—Sr1—O5iii106.87 (9)O5—Zn1—O178.02 (12)
O7iv—Sr1—O5iii60.98 (9)O6—Zn1—O185.46 (12)
O5i—Sr1—O5iii146.28 (9)O7—Zn1—O1163.69 (12)
O1iii—Sr1—O5iii50.28 (8)O3—Zn1—Sr1vii140.05 (10)
O2—Sr1—As183.76 (7)O5—Zn1—Sr1vii63.96 (9)
O1i—Sr1—As1146.09 (7)O6—Zn1—Sr1vii44.96 (8)
O2ii—Sr1—As1100.76 (7)O7—Zn1—Sr1vii132.18 (9)
O6iii—Sr1—As163.68 (7)O1—Zn1—Sr1vii52.23 (9)
O3ii—Sr1—As128.87 (7)O3—Zn1—Sr1viii80.60 (9)
O7iv—Sr1—As1132.48 (7)O5—Zn1—Sr1viii47.89 (9)
O5i—Sr1—As187.12 (7)O6—Zn1—Sr1viii116.59 (9)
O1iii—Sr1—As129.47 (6)O7—Zn1—Sr1viii148.87 (9)
O5iii—Sr1—As178.27 (6)O1—Zn1—Sr1viii42.84 (8)
O2—Sr1—Zn1iii87.59 (8)Sr1vii—Zn1—Sr1viii71.96 (2)
O1i—Sr1—Zn1iii159.49 (7)As1vii—O1—Zn1113.01 (15)
O2ii—Sr1—Zn1iii114.76 (7)As1vii—O1—Sr1viii140.09 (17)
O6iii—Sr1—Zn1iii33.32 (7)Zn1—O1—Sr1viii102.17 (12)
O3ii—Sr1—Zn1iii79.36 (7)As1vii—O1—Sr1vii93.48 (13)
O7iv—Sr1—Zn1iii78.19 (7)Zn1—O1—Sr1vii91.04 (11)
O5i—Sr1—Zn1iii141.29 (7)Sr1viii—O1—Sr1vii104.45 (10)
O1iii—Sr1—Zn1iii36.73 (6)As1vii—O2—Sr1125.53 (17)
O5iii—Sr1—Zn1iii33.60 (5)As1vii—O2—Sr1ix119.69 (16)
As1—Sr1—Zn1iii54.392 (17)Sr1—O2—Sr1ix114.01 (11)
O2—Sr1—Zn1i71.08 (8)As1ix—O3—Zn1128.72 (18)
O1i—Sr1—Zn1i34.99 (7)As1ix—O3—Sr1ix101.39 (14)
O2ii—Sr1—Zn1i85.35 (7)Zn1—O3—Sr1ix124.90 (14)
O6iii—Sr1—Zn1i166.41 (7)As1—O4—As2ix122.39 (18)
O3ii—Sr1—Zn1i97.12 (7)As2vi—O5—Zn1120.70 (17)
O7iv—Sr1—Zn1i110.80 (7)As2vi—O5—Sr1viii130.19 (16)
O5i—Sr1—Zn1i32.70 (6)Zn1—O5—Sr1viii99.40 (12)
O1iii—Sr1—Zn1i123.39 (6)As2vi—O5—Sr1vii121.35 (15)
O5iii—Sr1—Zn1i132.15 (5)Zn1—O5—Sr1vii82.44 (10)
As1—Sr1—Zn1i114.63 (2)Sr1viii—O5—Sr1vii89.94 (9)
Zn1iii—Sr1—Zn1i157.632 (18)As2—O6—Zn1120.07 (17)
O2iii—As1—O3ii114.79 (16)As2—O6—Sr1vii133.84 (17)
O2iii—As1—O1iii113.26 (16)Zn1—O6—Sr1vii101.73 (12)
O3ii—As1—O1iii106.36 (16)As2iv—O7—Zn1118.14 (17)
O2iii—As1—O4108.51 (17)As2iv—O7—Sr1iv114.40 (15)
O3ii—As1—O4105.51 (16)Zn1—O7—Sr1iv126.37 (12)
O1iii—As1—O4107.95 (15)
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x1, y, z; (iv) x+1, y+1, z; (v) x1/2, y1/2, z+1/2; (vi) x+2, y+1, z; (vii) x+1, y, z; (viii) x+3/2, y1/2, z+1/2; (ix) x+1/2, y1/2, z+1/2.
(BaCuAs2O7) Barium copper diarsenic heptaoxide top
Crystal data top
BaCuAs2O7Z = 4
Mr = 462.72F(000) = 828
Monoclinic, P21/nDx = 4.841 Mg m3
a = 5.7343 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.4722 (17) ŵ = 19.84 mm1
c = 13.071 (3) ÅT = 298 K
β = 91.12 (3)°Prismatic, blue-green
V = 634.9 (2) Å30.06 × 0.03 × 0.02 mm
Data collection top
Nonius KappaCCD
diffractometer
1232 reflections with I > 2σ(I)
Radiation source: fine-focus sealed X-ray tubeRint = 0.025
φ and ω scansθmax = 26.4°, θmin = 2.9°
Absorption correction: multi-scan
(Otwinowski & Minor, 1997)
h = 77
Tmin = 0.807, Tmax = 1.000k = 1010
4991 measured reflectionsl = 1616
1298 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0211P)2 + 6.356P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.025(Δ/σ)max = 0.001
wR(F2) = 0.059Δρmax = 2.28 e Å3
S = 1.20Δρmin = 0.72 e Å3
1297 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
101 parametersExtinction coefficient: 0.0029 (2)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba10.21641 (6)0.65177 (4)0.21373 (3)0.01078 (13)
As10.25303 (10)0.46629 (7)0.34475 (4)0.00811 (16)
As20.67164 (10)0.68332 (7)0.00787 (4)0.00849 (16)
Cu10.78989 (13)0.35893 (8)0.11961 (6)0.01007 (18)
O10.9278 (7)0.3766 (5)0.2630 (3)0.0115 (8)
O20.4698 (7)0.4399 (5)0.3119 (4)0.0170 (9)
O30.6632 (8)0.1528 (5)0.1488 (3)0.0138 (9)
O40.2048 (8)0.3849 (5)0.4659 (3)0.0126 (9)
O51.2020 (8)0.3402 (5)0.1034 (3)0.0142 (9)
O60.8041 (7)0.5920 (5)0.1077 (3)0.0135 (9)
O70.6194 (7)0.3516 (5)0.0132 (3)0.0124 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.0117 (2)0.00914 (19)0.0115 (2)0.00027 (13)0.00038 (13)0.00043 (13)
As10.0103 (3)0.0060 (3)0.0079 (3)0.0003 (2)0.0006 (2)0.0002 (2)
As20.0104 (3)0.0082 (3)0.0069 (3)0.0001 (2)0.0000 (2)0.0000 (2)
Cu10.0144 (4)0.0067 (4)0.0090 (4)0.0007 (3)0.0022 (3)0.0006 (3)
O10.012 (2)0.011 (2)0.011 (2)0.0012 (15)0.0017 (16)0.0003 (16)
O20.010 (2)0.016 (2)0.024 (2)0.0012 (17)0.0035 (18)0.0004 (19)
O30.019 (2)0.007 (2)0.016 (2)0.0013 (17)0.0022 (18)0.0016 (17)
O40.022 (2)0.0067 (19)0.009 (2)0.0017 (17)0.0015 (17)0.0017 (16)
O50.016 (2)0.014 (2)0.013 (2)0.0026 (17)0.0058 (17)0.0006 (17)
O60.016 (2)0.009 (2)0.015 (2)0.0005 (16)0.0050 (17)0.0001 (17)
O70.010 (2)0.015 (2)0.012 (2)0.0029 (16)0.0003 (17)0.0005 (16)
Geometric parameters (Å, º) top
Ba1—O22.628 (4)Cu1—O31.932 (4)
Ba1—O2i2.683 (5)Cu1—O71.976 (4)
Ba1—O6ii2.764 (4)Cu1—O61.983 (4)
Ba1—O7iii2.803 (4)Cu1—O12.025 (4)
Ba1—O1iv2.803 (4)Cu1—O52.382 (4)
Ba1—O3i2.850 (4)Cu1—Ba1vii3.6787 (10)
Ba1—O5iv2.904 (4)Cu1—Ba1viii3.9494 (12)
Ba1—O1ii2.938 (4)O1—As1vii1.685 (4)
Ba1—O5ii3.008 (4)O1—Ba1viii2.803 (4)
Ba1—As13.5818 (10)O1—Ba1vii2.938 (4)
Ba1—Cu1ii3.6787 (10)O2—As1vii1.654 (4)
Ba1—As23.7950 (13)O2—Ba1ix2.683 (5)
As1—O2ii1.654 (4)O3—As1ix1.663 (4)
As1—O3i1.663 (4)O3—Ba1ix2.850 (4)
As1—O1ii1.685 (4)O4—As2ix1.752 (4)
As1—O41.744 (4)O5—As2vi1.650 (4)
As1—Ba1ii3.8019 (11)O5—Ba1viii2.904 (4)
As1—Ba1v3.8295 (9)O5—Ba1vii3.008 (4)
As2—O5vi1.650 (4)O6—Ba1vii2.764 (4)
As2—O61.685 (4)O7—As2iii1.698 (4)
As2—O7iii1.698 (4)O7—Ba1iii2.803 (4)
As2—O4i1.752 (4)
O2—Ba1—O2i153.81 (10)O2ii—As1—Ba1131.49 (17)
O2—Ba1—O6ii125.38 (13)O3i—As1—Ba151.16 (15)
O2i—Ba1—O6ii76.68 (13)O1ii—As1—Ba154.33 (15)
O2—Ba1—O7iii104.89 (14)O4—As1—Ba1120.01 (15)
O2i—Ba1—O7iii91.88 (14)O2ii—As1—Ba1ii35.13 (16)
O6ii—Ba1—O7iii80.15 (13)O3i—As1—Ba1ii82.79 (16)
O2—Ba1—O1iv90.97 (13)O1ii—As1—Ba1ii113.44 (15)
O2i—Ba1—O1iv71.47 (13)O4—As1—Ba1ii133.13 (14)
O6ii—Ba1—O1iv142.42 (13)Ba1—As1—Ba1ii101.86 (2)
O7iii—Ba1—O1iv81.45 (12)O2ii—As1—Ba1v36.33 (16)
O2—Ba1—O3i96.66 (13)O3i—As1—Ba1v152.13 (16)
O2i—Ba1—O3i76.64 (13)O1ii—As1—Ba1v89.59 (15)
O6ii—Ba1—O3i70.14 (13)O4—As1—Ba1v90.19 (15)
O7iii—Ba1—O3i149.83 (13)Ba1—As1—Ba1v137.295 (19)
O1iv—Ba1—O3i119.53 (12)Ba1ii—As1—Ba1v69.617 (19)
O2—Ba1—O5iv83.98 (14)O5vi—As2—O6115.4 (2)
O2i—Ba1—O5iv70.11 (13)O5vi—As2—O7iii117.7 (2)
O6ii—Ba1—O5iv129.47 (13)O6—As2—O7iii108.5 (2)
O7iii—Ba1—O5iv136.35 (12)O5vi—As2—O4i104.0 (2)
O1iv—Ba1—O5iv55.40 (12)O6—As2—O4i104.5 (2)
O3i—Ba1—O5iv65.93 (12)O7iii—As2—O4i105.4 (2)
O2—Ba1—O1ii70.08 (13)O5vi—As2—Ba1159.52 (16)
O2i—Ba1—O1ii121.67 (12)O6—As2—Ba174.00 (15)
O6ii—Ba1—O1ii58.97 (12)O7iii—As2—Ba142.97 (15)
O7iii—Ba1—O1ii113.44 (12)O4i—As2—Ba190.18 (14)
O1iv—Ba1—O1ii158.02 (6)O3—Cu1—O787.90 (19)
O3i—Ba1—O1ii54.80 (12)O3—Cu1—O6158.73 (19)
O5iv—Ba1—O1ii109.76 (12)O7—Cu1—O689.01 (18)
O2—Ba1—O5ii69.15 (13)O3—Cu1—O191.48 (18)
O2i—Ba1—O5ii137.03 (13)O7—Cu1—O1172.97 (17)
O6ii—Ba1—O5ii65.41 (12)O6—Cu1—O189.03 (18)
O7iii—Ba1—O5ii63.22 (12)O3—Cu1—O5109.54 (17)
O1iv—Ba1—O5ii131.40 (12)O7—Cu1—O5113.23 (17)
O3i—Ba1—O5ii106.90 (12)O6—Cu1—O590.99 (17)
O5iv—Ba1—O5ii151.54 (11)O1—Cu1—O573.56 (16)
O1ii—Ba1—O5ii53.01 (11)O3—Cu1—Ba1vii142.53 (14)
O2—Ba1—As183.13 (10)O7—Cu1—Ba1vii128.98 (13)
O2i—Ba1—As199.08 (10)O6—Cu1—Ba1vii47.66 (12)
O6ii—Ba1—As161.04 (9)O1—Cu1—Ba1vii52.83 (12)
O7iii—Ba1—As1135.40 (9)O5—Cu1—Ba1vii54.59 (11)
O1iv—Ba1—As1142.98 (9)O3—Cu1—Ba1viii75.98 (14)
O3i—Ba1—As127.04 (8)O7—Cu1—Ba1viii143.84 (13)
O5iv—Ba1—As187.60 (9)O6—Cu1—Ba1viii117.12 (13)
O1ii—Ba1—As127.77 (8)O1—Cu1—Ba1viii42.25 (12)
O5ii—Ba1—As180.23 (8)O5—Cu1—Ba1viii46.97 (11)
O2—Ba1—Cu1ii93.45 (10)Ba1vii—Cu1—Ba1viii69.55 (2)
O2i—Ba1—Cu1ii108.16 (9)As1vii—O1—Cu1112.7 (2)
O6ii—Ba1—Cu1ii32.03 (9)As1vii—O1—Ba1viii133.9 (2)
O7iii—Ba1—Cu1ii85.05 (9)Cu1—O1—Ba1viii108.69 (17)
O1iv—Ba1—Cu1ii166.46 (9)As1vii—O1—Ba1vii97.90 (18)
O3i—Ba1—Cu1ii72.65 (9)Cu1—O1—Ba1vii93.86 (15)
O5iv—Ba1—Cu1ii137.83 (9)Ba1viii—O1—Ba1vii98.69 (13)
O1ii—Ba1—Cu1ii33.32 (8)As1vii—O2—Ba1123.6 (2)
O5ii—Ba1—Cu1ii40.19 (8)As1vii—O2—Ba1ix122.2 (2)
As1—Ba1—Cu1ii50.434 (18)Ba1—O2—Ba1ix110.24 (15)
O2—Ba1—As290.73 (10)As1ix—O3—Cu1138.7 (3)
O2i—Ba1—As297.19 (10)As1ix—O3—Ba1ix101.80 (18)
O6ii—Ba1—As2104.54 (9)Cu1—O3—Ba1ix114.94 (18)
O7iii—Ba1—As224.39 (9)As1—O4—As2ix125.3 (2)
O1iv—Ba1—As261.30 (9)As2vi—O5—Cu1122.7 (2)
O3i—Ba1—As2172.51 (9)As2vi—O5—Ba1viii126.4 (2)
O5iv—Ba1—As2116.28 (8)Cu1—O5—Ba1viii96.18 (14)
O1ii—Ba1—As2127.56 (8)As2vi—O5—Ba1vii121.3 (2)
O5ii—Ba1—As274.62 (8)Cu1—O5—Ba1vii85.23 (12)
As1—Ba1—As2154.659 (18)Ba1viii—O5—Ba1vii94.90 (13)
Cu1ii—Ba1—As2105.81 (2)As2—O6—Cu1120.0 (2)
O2ii—As1—O3i115.9 (2)As2—O6—Ba1vii132.3 (2)
O2ii—As1—O1ii112.0 (2)Cu1—O6—Ba1vii100.32 (17)
O3i—As1—O1ii105.5 (2)As2iii—O7—Cu1116.1 (2)
O2ii—As1—O4108.5 (2)As2iii—O7—Ba1iii112.6 (2)
O3i—As1—O4106.6 (2)Cu1—O7—Ba1iii130.72 (19)
O1ii—As1—O4108.0 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1, y, z; (iii) x+1, y+1, z; (iv) x+3/2, y+1/2, z+1/2; (v) x1/2, y1/2, z+1/2; (vi) x+2, y+1, z; (vii) x+1, y, z; (viii) x+3/2, y1/2, z+1/2; (ix) x+1/2, y1/2, z+1/2.
The comparison of unit-cell parameters (Å, °) for M1IIM2IIX2O7 compounds (M1 = Ba2+, Sr2+, Pb2+, Ca2+; M2 = Cu2+, Mg2+, Zn2+, Ni2+, Co2+, Cr2+; X = As5+, P5+) top
CompoundabcβV3)ICSD (2014)
SrCuAs2O715.550 (1)8.299 (2)12.858 (2)91.75 (3)592.0 (2)82624
SrCoAs2O725.520 (1)8.391 (2)13.083 (3)90.90 (2)605.9 (2)74545
SrZnAs2O735.5114 (11)8.3524 (17)13.106 (3)91.01 (3)603.2 (2)
PbCuAs2O745.553 (1)8.404 (1)13.011 (2)91.61 (2)606.95 (16)61339
BaCuAs2O715.736 (1)8.458 (2)13.044 (3)91.16 (3)632.7 (2)82625
BaCuAs2O735.7343 (11)8.4722 (17)13.071 (3)91.12 (3)634.9 (2)
BaCuAs2O755.740 (5)8.475 (3)13.090 (3)91.24 (4)636.6 (6)80329
BaMgAs2O765.620 (1)8.629 (2)13.344 (3)90.20 (3)647.1 (2)
BaCoAs2O765.649 (1)8.577 (1)13.278 (2)90.014 (1)643.3 (2)
BaZnAs2O775.6260 (10)8.557 (2)13.317 (3)90.01 (3)641.1 (2)260061
CaCuP2O785.2104 (4)8.0574 (5)12.344 (1)91.356 (6)518.08 (7)68510
α-Ca2P2O795.315 (5)8.542 (8)12.66 (1)90.3 (1)574.8 (9)22225
SrNiP2O7105.2691 (5)8.2674 (8)12.6140 (13)90.246 (9)549.48 (9)411740
SrCuP2O7115.369 (1)8.129 (1)12.455 (2)90.59 (1)543.56 (15)74445
SrMgP2O7125.3046 (8)8.3053 (13)12.700 (2)90.502 (3)559.48 (15)280782
SrCoP2O7135.3165 (4)8.2574 (5)12.6755 (7)90.133 (5)556.46 (6)69578
SrZnP2O7145.3143 (2)8.2080 (3)12.7250 (6)90.192 (4)555.06 (4)
SrZnP2O7155.30906 (2)8.21392 (3)12.73595 (5)90.1573 (3)555.390 (5)160198
SrFeP2O7165.370 (2)8.268 (4)12.693 (3)90.37 (2)563.5 (4)280078
SrCrP2O7175.422 (2)8.3254 (19)12.542 (4)90.39 (3)566.1 (3)280309
SrCdP2O7185.414 (1)8.615 (3)12.878 (5)90.01 (3)600.6 (4)72672
Sr1.34Pb0.66P2O7195.433 (4)8.944 (6)13.183 (6)90.12 (5)640.6 (7)75000
PbCuP2O7205.381 (1)8.194 (2)12.569 (1)90.39 (1)554.18 (18)79996
PbCoP2O7205.322 (1)8.292 (2)12.777 (2)90.18 (1)563.85 (19)79994
PbMnP2O7205.393 (1)8.461 (2)12.848 (3)90.00 (3)586.3 (2)79995
BaMgP2O7215.483 (1)8.561 (3)12.626 (2)91.32 (2)592.5 (3)39398
BaMnP2O7225.5537 (6)8.633 (2)12.825 (2)90.08 (1)614.90 (18)78657
References: (1) Chen & Wang (1996); (2) Horng & Wang (1994); (3) this work); (4) Pertlik (1986); (5) Wardojo & Hwu (1995); (6) Mihajlović et al. (2004); (7) Đorđević (2008); (8) Riou & Goreaud (1990); (9) Calvo (1968); (10) El Bali et al. (2001); (11) Moqine et al. (1993); (12) Tahiri et al. (2002); (13) Riou & Raveau (1991); (14) Höppe et al. (2007); (15) Yuan et al. (2007); (16) Le Meins & Courbion (1999); (17) Maaß & Glaum (2000); (18) Alaoui El Belghiti et al. (1991); (19) Elmarzouki et al. ( 1994); (20) Elmarzouki et al. (1995); (21) Murashova et al. (1991); (22) Adams et al. (1995).
Geometrical characteristics of coordination polyhedra for M1IIM2IIAs2O7 compounds (M1 = Ba2+, Sr2+, Pb2+,Ca2+, M2 = Cu2+, Mg2+, Zn2+, Ni2+, Co2+, Cr2+). top
CompoundCentral atom (CN)Average bond distance (Å)Radius of a fitted circumscribed sphere (Å)Sum of ionic radii for the bonds* (Å)Volume-based ECCsVolume-based distortion, νσ2tet, λ(As1), σ2tet, λ(As2), As1—Ob—As2 angle (°), σ2dih#
SrCuAs2O71As1(4)1.683±0.0371.6831.7150.0970.00415.73, 1.0038
As2(4)1.695±0.0411.6921.7150.1110.00735.89, 1.0089
Sr(9)2.705±0.1752.6992.690.1510.089122 (2)
Cu(5)2.035±0.1332.0262.030.3300.038386.89
SrCoAs2O72As1(4)1.682±0.0431.6801.7150.1120.00314.25, 1.0035
As2(4)1.693±0.0371.6911.7150.1010.00731.73, 1.0078
Sr(9)2.727±0.2352.7182.690.2240.095122.7 (3)
Co(5)2.063±0.0682.0612.050.0370.033342.20
SrZnAs2O73As1(4)1.685±0.0401.6841.7150.1050.00314.24, 1.0032
As2(4)1.695±0.0371.6921.7150.0990.00834.26, 1.0085
Sr(9)2.722±0.2312.7142.690.2170.094122.39 (18)
Zn(5)2.054±0.0752.0532.060.0650.024337.71
PbCuAs2O74As1(4)1.686±0.0211.6861.7150.0560.00313.77, 1.0033
As2(4)1.701±0.0521.6971.7150.1390.00741.62, 1.0103
Pb(9)2.756±0.2782.7442.730.3380.094124.46 (8)
Cu(5)2.033±0.1212.0232.030.2980.021246.99
BaCuAs2O71As1(4)1.690±0.0471.6881.7150.1230.00525.04, 1.0037
As2(4)1.695±0.0311.6921.7150.0840.00939.06, 1.0095
Ba(9)2.827±0.1262.8202.850.0830.080123 (3)
Cu(5)2.047±0.1752.0382.030.4160.039182.37
BaCuAs2O73As1(4)1.686±0.0391.6851.7150.1040.00314.96, 1.0039
As2(4)1.696±0.0421.6931.7150.1140.00634.80, 1.0082
Ba(9)2.821±0.1202.8162.850.0710.082125.32 (19)
Cu(5)2.057±0.1832.0492.030.4270.036212.30
BaCuAs2O75As1(4)1.695±0.0491.6911.7150.1290.00536.04, 1.0087
As2(4)1.682±0.0351.6811.7150.0910.00418.57, 1.0033
Ba(9)2.826±0.1202.8222.850.0670.083125.9 (3)
Cu(5)2.061±0.1852.0532.030.4290.030219.00
BaMgAs2O76As1(4)1.685±0.0421.6851.7150.1100.0027.96, 1.0022
As2(4)1.694±0.0421.6921.7150.1120.00532.70, 1.0069
Ba(9)2.852±0.1782.8482.850.1030.096125.0 (2)
Mg(5)2.049±0.0382.0472.040.0620.023192.99
BaCoAs2O76As1(4)1.686±0.0411.6851.7150.1060.00211.91, 1.003
As2(4)1.696±0.0391.6931.7150.1050.00527.55, 1.007
Ba(9)2.829±0.1542.8242.850.0970.088125.0 (2)
Co(5)2.069±0.0562.0662.050.0710.041229.64
BaZnAs2O77As1(4)1.687±0.0411.6861.7150.1080.00212.71, 1.0028
As2(4)1.690±0.0401.6881.7150.1080.00528.97, 1.0073
Ba(9)2.833±0.1642.8292.850.1000.090124.67 (14)
Zn(5)2.061±0.0542.0592.060.0830.026216.59
Notes: (*) calculated from effective ionic radii (Shannon, 1976); (#) σ2dih = Σ(θi-60)2/3, i = 1, 2, 3

References: (1) Chen & Wang (1996); (2) Horng & Wang (1994); (3) this work); (4) Pertlik (1986); (5) Wardojo & Hwu (1995); (6) Mihajlović et al. (2004); (7) Đorđević (2008).
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds